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ABSTRACT
We describean approachto confidenceestimationthat at-

temptsto decouplethe contributions of the acousticand lan-
guagemodel componentsto speechrecognitionoutput. The
outputof the acousticmodelswhendecodingphonemesis it-
self modelledusingHMM’ s to producea setof modelswhich
wetermmeta-models. Whenbenchmarkedagainsta “standard”
methodfor assigningconfidence(the N-bestscore),the meta-
modelsgave a relative improvementof 6� 2%. Furthermore,it
appearsthat the N-bestandmeta-modelstechniquesarecom-
plementary, becausethey tendto fail ondifferentwords.

1. INTRODUCTION

Systemswhich employ speechrecognitionto facilitate a dia-
loguewith a userareincreasinglybeingdeployed. As thetasks
which thesesystemsattemptto performautomaticallygrow in
complexity, it becomesimperative that thesystemrespondsin-
telligently to avoid a protracteddialogue.Confidencemeasures
associatea probability of correct decodingwith eachoutput
item, which aidsthe systemto infer informationreliably from
thespokeninput andto requestconfirmationor repetitionof an
item only when thereis insufficient confidencein its identity.
They canalsobe usedto facilitateadaptationof the speaker’s
voiceto thesystem.

Many approachesto deriving confidencemeasures(CM’s)
for wordshave beenbasedon using“side-information”derived
from the recogniser, suchas likelihoods[6], different decod-
ings[5], numberof competitorsat theendof a word [3] etc. In
our own experience,we have foundthatmeasuresthatperform
well onagivendecoderdonotalwayswork whenusedwith an-
otherdecoder, eventhoughthedecodersmaybevery similar in
design.With theappearanceof speechAPI’sthatareeffectively
black boxes, we think that an approachthat relies lesson the
detailsof therecognisermightbeuseful.

The initial objective in this andin previous work [4] is to
isolatethe languageandacousticmodellingcomponentsof the
recogniserin orderto assessseparatelytheevidencefor decod-
ing a particularsegmentof thespeechasa sequenceof words.
This approachpoints the way towards a system-independent
methodfor computinga confidencescore. Our approachis to
usea phonerecogniserin parallelwith the word recogniserto
derive someindependentinformation(a similar approachwas
usedin [1,2]). In a previouspaper[4], we investigatedthe ef-
fectivenessof correlatingthe phonestringsavailable from the
word andphonerecognisers,andalsoof usingword hypothe-
sesformed from the phonerecogniseroutput. Here,we have
extendedthis work by modellingtheerrorsmadeby thephone
recogniserwithin anHMM framework.

A secondaryobjective is to provide a measurewhich is in
somesensecomplementaryto the currently most robust and
consistenttechniquefor obtainingconfidencemeasures,theN-
besttechnique.Mostsystemsnow provide“N-best”hypotheses,
which enableeasycomputationof a confidencemeasurefor a
word in any hypothesis,basedon its frequency of occurrencein
correspondingpositionsin theotherhypotheses[5]. TheN-best
confidencemeasurerelieson the principle that the recognition
processoptimally incorporatesand implementscontextual ef-
fectsover the lengthof the utterance,combiningthe language
andacousticmodellingcomponents.

The outline of the paperis as follows. We describethe
methodin section2 andthenin section3, outlinethedetailsof
thetrainingandtestingprocedures,andthedatasetsused.Sec-
tion 4 is devotedto results,andwe endwith a brief discussion
andsummary.

2. METHOD

For speechrecognition,we attemptto find the word sequence
w : � w1w2 ����� wN for which the probability P � w � A � is largest
amongall word-sequencesfrom thevocabularyV , conditioned
on thefront-endspeechsignalA. If wewrite P � w � A � as

P � w � A ��� ∑
p

P � w � p � P � p � A �
	 (1)

wherep is anarbitrarysequencedrawn from adiscretealphabet
of phonemes� , wenotethatthetwo termsin thesummandcan
beestimatedfrom a phonemerecognitionproblem.Thesecond
termP � p � A � is usedin a phonemeclassificationtask,while the
first term canbe estimatedusinga languagemodelandBayes
theorem(seeequation5).

Eachphonemep �
� is givena list of dictionary“pronun-
ciations” which are the labelsof the distinct hiddenMarkov
modelsP � A � x � p � y � usedby the completeword recognition
system,wherex � p � y is a triphone(with appropriatecontext
monophonesx andy). The transitionprobability betweenev-
ery pair of monophonesis setequal.This arrangementignores
word-internalphonotacticconstraintsaswell aslexical (uni- or
bi-gram)probabilitieswhicharecombinedin theworddecoding
task.Thephonesequencep : � p1p2 ����� pN is chosenfor which
P � p � A � is largerthanfor any othersuchsequence:

p ��� argmaxp P � p � A � (2)

Theright-handsideof equation(1) involvesa sumover all se-
quencesof phonemesdrawn from thealphabet� . As a way of
isolatingtheword-dependentprobabilities(inter-word,givenby



thelanguagemodel,aswell asword-internalphonotactics),we
approximateeq(1)by

P � w � A ��� P � w � p � � P � p � � A ��� (3)

A comparisonof thisoutputwith thereferencetranscription
providesanassessmentof theglobal(averagedoverall contexts)
performanceof the acousticcomponentof the recogniserasa
phonemeclassifier. (Thismaybeviewedasa“prior” thatcanbe
incorporatedwith theacousticprobabilitiesfor eachword in the
recognitionlattice for the full word recogniser.) The phoneme
confusionmatrix obtainedthusencodesthe probability of the
actuallyuttered(reference)phonemeq, given that the decoded
phonemewasp � , P � reference-q � decoded-p � � .

If weperformthephonemicexpansionof theword-stringw
asπ � w ��� π1π2 ����� πM (e.g. for w she had your ����� , π � w �
is sh iy hh ae d y ao ����� ), we cannow approximateeq
(1) by replacingtheright-hand-sideof eq(3)by

P � w � A ��� P π � w ��� p � P � p � � A ��� (4)

We can evaluate the probabilities to go back and forth
between the phone stream for the reference transcription
π1 � w � π2 � w ������� πM � w � andthedecodedone p �1p �2 ����� p �N , asthe
productof probabilitiesof makingsubstitutions,insertionsand
deletions,P � πk � p �l � , P ����� p �j � and P � πi ����� . Instead,we re-
gard this problemwithin a generative framework, and rewrite
P π � w �
� p � usingBayes’rule

P π � w �
� p � � P � p � � w � P � w �
P � p � � � (5)

(Note, that the above is strictly true only if there is one pro-
nunciationper word, i.e., this requiresthat we find the most
appropriatepronunciationwhile training.) Our objective being
confidenceestimationandnot word recognition,we constrain
thelexical probabilitiesto coincidewith thoseusedin theword
recognitiontask,andthisincludesthepowerα in P � w � α. In em-
beddedBaum-Welch re-estimation,a chainof statesis formed
by linking HMMs in a row. As a result,thetransitionprobabil-
ities betweenHMMs (thosecorrespondingto theedgeslinking
the in andout states)areaveragedover all occurrencesof the
phonemesin thecorpus.Thescalefactorα is includedto over-
ride this effect, and is tunedto optimiserecognitionaccuracy.
Wecannow extractthe“confusionprobabilities”from

P p � � π � w � (6)

within a hiddenMarkov model framework. Sincep � is ob-
tainedfrom thephonemicclassificationperformedby theacous-
tic models,the probabilitiesin equation(6)model the perfor-
manceof theacousticmodelsusedfor recognition.Hence,we
termthemmeta-models.

Eachphonemehasmorethanonestateassociatedwith it in
theunderlyingMarkov chain.Sincetheoutputof aphonerecog-
niseralwayscontainsmany morediscreteoutputsthanthenum-
berof phonemesin thereferenceword string,thereareenough
referencetokenswith which to align the outputstream.Inser-
tions are thus easilymodelled,while deletionsare accommo-
datedif the numberof output phonemesexceedsthe number
for referencephonemesin the framework of embeddedBaum-
Welch re-estimation.The discreteoutputprobability distribu-
tionsof thehiddenMarkov modelencodethesubstitutionprob-
abilities,P � decoded-phonep � j � reference-stateof πk � . Figure(1)
is aschematicrepresentationof themethod.

Figure1: Schematicdiagramfor theestimationof meta-models
from thediscretephonemicoutputof recogniser. p � startsoff as
ch er ax hh while π � w � beginswith sh iy hh.

Oncethesemeta-modelshave beenestimated,we canper-
form aViterbidecodingto obtainanotherN-bestlist of hypothe-
sesfor thebestword-stringsthatmatchthephonemeoutputof
theunconstrainedphone-recogniser. Sinceour objective in this
paperis not so muchrecognitionasconfidenceestimation,we
shallultimatelydoall ourcalculationswith thevalueof α setby
therequirementof obtainingthebestrecognitionin thefull con-
tinuousspeechrecogniser. We tag the wordsthat aredecoded
by the speechrecogniserascorrector incorrectdependingon
whetherthey appear more than once in the top 100 decodings
of themeta-modeldecoder.

To summarizethe method,we take as input the decoded
phonemestreamfrom a phonerecogniser(eq(2))andtrain dis-
cretehiddenMarkov modelsusingembeddedBaum-Welchre-
estimation. For testdata,which is (again)a phonemestream
from a phonedecoder, we find N-bestword stringsthat maxi-
mize the left-handsideof eq(3). We thenfind the numberof
occurrencesof thedecodedwordsfrom theword recogniserto
setaconfidencetag.

3. DATA

3.1. Speechrecogniser

Our baselinerecogniserhasbeentrainedon speechdatafrom
theWSJCAM0data-setusingmainly”standard”techniquesim-
plementedin theEntropicHTK package.Thespecificationsof
therecogniserareasfollows:

1. Trainedon the speaker-independenttraining setsi tr
of WSJCAM0(92 talkers, � 90 utterancesperspeaker)

2. Numberof wordsin vocabulary � 20000

3. Bigramlanguagemodel(trainedon60M wordsfrom the
NorthAmericanbusinessnewscorpus),perplexity � 160

4. 3500statescreatedby tree-clusteringword-internaltri-
phones;8 Gaussianmixturecomponentsperstate

5. 3-stateleft-to-rightmodels

6. Testsetused: the speaker-independentdevelopmentset
si dt in WSJCAM0, � 1800utterances

7. Currentperformance:74.0%correct,68.2%accurate.



3.2. Meta-modelconfidencemeasure

1. Trainedonrecognitionperformanceof � 1400utterances
of 15 speakersfrom thesi dt testsetchosenabove

2. 2- and3-statehiddenMarkov modelswith skips,to cap-
ture substitutionsand insertionsand deletions;discrete
outputprobabilityfunctions

3. Testedon � 400 decodedutterancesof 5 speakersalso
fromsi dt setabove.

3.3. N-bestconfidencemeasure

1. Partition the � 1800decodedutterancesfrom si dt in
thesamewayasfor themeta-modelconfidencemeasure

2. Set threshold for acceptance/rejectionby maximising
tagging(of correct/incorrectdecoding)accuracy on the
trainingset

4. RESULTS

We presentthe results for the confidencescoreusing meta-
modelsin tandemwith thoseobtainedusingN-best. This will
give an indicationof the meritsof this method,andalso indi-
cateways in which the methodcanbe improved. A measure
basedon guessingevery word ascorrectwould give a tagging
error equalto the baselinerecognitionerror of the recogniser,
which is 31� 8%. The confidencetaggingerror for the N-best
measureis 23� 9% (24� 8% improvementin taggingerror) and
for the meta-modelmeasureis 21� 9% (31� 1% improvementin
taggingerror).On thesubsetof wordsfor whichbothmeasures
gave a tag (someof the utterancefiles hadto be discardedbe-
causethepruningthresholdsfor recognitionweresettootightly)
we list theperformancein theTable1 below.

meta-modelC meta-modelI
N-best C 4413 1120
N-best I 1225 463

Table1: Comparisonof confidencemeasures.

Table1 lists the numberof words taggedcorrectly(C=tagged
correctfor correctdecoding,taggedincorrectfor incorrectde-
coding)or incorrectly(I=taggedcorrectfor incorrectdecoding,
taggedincorrectfor correctdecoding)for eachof thetwo confi-
dencemeasures.For example,thereare1225wordswhich are
mis-taggedby N-best,but correctlytaggedby the meta-model
confidencemeasure.It is promisingthat only 463of the 7221
wordslistedaboveweremistaggedby bothmeasures,indicating
anupperboundof 6� 4% taggingerrorover thebaselineguess-
ing measure(31� 8%error)possibleby somecombinationof the
two features.A furtherbreakdown of thesefiguresin orderto
comparetheperformanceof eachtag-pairis givenbelow.

N-besttag meta-modeltag probC% probI%
C C 91.8 9.2
C I 50.3 49.7
I C 59.2 40.8
I I 14.5 85.5

Table2: Percentageof correctandincorrectwords(columns3
and4) comparedwith predictionof two confidencemeasures.

Table 2 shows that when both confidencemeasurestag a
wordascorrect,thereis a91� 8%chancethatthewordis correct.
Conversely, whenboth tag incorrect,thereis a 85� 5% chance
thattheword is incorrect.

Wealsoplottedreceiveroperatingcurvesfor theN-bestand
for themeta-modelconfidencemethods.Thisis shown in Figure
(2) below. Notethat themeta-modelsapproachdoesnot elimi-
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Figure2: Falseacceptancesvs. falsealarmsat differentthresh-
olds. Thedotsarefor themeta-modeloperatingpointswhereas
thepluses( � ) arefor N-best.

natefalsealarmsentirelybecausenot all thewordsin theword
recogniseroutputstringappearin thewordstringshypothesized
by themeta-modelspluslanguagemodel.

5. DISCUSSION

We have describeda methodof obtaininga confidencescore
on wordsoutputby a recogniserby modellingtheoutputfrom
a parallel phonemerecogniserwith a “higher-level” HMM to
placeaprobabilityonthecorrectnessof eachdecodedphoneme
beingcorrect. The resultingconfidencemeasureis a little bet-
ter thanthatobtainedusingtheN-besttechniquewe have been
usingasa benchmark.An obviousway in which this work can
beextendedis to combinethetwo methods.However, ananal-
ysis of the figuresin Table 2 shows that using the tagsfrom
thetwo classifiersandmarkingwordsas’C’ or ’I’ accordingto
columns3 and4 of thetablegivesanimprovementof only 0.5%
over theperformanceobtainedusingmeta-modelsalone.How-
ever, the fact that thereis considerableindependencebetween
thetwo classifiersin thetagging(asshown in Table1) suggests
thattheoutputscouldbeusedtogetherin aschemethatrelieson
further informationabouteachclassifierdecision. In both the
meta-modelsandN-bestscore,we only countedthe frequency
of occurrenceof the words,not the probabilities. The differ-
encesin log-likelihoodsbetweenthehypothesesmight give not
just a moreaccurateconfidencemeasure,but also,thesescores
might provide moreusefulcluesfor combiningthe featuresof
thetwo approachesoutlined.

Theapproachdescribedherehasfocussedonexaminingthe
performanceof theacousticmodelsto provideconfidencemea-
sures. In line with our philosophyof decouplingthe acoustic
andlanguagemodellingcomponentsof the recogniser, we are



currentlyexamining the semanticcoherenceof the words de-
codedasa meansof obtainingconfidence,an approachthat is
complementaryto thesublexical focusof thiswork.
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