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ABSTRACT

This paper proposes an integrated speech front-end for both
speech recognition and speech reconstruction applications.
Speech isfirst decomposed into a set of frequency bands by an
auditory model. The output of thisis then used to extract both
robust pitch estimates and MFCC vectors. Initia tests used a
128 channel auditory model, but results show that this can be
reduced significantly to between 23 and 32 channels.

A detailed analysis of the pitch classification accuracy and the
RMS pitch error shows the system to be more robust than both
comb function and LPC-based pitch extraction. Speech
recognition results show that the auditory-based cepstral
coefficients give very similar performance to conventional
MFCCs. Spectrograms and informal listening tests also reveal
that speech reconstructed from the auditory-based cepstral
coefficients and pitch has similar quality to that reconstructed
from conventional MFCCs and pitch.

1. INTRODUCTION

Speech communication from mobile devices has traditionally
been made using low bit-rate speech codecs. The low bit-rates
at which these codecs operate introduce a dlight distortion of
the speech signal which becomes more severe in noisy
conditions. When input into a speech recogniser, this distortion
causes a noticeable reduction in accuracy. To overcome this
problem the technique of distributed speech recognition (DSR)
[1] has been proposed by the ETSI Aurora group.

DSR replaces the codec on the terminal device with the feature
extraction component of the speech recogniser and so removes
codec-based distortion from the speech recogniser input. This
results in a significant improvement in speech recognition
accuracy. However, because speech feature vectors are
designed to be a compact representation, optimized for
discriminating between different speech sounds, they do not
contain sufficient information to enable reconstruction of the
origind speech signal. In particular, valuable speaker
information, such as pitch, is lost. However, several schemes
have been proposed recently for reconstructing speech from a
combination of MFCC vectors and pitch. These have been
based on either a sinusoidal model [2] or a source-filter model
[3] of speech production. An extension of this work aso
considered the reconstruction of clean speech from noise
contaminated MFCC vectors and arobust pitch estimate [4].

In these systems, the MFCC vectors and pitch are extracted
using separate speech processors. For example in [4] a 128-
channel auditory model [11] provided robust estimates of the
pitch. The aim of this work is to integrate the MFCC extraction
and pitch estimation components into a single speech front-
end. For both pitch estimation and MFCC extraction, the
speech signal is decomposed into a number of discrete

frequency bands either by an auditory model or mel-filterbank.
It is therefore reasonable to combine this into a single system
and this is described in section 2. A detailed evaluation of the
pitch extraction component is described in section 3 and a
comparison made with alternative pitch extraction methods.
Speech recognition and speech reconstruction results are
presented in section 4 and a conclusion is given in section 5.

2. INTEGRATED FRONT-END

This section describes the proposed integrated speech front-end
and back-end systems, which are illustrated in figure 1. The
front-end comprises three main parts; auditory model, MFCC
extraction and pitch estimation. Three features are output
across the communication channel; MFCC vectors, pitch and
energy. At the remote back-end the MFCC vectors and pitch
estimates are used for speech reconstruction. For speech
recognition the MFCC vectors and energy are used together
with their temporal derivatives.
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Figure 1: Integrated front-end and back-end systems



Decomposition of the input speech signal into frequency bands
is performed by the auditory model. The output of thisis used
by both the MFCC extraction and pitch estimation
components. The origina pitch estimation system proposed in
[7] used a 128 channel auditory model. However most MFCC
extraction algorithms use significantly fewer channels (e.g. 23
for the Aurora standard). One of the aims of this work is to
vary the size of the auditory filterbank to produce a
compromise that gives both robust pitch estimates and MFCCs
which result in accurate speech recognition.

2.1. Auditory Model

The auditory model upon which the speech is decomposed into
frequency bands was proposed in [11]. Auditory models have
been successfully used for robust pitch estimation [6][7] and
therefore form the first stage of this integrated front-end.
Decomposition of the speech signal into a number of frequency
bands is achieved using a series of non-linearly spaced and
overlapping bandpass filters. The spacing of these bandpass
filters is determined by an equivalent rectangular bandwidth
(ERB) scale[10] and is similar to mel-scale spacing.

In the original system a set of 128 channels was used. These
give sufficient frequency response detail which the subsequent
pitch estimation component uses. However for MFCC
extraction, the Aurora standard defines just 23 channels. Work
shown in later sections examines the effect of reducing the
number of channels from 128 to 23 in terms of the resulting
speech recognition performance and pitch estimation accuracy.

2.2. Feature Extraction

The output of the auditory model takes the form of a series of
time-domain samples from each of the bandpass filters. In
conventional MFCC feature extraction a windowing function
captures a short-time frame of speech. From this a Fourier
transform determines the magnitude spectrum and this is then
quantised in frequency using a mel-spaced filterbank. To
generate a filterbank vector from the time-domain filter outputs
of the auditory model a mean amplitude (MA) filter is
employed. This outputs the root mean sguare amplitude, ¢,
from each bandpass filter, k, at 10ms intervals from a 25ms
buffer of time-domain samples, where
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x{n) is the n™ time-domain sample from the k" bandpass filter
in the 25ms buffer, N is the buffer length (N=200 samples for
the 8kHz sampling frequency). This is consistent with the
frame width and frame rate used in the Aurora MFCC standard.
The fina three stages are logarithm, discrete cosine transform
and truncation. These are identical to the last three stages in
conventional MFCC extraction. It should be noted that the
positioning of the auditory filters is close to, but not exactly,
mel-scaled. Therefore the features extracted by this system are
not strictly MFCCs. However, for the purpose of this work
they are referred to as auditory model-based MFCCs.

2.3. Robust Pitch Estimation

Auditory models have been demonstrated as being one of the
most successful methods for accurately estimating pitch [6][7].
For speech reconstruction, especialy in noisy conditions, it is
vital to have arobust pitch estimate. Previous work in this area

successfully used a 128 channel auditory model to achieve this
[4]. To estimate pitch, the bandpass filter outputs from the
auditory model are divided into two components; a high
frequency part, where center frequencies are greater than
800Hz, and a low frequency part. An energy envelope is then
extracted from the high frequency part using a Teager energy
operator (TEO) [6]. An auto-correlogram is obtained from the
energy envelope of the high frequency component and the
remaining low frequency signals. Channels contaminated by
noise are removed by discriminative agorithms [6][7] which
analyse the structure of the auto-correlogram. Finaly the pitch
contour is extracted using a pseudo-periodic histogram (PPH)
from the summation of the remaining clean channels [6]. This
is subsequently smoothed to produce arobust pitch estimate.

3. EVALUATION OF PITCH ESTIMATION

The aim of this section is to examine the effect of reducing the
number of channels in the auditory model in terms of pitch
estimation accuracy. In particular the number of channels is
reduced from 128 to 23 to be comparable with the number of
filterbank channels used in conventional MFCC extraction.

3.1. Method of Pitch Evaluation

The pitch extraction system is required to produce two outputs;
aflag indicating whether the speech is voiced or unvoiced and,
for voiced speech, an estimate of the pitch frequency. It is
therefore appropriate to measure the effectiveness of the pitch
extraction system using these two criteria.

Before defining these measuresiit is useful to examine the types
of error made in pitch extraction. One form of error is a mis-
classification, such as a voiced frame being classified as
unvoiced or an unvoiced frame being classified as voiced.
Another type of error is a correct classification but a wrong
pitch frequency vaue. To illustrate the second kind of error, a
histogram showing the percentage pitch frequency error is
shown in figure 2, taken across 75 Messiah sentences. The
reference pitch value has been provided by a hand-checked
laryngograph signal. For clarity the figure adso shows an
expanded section of the lower portion of the histogram.
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Figure 2: Distribution of percentage pitch errors

The magjority of pitch estimates are very close to the measured
pitch and apparently have a Gaussian distribution. In fact the
dotted vertical line shows the range of pitch estimates that are
within +/-20% of the reference pitch - over 97% of pitch
estimates are within this range. However a number of errors are
concentrated around the -50% and +100% points. These
correspond to pitch halving errors and pitch doubling errors
which are fairly common mistakes made in pitch estimation.

After consideration of these results, it was decided to label
pitch estimation errors of more than 20% as being incorrectly
classified [8]. This also means that when calculating the root



mean square (RMS) pitch error, the effect of pitch halving and
pitch doubling in the estimation does not dominate the result.

Therefore pitch classification error, E., is expressed as
Ec = Nviu + Nuv + N>20% 10004 @
NTotaJ
where Ny is the number of voiced frames classified as
unvoiced, Nyy is the number of unvoiced frames classified as
voiced and N IS the number of frames in which the pitch
error is greater than 20%. Ny iSthe total number of frames.

For frames correctly classified as voiced, the RMS pitch error
provides a measure of the accuracy of estimation. The overall
RMS error, Ey, is computed as

E, = J;i[f}m— 0f ®

i=1

where on (i) isthe pitch frequency estimate from the i frame
and f, () is the pitch for the i"" frame measured from the

laryngograph signd. N is the total number of voiced framesin
the test, which is around 23,000 frames for the 75 utterances.

3.2. Assessment of Pitch Estimation

This section evaluates the effectiveness of the pitch estimation
scheme using the two performance measures described in the
previous section. In particular the effect of reducing the
number of channels in the auditory model from 128 down to 23
is examined. The test data used in these experiments is
composed of 75 utterances from a set of Messiah sentences. To
observe the effect of noise on pitch estimation, examples of
office noise from the Aurora database have been artificialy
added to the speech at arange of signal-to-noise ratios (SNRs)
from 30dB to 0dB. Reference pitch measurements come from a
laryngograph signal which has been manually checked for
accuracy.

The aim of the first experiment is to examine the effect of
reducing the number of channels in the auditory model. Tests
begin with the origina 128 channels and go down to 23
channels (the same number used in the Aurora MFCC
standard). Figure 3-a shows the frame classification error, E,
for 128, 64, 32 and 23 channel auditory models across a range
of noise levels. Figure 3-b illustrates the RMS pitch error, E,,
for the different number of channels and noise levels.
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Figure 3-a: Frame classification error, E;
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Figure 3-b: RMS pitch error, E,

The result shows that errors for both frame classification and
pitch measurement increase as the SNR decreases, as expected.
Pitch measurements from the 128, 64 and 32 channel auditory
model give almost identical performance. Reducing the number
of channels to 23 causes a dight reduction in performance for
more noisy speech.

A second set of tests were performed to compare the
performance of the 32-channel auditory model-based pitch
measurements with those obtained by aternative algorithms.
These were the comb-function [5] and LPC-based pitch
estimation through inverse filtering [9]. Figure 4 shows
comparative results for both frame classification and RMS
pitch error.
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Figure 4-a: Comparative frame classification error, E;
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Figure 4-b: Comparative RMS pitch error, E,

The pitch estimate from the LPC agorithm is the most accurate
measurement for voiced frames under 20dB but deteriorates at
SNRs below this. However, frame classification error from the
LPC agorithm is the worst of the three algorithms. The comb
function algorithm gives the best frame classification above
SNRs of 20dB but gives the most inaccurate pitch estimates of
the three agorithms. The auditory-based algorithm gives close
to best performance for clean speech and is significantly more
accurate for noisy speech.

4. EXPERIMENTAL RESULTS

The experimental results in this section test both the
recognition accuracy of the auditory model-based MFCC
vectors and the resultant speech quality after reconstruction.

4.1. Speech recognition performance

Speech recognition accuracy has been evaluated on the Aurora
Tl digits database which comprises 28000 digit strings for
testing and 8440 for training. The digits are modeled using 16-
state, 3-mode, diagona covariance matrix HMMs, trained
from 8440 digits strings. The training data covers a range of
noises and from clean to an SNR of 0dB (as outlined in the
Auroratest specification).

Three feature vector configurations have been tested;
conventional MFCC vectors [1], MFCCs extracted from a 23-
channel auditory model and MFCCs extracted from a 32-
channel auditory model. In each case the final speech vector
comprised static MFCCs 1 to 12 and log energy together with
velocity and acceleration derivatives. Figure 5 shows



recognition accuracy for the three configurations for both
clean and noisy speech.

100 —.__.%h‘_k
90
80 -
70 -

60
50 1| —¢—Baseline

40 H— M — 23 Channels A

30 H- - & - -32 Channels \7

20

Recognition Accuracy (%)

clean 20dB  15dB  10dB 5dB 0dB -5dB
Signal to Noise Ratio

Figure 5: Comparative speech recognition accuracy

For clean speech, the recognition rate from the auditory-based
features is dightly higher than that with conventional MFCCs
- 98.72% to 98.57%. At lower SNRs the performance of the
auditory-based MFCCs fdls dightly below that of
conventional MFCCs. For example at an SNR of 0dB the
MFCCs derived from the 23-channel auditory model attain
59.03% while conventional MFCCs attain 60.69%. Changing
from a 23-channel auditory filterbank to a 32-channe
filterbank had negligible effect on accuracy.

4.2. Speech reconstruction

To examine the quality of reconstructed speech a set of
Messiah sentences has been used. These are sampled at 8kHz
and have then been contaminated by wideband noise from the
Aurora database. Speech is reconstructed using a sinusoidal
model of speech, with MFCC vectors being inverted to the
filterbank domain and then interpolated to provide an estimate
of the speech spectral envelope [2]. The pitch estimate is used
to provide the finer harmonic detail. Spectral subtraction has
also been applied to provide a clean speech spectral estimate
from noise contaminated MFCCs [4].

Figure 6-a shows the spectrogram of the sentence “L ook out of
the window and seeif it'sraining” spoken by afemale speaker
and contaminated by wideband noise a an SNR of 10dB.
Figure 6-b illustrates the spectrogram of speech reconstructed
from conventional MFCC vectors [4]. Figures 6-c and 6-d
show spectrograms of speech reconstructed from 23 and 32
channel auditory-based MFCCs respectively.
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Figure 6-a: Original noisy signal (10dB SNR)
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Figure 6-c: Speech from 23 channel auditory-MFCCs

a3

Figure 6-d: Speech from 32 channel auditory-MFCCs

The spectrograms show that speech reconstructed from the
auditory-based MFCCs is amost identica to speech
reconstructed from conventional MFCCs. A series of informal
listening tests revealed this to be true across the range of
Messiah sentences.

5. CONCLUSION AND DISCUSSION

This work has proposed an integrated speech front-end
capable of generating features for both speech recognition and
speech reconstruction. Evauation of pitch estimation has
shown that good performance can be obtained using
significantly fewer filterbank channels than the original
auditory model used. In combination with this, speech
recognition tests have shown that auditory model-based
MFCC vectors attain performance amost identica to
conventional MFCCs. Using either a 23-channel or 32-
channd filterbank has little effect on performance. In addition,
speech reconstruction from the auditory model-based MFCCs
gives very similar speech quality. Using a 32-channel auditory
model gave dlightly better pitch estimation, which is more
important for speech reconstruction. These results conclude
that a single front-end, based on an auditory model using
either 23 or 32 channels, is feasible for both speech
recognition and speech reconstruction.
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