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Abstract
We describe a novel approach to inferring the scoring rules

of a tennis game by analysing the chair umpire’s speech. In a
tennis match, the chair umpire, amongst other tasks, announces
the scores. Hence his or her speech is the key resource for in-
ferring the scoring rules of tennis, a task that can be accom-
plished by correlating the events on the court with these score
announcements. In this work, the learning procedure consists
of two steps: speech recognition followed by rule inference.
For speech recognition, we use a two coupled language models
one for words and one for scores. The first makes make use
of the internal structure of a score, the second, the dependency
of a score on the previous score. For rule inference, we uti-
lize a multigram model to segment the recognised score streams
into variable-length score sequences, each of them correspond-
ing to a game in a tennis match. The approach is applied to four
complete tennis matches, and shows both enhanced recognition
performance, and a promising approach to inferring the scoring
rules of the game.

Speech recognition, rule inference, multigram model

1. Introduction
Automatic information acquisition and knowledge inference is
essential for the development of a machine that aims to interact
intelligently with humans. Our long-term goal is to build such a
system. However, our initial work is concerned with analysing
tennis games, where there are a small number of well-defined
“events” and the rules of interaction are simple. For present
purposes, we use only the audio recording (the soundtrack) of
the game—later work will combine this information with video
information. Audio information in a tennis game consists of
a number of audio events, such as the sound of the ball be-
ing hit, the line judges’ shouts, crowd noise, the chair umpire’s
speech, commentators’ speech etc. Identification of all such
events is useful information for analysing the game [3, 4], but
the score announcements by the umpire are essential for infer-
ring the scoring rules.

Recent work [8, 2, 5, 9, 7] has made use of audio and visual
information to analyse sports games. However, this work has
focused mainly on topics such as scene segmentation [5], event
classification[8, 9], and identifying significant events [2, 7] us-
ing low-level features. In this paper, we attempt to infer higher-
level information by analysing and processing the speech sig-
nal from the umpire. The chair umpire, amongst other tasks,
announces the match scores, states whether serves are “in” or
“let”, announces challenges etc., and so his or her speech is the
key resource for inferring the game rules. It is quite likely that
many people who understand the scoring system of tennis have
done so by correlating the umpire’s score announcements with
the events on the court, rather than by learning it explicitly from

a teacher. This motivates us to attempt to automate a machine
to do it.

However, recognition of the scores is not easy because of
the poor quality of the umpire’s speech on the soundtrack:

• crowd noise often obscures the speech, partially or com-
pletely;

• commentators’ voices often overlap with the speech.

• the duration of umpire’s speech is quite short, usually
less than 1s.

To tackle these problems, we set constraints on the design of the
speech recogniser and we use a pair of coupled language mod-
els. One model makes use of the dependency of words within
scores, the second the dependency of a score on the previous
score, and the models are allowed to influence each other. Fi-
nally, for score rule inference, we employ a multigram model
[1] to divide a long sequence of recognised scores into game
segments, from which we can extract the scoring scheme. Fig-
ure 1 shows a block diagram of our approach. The details will
be presented in the next sections.

2. Theoretical Framework
Given a sequence of acoustic observations from the umpire, O,
our approach is to find the most likely sequence of recognised
words W ∗, and the associated most likely score sequence S∗:

(S∗,W ∗) = arg max
S,W

Pr(S,W |O). (1)

We can approximate the righthand side of equation 1 by:

Pr(S,W |O) ∝ Pr(O|S,W ) ∗ Pr(S,W ) (2)
∝ Pr(O|W ) ∗ Pr(W ) ∗ Pr(S|W ) (3)

where the first two terms, Pr(O|W ) and Pr(W ), respectively
represent the acoustic model and the language model, and
Pr(S|W ) is the probability of a score sequence hypothesis S
given a word sequence hypothesis W .

Let Si be a particular sequence of Ni scores {Si, i =
1, · · · , Ni}. We can write

Pr(S|W ) ∝ Pr(W |{Si}) Pr({Si}) (4)

S∗ and W ∗ can be obtained by maximising jointly the likeli-
hood of the word sequence W and the set {Si}:

S∗ = S∗i = arg max
{Si}

Pr(W |{Si}) Pr({Si}). (5)

The likelihood of the data, Pr(W |{Si}), measures how well
the data fits a given set {Si}. The second term in equation 5
evaluates the likelihood of the set {Si} itself [1].



Figure 1: Overview of the system used in this paper. It consists of two main parts: speech recognition and score structure inference

2.1. Design of Speech Recogniser and Language Models

As commented earlier, recognition of the umpire’s speech is dif-
ficult because of factors such as interference from crowd noise
and commentator’s speech, as well as the diversity of voices and
accents encountered. Our acoustic models are standard mono-
phone Gaussian mixture models trained using a small number
of manually labelled umpire’s speech segments. We obtain our
recognition performance improvement by using two coupled
language models, one for word sequences and one for score se-
quences, that are both iteratively learnt, as indicated in Figure
1. For decoding, we use a word bigram model of every pos-
sible set of two vocabulary words. This model is built from
the recogniser output obtained from a decoding using a simple
word loop i.e. we do not assume “a priori” the syntax of the
words within a score. However, this output has many errors be-
cause of the lack of constraints on the speech recogniser. We
therefore also use a bigram “score language model” which esti-
mates the probability Pr (scorei|scorei−1). This model is also
built from recogniser output. This provides considerable con-
straints on score sequences: for instance, if scorei is fifteen-all,
scorei+1 can only be thirty-fifteen or fifteen-thirty (assuming, of
course, that our current score language model is accurate). After
each recognition pass, we re-score the N-best hypotheses (we
used N = 10) from the word model using the score-language
model. The re-ordered hypotheses are then used to re-estimate
the word bigram model, which is then used again for recogni-
tion, and also to re-estimate the score language model. This is
depicted graphically in Figure 2.

Figure 2: Coupled word and score language models.

When there is no significant change in recognition perfor-
mance, iteration is stopped, and the recognised score sequences
are stored.

2.2. Score Structure Inference

The syntax of the scores in a tennis game is limited and well-
defined, so that the same sequences of scores tend to occur
in many games. In this section, we describe the use of a
multigram model to perform segmentation by identifying com-
monly occurring score-sequences, which are assumed to repre-
sent games.

Let W = w(1) · · ·w(t) · · ·w(T ) denote a stream of T
scores, and S denote a possible segmentation of W into q se-

quences of scores w(1) · · ·w(q). The likelihood of the stream
of scores W associated with a certain segmentation S is com-
puted as:

L(W,S) =

t=qY
t=1

Pr(w(t)) (6)

Our aim is to find the most likely segmentation of E

L∗(W ) = max
S∈{Si}

L(W,S) (7)

where {Si} is the set of all possible segmentations ofW into se-
quences of scores. The multi-gram model is hence fully defined
by a set of parameters Θ consisting of the probability of each
score sequence Si ∈ V, where V = {S1, · · · , SN}, a dictio-
nary containing all the sequences of scores. To compute the set
of parameters Θ from a training corpus W , an iterative Max-
imum Likelihood (ML) is used through an Expectation Maxi-
mization (EM) algorithm. For details, the reader is referred to
[1].

Estimation of the model parameters is done using an itera-
tive forward-backward procedure [1]. It relies on the estimation
of a forward variable α and a backward variable β, which are
defined as the likelihood of the partial observed stream of events
W

(t)

(1) and W (T )

(t+1), respectively. Figure 3 shows how α(t) and
β(t) are estimated (Training), followed by segmentation (De-
coding) using the Viterbi algorithm [6].

3. Data and Experimental Set-up
We used sound tracks from four complete tennis matches, three
men’s singles (MS) and one mens’ double(MD) from Wimble-
don Open in 2008. Table 1 lists the details of these data.

Table 1: Experimental data from four tennis matches
MS(1) MS(2) MS(3) MD

Duration of 320 290 120 140
the match (Min.)

Total length of 401 403 171 176
umpire’s speech (s)

# umpire’s 389 387 163 164
speech fragment

From the four matches, we obtained 1103 umpire’s speech
fragments. As this paper is concerned with score structure in-
ference, we do not consider here the problem of automatic ex-
traction of the umpire’s speech from the soundtrack, and we use
manually labelled data. Ten examples of each of the eight vo-
cabulary words are selected from MS(1) to train a monophone
based acoustic model using HTK. The other 1023 speech frag-
ments are used for testing.



Training
1. Recursion formula for the variable α

for 16t6T:
α(t) =

Pn
l=1 α(t− l)p([w(t− l + 1) · · ·w(t)]),

with α(0) = 1 and α(t) = 0 for t < 0.
(n is the maximal length of a segment.)

2. Recursion formula for the variable β
for 1 ≤ t < T :
β(t) =

Pn
l=1 p([w(t+ 1) · · ·w(t+ l)])β(t+ l),

with β(T ) = 1 and β(t) = 0 for t > T .

3. Parameter re-estimation
for a sequence Si of l events,

θ
(k+1)
i =

PT
t=1

Pn
l=1 δ(t,l,i)α

(k)(t−l)β(k)(t)PT
t=1 α

(k)(t)β(k)(t)

where

δ(t, l, i) =


1 if [w(t−l+1) · · ·w(t)] = Si
0 otherwise

Go back to Step 1 for N iterations.

Decoding
1. Initialization
δ1(i) = p([w(1) · · ·w(1 + i− 1)])

ψ1(i) = 0 1 ≤ i ≤ n
2. Recursive
δt(j) = max1≤i≤n[δt−1(i)]p([w(t) · · ·w(t+j−1)])

ψt(j) = argmax1≤i≤n[δt−1(i)]

(2 ≤ t ≤ T, 1 ≤ j ≤ n)
3. Traceback (refer to [6])

Figure 3: Estimation of parameters for multigram model

As we mentioned in Section 1, our goal is to infer the score
structure of a tennis game in a way that mirrors the process of
a human learning how sentences are organized after acquiring a
few words. We hence assume that the eight words used in ten-
nis scoring, {love, fifteen, thirty, forty, deuce, advantage, all,
game} are known a priori. After the recognition process de-
scribed in section 2.1, the final complete sequence of scores is
processed by the multigram model, which finds the most likely
segmentation of this sequence into sequences which are as-
sumed to represent games. In practice, the umpire makes other
announcements (such as announcing when play will begin, who
is to serve etc.) that are not to do with scoring, and these gen-
erally contain more than two words. Hence, we remove recog-
nition output containing more than two words prior to using the
multigram model.

Performance is evaluated in two ways: speech recognition
accuracy, and the effectiveness of the score sequence segmen-
tation. A single error in an early score means that many subse-
quent scores may be incorrect, and hence even with high word
accuracy, the performance of the multigram technique in find-
ing the correct score sequence is rather low. As our goal at this
stage is to infer the overall structure of the match rather than
score it precisely, we use a metric that focuses on the quality of
the segmentation of the stream into games. We note the identity
of the first score in each game segmentation produced by the
multigram model. The only “legal” scores possible at this point

in the game are the two initial scores fifteen-love or love-fifteen.
Hence we can measure the quality of the segmentation using the
following definitions of precision (P ), recall (R), and F -score
(F ):

P =
# initial scores detected
# Game starts detected

(8)

R =
# initial scores detected

Actual # game starts
(9)

F =
2PR

P +R
. (10)

Table 2: Score recognition accuracy (%)
(%) Word Iter. Iter. Iter. Iter. Iter.

loop 1 2 3 4 5
Acc. 43.30 47.70 48.97 49.85 50.24 50.34
rate
Imp. - +10.2 +13.1 +15.1 +16 +16.3
rate

Table 3: Confusion matrix of recognised words after iterations.
Columns are actual score words, rows are recognised score
words

advan. all deuce fif. fort. game love thir.
advan. 41 0 0 5 15 0 0 3

all 0 89 0 0 13 1 30 0
deuce 0 5 78 0 0 5 0 0

fif. 0 0 0 325 21 0 0 53
fort. 11 1 0 29 149 0 0 19
game 23 0 0 0 0 99 23 0
love 0 44 0 0 1 12 213 0
thir. 7 0 0 17 26 0 0 268

Figure 4: Probability distribution of the number of words in a
single score announcement

4. Result Analysis
Table 2 shows the recognition performance as the language
models are refined during iteration. After five iterations, a rel-
ative performance improvement of 16.3% is achieved. Because
our vocabulary consists of only the eight words used in scoring,
many words in some longer umpire announcements (e.g. an-
nouncements about the state of the match, or about challenges
etc.) cannot be correctly recognised, so that overall recogni-
tion performance is low. But, for the recognition of scores
(shorter speech fragments), the recognition performance is good
(77.33% word accuracy). Table 3 shows the confusion matrix
of the score words. The probability distribution of the number
of the words in the actual scores and in the recognised scores



Figure 6: F -score distribution of the first-place score of the ground truth and that of using multigram model with Lmax = 5 on the
recognised scores
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Figure 5: Probability distribution of the first-place score after
using multigram model with different Lmax on the segments

is shown in figure 4. It can be seen that the majority of scores
(more than 80%) contain only one or two words.

When using the multigram model, the maximum length
Lmax of a sequence of scores found by the multigram model
was set in the range four to seven. Because a segmented se-
quence represents the sequence of scores in a game, each game
can contain at most Lmax scores. Figure 5 shows the F -score
after using the multigram model to segment the recognised
score sequence with different values of Lmax. This shows that
Lmax = 5 gives the best performance in game segmentations
(as measured by first-place scores). In fact, the mean number
of scores in a game (from the ground truth data) is 5.45 (after
removing the longer umpire’s announcements), which is close
to the value of Lmax we used to obtain the best performance.
Figure 5 also shows that the F -score improves with increasing
iterations, apart from Lmax = 7: this could be caused by poor
parameter estimation due to data sparsity, since the number of
possible 7-grams of scores is large.

Figure 6 shows the values of the F -score for the first score
detected in a game for Lmax = 5, compared with the ground
truth. There are 17 different terms listed on the x-axis. The
three terms, “deuce”, “advantage”, and “game”, represent all
recognised scores that contain one of these three words. The
distribution of first scores is dominated by the two initial scores
fifteen-love and love-fifteen, which is correct: other scores are
errors.

5. Conclusion and Future Work
We have developed a promising novel framework for inferring
the scoring system in a tennis match using information from the
umpire’s speech on the soundtrack. Although there are many
recognition errors caused by overlapping and interfering speech
and noise, we obtain robust recognition performance by the it-
erative use of two coupled language models. By applying a
multigram technique to our recognition output, we obtain rea-
sonable segmentation results. Although we are not yet at the
stage where we can infer the complete score syntax accurately,
the results are promising. In our future work, we will add in-
formation from the video stream, which should increase seg-
mentation performance and hence enable us to infer the score
structure more accurately.
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