Stochastic and Syntactic Techniques for Predicting Phrase Breaks

lan Read and Stephen Cox

School of Computing Sciences, University of East Anglia, Norwich, UK

{ihr, sjc}@cmp.uea.ac.uk

Abstract

Determining the position of breaks in a sentence is a key
task for a text-to-speech (TTS) system. We describe some meth-
ods for phrase break prediction in which the whole sentence is
considered, in contrast to most previous work which has fo-
cused on using local features. Three approaches are described:
by analogy, where the breaks from the best-matching sentence
in our training data is used for the unseen sentence; by phrase
modelling, in which we build stochastic models of phrases to
segment unseen sentences; and finally, using features derived
from a syntactic parse tree. Our best result, obtained on the
MARSEC corpus and using a combination of parse derived fea-
tures and a local feature, gave an F score of 81.6%, which we
believe to be the highest published on this dataset.

1. Introduction

Our overall goal is to find algorithms for predicting the location
of prosodic phrase breaks for an utterance to be spoken by a
text-to-speech (TTS) system. A synthesized sentence contain-
ing incorrect breaks at best requires increased listening effort,
and at worst, may have lower intelligibility and different se-
mantics from a correctly phrased sentence.

Previous techniques for predicting breaks mainly use fea-
tures derived from a window centred on a juncture between two
words [1], [2], [3]. As prosody applies to the whole sentence,
we argue that predictions need to consider the sentence as a
complete unit. To illustrate this point, consider these sentences:

a. John doesn’t play cards because he’s bored.

b. John doesn’t play cards because he’s bored—he plays them
because he is an addict.

Most readers would divide the first sentence into two
phrases, breaking between “cards” and “because”, with the im-
plication that John is bored, and as a result he does not play
cards. In the second sentence, most readers would not break be-
tween “cards” and “because”, but pause after “bored”, implying
that John does play cards, not due to boredom, but because he
has an addiction. The second sentence shows we need to under-
stand it fully before a correct prosodic rendering can be made.
Although we do not consider semantic processing in this paper,
this example illustrates how considerations that operate over the
whole sentence need to be made when a speaker plans the break
positions.

2. Corpora

These experiments used two data sets; the Boston Radio News
Corpus [4] consisting of a training set of 13,754 words (3,437
breaks), with another 15,333 words (3,894 breaks) for testing.
The Machine Readable Spoken English Corpus (MARSEC) [5]
(transcripts from BBC Radio 4) was used as a training set of

31,936 words (6,345 breaks) and a test set of 7,710 words (1,404
breaks). As is common in TTS, we consider two levels of junc-
ture; break or non-break [1], [2]. The data sets were normalized
[6] and tagged using the Penn Treebank part-of-speech (POS)
tags with the Brill tagger [7] for consistency.

2.1. Evaluation Criteria

Performance is calculated in terms of precision (P), recall (R)
and an overall F score (F):

P = number of breaks correct
~ number of breaks predicted

R = number of breaks correct
- anmbe'r of breaks in the test set
— (B°+1)PR

Fs="Grpir

For this study, 3 = 1 was used allowing Fj to give an
even balance between precision and recall, thus presenting a
single measure of an algorithm’s overall quality. Evaluations
were performed using both the MARSEC and Boston corpora.

2.2. Baseline

To establish a baseline result, we labelled any juncture within a
sentence as a break when preceded by punctuation (i.e. brack-
ets, commas, colons, semi colons, quotation marks and excla-
mation mark). The results in Table 1 indicate that punctuation
is a strong indicator of breaks; however, the low recall shows
that many breaks are not associated with punctuation.

3. Prediction-By-Example

Given a sufficiently large training set of annotated examples, it
may be possible to predict the breaks in an unseen sentence by
analogy i.e. by finding the most similar sentence in the training
set, and using the break positions from this sentence to mark the
breaks in the new sentence. For this approach, given a new sen-
tence, we measure the Levenshtein distance between this new
sentence’s sequence of part-of-speech (POS) tags, and the POS
sequences of all the training samples. Once the most similar
sentence has been found (i.e. the one with the shortest Lev-
enshtein distance from the unseen sentence), the phrase break
structure from this matching sentence is then aligned with the
new sentence using dynamic programming.

3.1. Results

The prediction-by-example technique was first evaluated using
the full Penn Treebank tagset on both corpora. As shown in Ta-
ble 1, this technique performs worse than the rule-based punc-
tuation algorithm in section 2.2. The full Penn Treebank tagset
was then replaced by a reduced tagset derived using techniques
described in [8]. Table 1 shows this raised the F score by 9.39%
(a result that out-performs the punctuation baseline).



3.2. Analysis of Errors

The main source of errors in this algorithm is misalignment of
breaks. A misalignment between two sentences occurs when a
plausible match is found, yet it fails to align correctly the junc-
tures, thus causing the breaks to be either a few junctures before
or after where they should be located. An example of a mis-
alignment is circled in Figure 1, where the break is misaligned
after the WDT tag, when it should be before it.

Unseen Sequence

JINN, VBG TONNP , VBZ DT NN, NN JT NN TCy AD RB VB JTNNS .

1111 1 1 41 114114 1 1 1 4 1 1 4(Real)
1 11

11 11 1 1 4 4 114 1 1 1 4 1 1 4(Predicted)

W

JINN, NNP NNP , VBZ DT NN IN NN VBZ VBG VBN TO VB VB DT NN
1111 144 11 14 1 1 4 11411 4
Best Match

Figure 1: Example of prediction-by-example aligning breaks.

Because of the limited amount of available training data,
modelling a whole sentence is too specific to be useful. As sen-
tences get larger, the probability of finding a close match be-
comes very low. In addition, the many comparisons make this
technique very slow. However, whole phrases within sentences
often matched well, even when the rest of the sentence was
dissimilar. Thus suggested we should try to model individual
phrases within the sentence. Hidden Markov Models (HMMs)
are well suited to this task.

4. Prediction by Phrase Modelling

A sentence can be modelled at two levels within the prosodic
hierarchy; as a sequence of words and a sequence of phrases.
Hence we can construct sets of models for both of these levels,
and combine them to make break predictions on the sentence
as a whole. This is achieved by estimating the best sequence
of phrase models that “explains” an unseen sentence. Breaks
are postulated at the junctures of the phrase models. Hidden
Markov Models (HMMs) [9] are well suited to modelling se-
quences of symbols that display systematic variation. Further-
more, HMMs allows us to use powerful n-gram language mod-
elling from speech recognition to form a probabilistic “gram-
mar” of phrase sequences. This grammar is used to guide the
decoding of the phrases, in the same way statistical language
models aid the decoding of an acoustic signal in speech recog-
nition.

Syntactically similar phrases such as “the car”, “the fast
car”, “the blue cup” and “the hot cup” are clustered into a
phrase model. (For the purposes of these experiments, we de-
fine a phrase to be a sequence of words (POS tags) between two
phrase breaks.) Phrases were grouped together using k-means
clustering, with the initial k cluster centres selected at random
from the training data. The distance between two phrases is cal-
culated using the Levenshtein distance between each phrase’s
POS sequence, in the same way that sentences are compared
for prediction-by-example in section 3.

After clustering, each sentence in the training data can
then be represented as a sequence of phrase models. From
this representation we estimate a bigram “language model”
for phrase models, which consists of a set of probabilities
Pr(phrases+1 = cj|phrase: = ¢;) . Unseen sequences are
handled with back-off and Good-Turing smoothing [10].

A discrete HMM is built to model each cluster. Each HMM
models the way in which the particular set of syntactically sim-
ilar phrases can be generated by a finite-state machine. Each
state of the HMM has an associated set of P probabilities
(where P is the number of POS tags), of observing each POS
tag in that state. Baum-Welch re-estimation [9] is used to train
these probabilities. The HMM Toolkit (HTK) [9] is used for
training and decoding the models.

A number of different HMM topologies were evaluated, as
shown in Figure 2. All are left to right, modelling word order,
but use different possibilities for the state transition matrix a;;,
which represents the probability of making a transition from
state s; to s;. With topology A, all left to right transitions are
allowed i.e. a;; > 0V j > 1, giving a high degree of freedom.
Topology B allows a;; > 0 for j = i or j = ¢ 4 1, limiting
the transition from one state to itself or the next state. Topology
C relaxes topology B by adding transitions to the final state.
The optimal number of states was determined by experimenting
with a range of values. As well as these uniform values, we
also experimented using the mean phrase length of the training
samples used to build the respective HMM, giving a variable
number of states from phrase model to phrase model.

Figure 2: Example of HMM topologies A, B and C, using 4
states.

Viterbi decoding was used to segment new sentences into
the most likely sequence of HMMs, with phrase breaks postu-
lated where the HMM s join. The Viterbi decoder facilitates the
combination of probabilities from the phase HMMs and from
the bigram phrase sequence model. A “grammar scale factor”
is used to weight the significance of the bigram model against
the POS phrase HMMs.

4.1. Optimization of the Models

As HMMs have a number of parameters, it is important to ex-
periment with a range of different values during optimization.
Initially, we made some assumptions about the starting values of
these parameters. This consisted of topology C with three emit-
ting states, 100 phrase clusters (HMMs), and grammar scale
factor of 1. We experimented with a range of different values
for each parameter to find the optimal configuration. Once all of
these values have been optimized individually, the best values
are combined for a final model.

The number of phrase clusters was varied between 1 and
300 at intervals of 5; the best mean F score of 56.7% was ob-
tained when 45 were used. The number of states and the state
transition values were optimized jointly. For the three topolo-
gies outlined above, the number of emitting states was varied



between 1 and 25, as well as the mean phrase length. The over-
all best F score of 61.7% was achieved using 7 emitting states
with topology A. Varying the grammar scale factor between 0
and 30, the best result was achieved with a factor of 1 (i.e. when
the phrase sequence model and the phrase HMMs contribute
equally to the overall likelihood), giving an F score of 51.1%.
The mean gain in F score obtained from using the phrase se-
quence model is 2.3%.

4.2. Results

Table 1 reports a best overall mean F score of 63.7%, obtained
from using the optimized parameters, consisting of 45 HMMs,
each with topology A using 7 emitting states, and a grammar
scale factor of 1.

4.3. Analysis of Errors

By far the most common error observed with this approach was
to place a break one word prematurely. Increasing the grammar
scale factor reduces this error, but leads to significantly fewer
breaks being correctly predicted. We concluded that although
the HMMs do a good job at modelling phrases, there is probably
not enough information in POS sequences for the task of break
prediction. In the next section, we describe experiments using
syntactic parse features.

5. Syntactic Parsing

There is clearly a strong relationship between prosodic phrase
structure and syntactical structure. Consider this sentence taken
from the MARSEC corpus: “The little girl and the lion went
into the classroom just as the teacher was calling the register.”
Using the Collins parser [11], the automatically derived syntac-
tic parse of this sentence is shown in Figure 3. In this case, the
phrase breaks occur at exactly the junctures between the ma-
jor syntactic phrases. Although this sentence is unusual in the
exact correspondence of breaks and syntactic phrases, it does
highlight the potential of such features.

S

A VANE ] /N
DT JJ NN CCDTNNVBDIN DT NN RBINDT NN VBD VBG DT NN

The little girl and the lion went into the classroom just as the teacher was calling the register
11 4 11 41 11 4 111 1 1 1 1 4

Figure 3: Syntactic parse and prosodic phrase break for the sen-
tence “The little girl and the lion went into the classroom just as
the teacher was calling the register.”

Given an automatic parse, we need to determine features
that are cues for prosodic breaks. Koehn et al. [12] presented
a model extending [3], by adding the following features in their
CART classifier:

e KO - The size of the longest phrase ending at the current
word.

e K1 - A binary flag denoting whether the phrase is a major
phrase (i.e. NP, VP, PP, ADJP or ADVP).

e K2 - The size of the next phrase on the same level of the
tree.

e K3 - A binary flag denoting if the phrase is an SBAR.
We used the above features and added three extra features:

e KOA - The number of nodes dominated by the longest
phrase ending at the current word.

e K2A - The number of nodes dominated by the next
phrase on the same level of the tree.

o LPS - The phrase type of the biggest phrase ending at the
current word.

Treating the parse tree as a graph, we consider the number
of nodes that are traversed in moving from one word to the next
word in the sentence. This led to the following features:

e PD - Parse Depth - the distance from the top node to the
current node.

e PDD - Parse Depth Difference - the difference in parse
depth of the i*" and (i + 1)** word. PDD; =
depthi+1 — depth;.

e DNW - Distance to Next Word - the shortest path from
the i*" word to the (i 4 1)** word.

We used the POS trigram model described in [8] to add
the (local) probability of a phrase break at each word juncture
(referred to as NGPB).

5.1. Results

It would theoretically be possible to incorporate the features
mentioned above into our HMM models, but the disadvantage
of this approach is that these features are heterogeneous and are
discrete rather than continuously valued. This makes it diffi-
cult to represent them as a multivariate Gaussian distribution
in the way that is done with, for instance, the set of front-end
features typically used in speech recognition. Since use of the
parse information now incorporates long-range effects within
a sentence into the features themselves, for these experiments,
we have used a decision tree classifier rather than an HMM seg-
menter. The C4.5 decision tree classifier was used to build mod-
els that combine these multiple features. Decision tree classi-
fiers have been shown to be useful for the break prediction task
[3]. We constructed and evaluated models using all the possible
combinations of these features. Table 1 presents the best results
from this approach, which uses a combinations of the features
KOA, NGPB, PDD and DNW.

The single best F score of 81.56% was achieved using KO,
K1 and NGPB, when evaluated on the MARSEC corpus. How-
ever, on the Boston data, this same feature set gave 77.91%,
indicating that some features are sensitive to the material used.

5.2. Analysis of Errors

Below are some examples of the errors made by the algorithm.
Correctly predicted phrase breaks are denoted by ||, insertions
are marked by A and (2 signifies deleted breaks.

1. Barry Cane || of Hyannis || is accused §2 of trying € to
import € more than five kilos || of cocaine.

2. The increase in the 2 earnings limit 2 for pensioners ||
is also worth a comment.

3. Craig Mactenel || is legislative liaison || for the Fisheries
A and Wildlife 2 Department.



. Boston MARSEC Mean
Algorithm P R F P R F P R F
Punctuation Model (baseline) 95.8% | 35.4% | 51.7% | 81.6% | 45.9% | 58.7% | 88.7% | 40.6% | 55.2%
Prediction-By-Example (full tagset) 64.3% | 46.7% | 54.1% | 54.0% | 38.6% | 45.0% | 59.1% | 42.7% | 49.6%
Prediction-By-Example (reduced tagset) | 70.5% | 54.0% | 61.2% | 59.7% | 54.1% | 56.8% | 65.1% | 54.0% | 59.0%
Prediction-by-phrase-modelling (HMMs) | 66.8% | 57.2% | 61.6% | 64.4% | 67.3% | 65.8% | 65.6% | 62.2% | 63.7%
Syntactic Features 82.1% | 77.0% | 79.5% | 85.9% | 76.4% | 80.9% | 84.0% | 76.7% | 80.2%

(KOA, NGPB, PDD, DNW)

Table 1: Comparison of the

4. Kassler A says,|| unlike the Federal 2 Supreme Court, ||
there’s no litmus test || on particular issues || that Massa-
chusetts high court nominees || must pass.

In the above examples—notably 1 and 2—it seems many
reference breaks could be omitted without any noticeable loss
in quality. They reflect the “semantically dense” nature of the
radio news broadcasts, where newsreaders tend to read slowly,
pausing to emphasize semantically important words. The error
in sentence 3 is due to the algorithm’s ignorance of “Fisheries
and Wildlife” being a collocation. In example 4, there is a break
after “federal” to contrast the two different court systems. This
demonstrates how semantic and long-range considerations af-
fect a sentence’s prosody. These concepts are clearly beyond
what is implemented in this classifier.

6. Summary and Discussion

This paper has examined some different techniques using the
whole sentence for the prediction of prosodic phrase breaks.
Table 1 summaries the performance of all these algorithms.
Although prediction-by-example and the stochastic models of
phrases performs well above the punctuation baseline, they are
clearly not general enough for practical use, indicating POS fea-
tures do not carry enough information for making accurate seg-
mentations. Using a decision tree classifier based on a local-
ized n-gram probability and long range features extracted from
a syntactic parse gave the best results. On the MARSEC corpus,
our single best result (F = 81.56%) outperforms the results re-
ported by Busser et al. [1] (F = 74.4%) and Taylor & Black [2]
(F =78.3%) on the same corpus. On a different data set, Koehn
et al. [12], obtained an F score of 82.0%. However, their fea-
ture set included hand-annotated pitch accents, which prevents
a direct comparison. They achieved 70.8% using just syntactic
features.

As the majority of the prediction errors were caused by
ignorance of the sentences’ semantics, a complete solution to
this problem undoubtedly demands semantic and pragmatic
processing. But it is not clear how much syntax-based features
(either local or long range) can be taken. Further improvements
in syntactic parsers will benefit the techniques presented here,
as could alternative machine learning techniques such as max-
imum entropy [13] and support vector machines. Our future
work will include adding more features to the classifier used for
the syntactic parse experiments [3], and incorporating multiple
features into the HMM experiments using vector quantization
[9].

However, it may be more interesting to focus on measures
of how subjectively disturbing the effect of misplaced breaks is
on the semantics or intelligibility of a synthesized sentence. By
quantifying this effect, it may be possible to devise an algorithm
that minimizes the Bayes risk.

algorithms presented in this paper.
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