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Abstract

Air-traffic has grown rapidly in the last twenty years and concern has been mounting about the safety implications of
mis-recognition of call-signs by both pilots and air-traffic controllers. This paper presents the results of a preliminary
study into perceptual (i.e. non-cognitive) confusions in two closed vocabularies of the type used as aircraft call-signs.
Conventional methods of subjective and objective testing were found to be unsuitable for our aim of predicting
potential confusions within a vocabulary. Hence a method for modelling confusion probability in a closed vocabulary
at a certain signal-to-noise ratio has been developed. The method is based on the use of a phoneme confusion matrix
and a technique for comparing phoneme strings. The method is presented and results are given. These suggest that the
behaviour of the model is plausible, and a comparison of its predictions with a set of real confusions showed a correct
prediction of position of confusion in three-word phrases. The predictions of the model need to be verified by subjective
testing before it can be deployed in a system that designs low-confusability call-signs, which is the ultimate goal of the

research.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

There has recently been concern in organisa-
tions concerned with air-traffic control about
safety incidents resulting from the actual or po-
tential confusion of airline call-signs. A recent
Aeronautical Information Circular (Services,
1996) stated that “Whilst [the CAA Mandatory
Occurrence Reporting Scheme] has established
that there are definite safety implications resulting
from call-sign confusion, a dedicated study has not
been conducted.” This study is a preliminary
investigation into some aspects of this problem.

* Corresponding author.
E-mail address: sjc@sys.uea.ac.uk (S. Cox).

A typical format for an aircraft call-sign is three
letters, which designate the aircraft operator, fol-
lowed by two to four digits (or a combination of
digits and alphanumeric characters) which are
specific to the flight. Examples of typical call-signs
are BAW 602, DAL 41 etc. An aircraft controller
may be directing as many as twelve aircraft at any
one time and communicating with their pilots on a
single radio-telephone link: hence there is potential
for confusion if the call-signs are similar. The
CAA maintains a database of actual and potential
call-sign confusions. Some examples of the kinds
of confusions that this contains are given below
(N.B. the confusions given below involved only the
digits section of the call-sign and the initial three
letters are not shown).
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TWO-OH-TWO
SEVEN-OH-NINE

Words substituted:

Words transposed:
ONE-OH-THREE
SEVEN-OH-ONE
ONE-THREE-SEVEN

Words inserted:
Words deleted:

TWO-SEVEN-EIGHT-NINE

TWO-OH-THREE
SEVEN-OH-EIGHT
TWO-EIGHT-NINE-SEVEN
THREE-OH-ONE
SEVEN-OH-OH-ONE
THREE-SEVEN

Lillll

The cause of these confusions can be divided
into two main effects that are to do with early and
late processing in the brain. The first effect, which is
concerned with early processing, is a perceptual
one: the phrase spoken was mis-recognised because
it was poorly articulated, or because there was
noise in the communication channel when it was
spoken, or because the listener’s hearing is poor
(Vandeelen and Blom, 1990), or because his/her
English is poor etc. The second effect, which is to
do with later processing, is a cognitive one that is
due to short-term memory. Classically, informa-
tion is lost from short-term memory by the pro-
cesses of displacement (existing information is
replaced by newly received information when the
storage capacity is full), decay (information held in
a “‘register” needs to be maintained or it decays
over time) and interference (other information in
storage distorts the original information) (Badde-
ley, 1990). To these processes can be added another
important effect which is conscious or unconscious
“filtering” of the message because of prior expec-
tations e.g. “They always ask me to descend at this
time”, “He must have meant TWO-SIX-ZERO
because there’s no aircraft called TWO-EIGHT-
ZERO” etc. It is likely that the perceptual and
cognitive effects will interact. If the signal quality is
poor for any of the reasons mentioned above, the
listener may exhibit weaker memory of the mes-
sage, or may be more prone to psycho-linguistic
errors, or may be more liable to fall back uncon-
sciously on what he or she expects to hear.

1.1. Scope of this study

This study has focussed on the first effect, the
perceptual one. This is likely to be a simpler effect
to study and to quantify than the cognitive effect.
Our approach has been to define two artificial but
plausible call-sign vocabularies that consist of

words commonly used in this task, and to use a
model of speech perception to simulate the con-
fusions within these two sets. We prefer to begin
by using a model-based approach rather than the
more direct approach of testing listeners on real
speech signals. The reason for this is that although
the model may not be as accurate in predicting
confusions as direct testing, it allows us to test
comprehensively a very large vocabulary at a
number of different signal-to-noise ratios (SNRs),
which would be very expensive and time-consum-
ing to do using listeners. The aim of this simula-
tion is to identify the main effects and the kind of
problems that might be expected from the call-sign
vocabularies. The information gained from this
study will then enable us to devise a subjective test
that is much smaller in scope and that focuses on
these effects. The results from the simulation will
also form the basis of the first stage of the ultimate
goal of the work, which is to provide a tool for
air-traffic controllers to design (dynamically) low-
confusability call signs so as to minimise percep-
tual error amongst the group of pilots under their
control at any time.
Two sets of phrases were used:

1. Groups of three digits e.g. FIVE-SEVEN-
ONE, TWO-FOUR-EIGHT etc. (the digit-
triple (DT) set).

2. A single letter from the airline alphabet fol-
lowed by a single digit e.g. ALPHA-FOUR,
KILO-ZERO (the alphabet-digit (AD) set).

The international aviation alphabet (ALPHA,
BRAVO,... ZULU) was mandated by the Inter-
national Civil Aviation Organisation (ICAO)
when English was adopted as the global language
for aviation. The words were apparently not cho-
sen on the basis of their phonetic properties: ra-
ther, they were chosen because they were familiar,
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and easily pronounceable by non-English speak-
ers. More information on the alphabet is given in
(ICAO, 1990).

Ideally, a full call-sign of three airline alphabet
letters and three digits would have been modelled,
but this would have made the study infeasible,
requiring the comparison of approximately
24000000 different call-signs. It is clear that the
digits are likely to be potentially the most con-
fusing part of a call-sign, and so the first vocabu-
lary was chosen to test confusability of digit
triples. The second vocabulary was chosen to
evaluate the effectiveness of the longer and pho-
netically richer call-signs in combating confusion.
To avoid confusion, a particular set of phrases
such as the DT set and the AD set is referred to
as a phrase-set, and the set of words that comprise
all the phrase-sets as the vocabulary.

Two factors that affect intelligibility of speech
were studied:

1. Broadband noise added to the speech signal.

2. The effect on confusion performance of co-
articulated speech i.e. speech which is pro-
nounced spontaneously, rather than speech
according to the “canonical” pronunciations
given in a dictionary.

Again, these are not comprehensive: other
effects such as that of channel bandwidth, of
different kinds of interfering noise in the channel,
of non-native accents etc. could also have been
included, but these must be left to a later study.

2. Use of established techniques

The advantages and disadvantages of the two
ways of measuring the performance of a speech
communication system are well-known. Subjective
measurement requires panels of listeners to give
their responses to stimulus words that are spoken
over the system. Both stimulus and response words
are usually selected from a closed list of words
(such as the modified rhyme test, the diagnostic
rhyme test or phonetically balanced words), al-
though open responses are sometimes also used.
Such testing gives results that are reliable, but it is

very expensive. Objective measurement uses tech-
niques such as the articulation index (French and
Steinberg, 1947), the speech transmission index
(STT) (Steeneken and Houtgast, 1980, 2002), the
rapid STI (RASTI) (Steeneken and Houtgast,
1985) or the speech intelligibility index (Mendel
et al.,, 1998) which measure the response of the
system to a special test signal and attempt to
predict the intelligibility from analysis of this re-
sponse. Objective measurement is much cheaper,
but the intelligibility predictions it produces are
less reliable, and the need for calibration and the
effect of possible inaccuracies may entail costs. In
addition, these techniques measure only the intel-
ligibility of a system, which is usually quoted as the
average percentage of words that will be correctly
understood by a user of the system (although some
measures (e.g. STI) output an intermediate index
which then can be related to different indices of
intelligibility, e.g. to sentence scores, PB word
scores, CVC word scores, etc.).

In this study, our aim was to make a closer
examination of confusion effects that occur in a
certain phrase-set rather than merely estimating
the intelligibility. In particular, we wished to esti-
mate the probability of each word or phrase within
a closed phrase-set being mis-recognised, so that
potentially troublesome phrase-set items could be
identified. This information is represented as a
confusion matrix, in which element C(i,j) of the
matrix gives the probability of the response being
item j in the phrase-set when the stimulus was item
i. The confusion matrix of the system is clearly a
much more informative measurement about the
system than the intelligibility—the intelligibility
can be calculated from the confusion matrix but
not vice-versa. The objective methods of testing
mentioned above are not suitable for this study as
they are not capable of producing a confusion
matrix. Subjective testing is also highly problem-
atical for this study given the large number of
possible call-signs in a phrase-set. The size of the
two vocabularies is respectively 1000 and 260
phrases, and these should ideally be tested at a
number of different SNRs using at least ten lis-
teners. This is impractical unless a highly reduced
subset of the phrase-set is used, which then raises
the question of the validity of the results.
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2.1. Predictive modelling of confusions

In 1977, Moore considered the problem of how
to assess the performance of speech recognisers
tested on different vocabularies (Moore, 1977). He
attempted to create a universal metric that was
independent of the vocabulary used to test a rec-
ogniser by benchmarking recogniser performance
against human performance. His idea was to mea-
sure the performance of a recogniser in terms of its
Human Equivalent Noise Ratio (HENR), which is
the signal-to-noise ratio (SNR) of the speech
material that would be needed to degrade a hu-
man’s recognition performance to be the same as
that of the machine. Hence a recogniser that had a
high HENR rating would be a good one (equiva-
lent to the performance of a human listening at
high SNR)) and performance would drop as the
HENR dropped. Another useful metric that he
introduced in this work was stress, which is a
measure of how different the machine’s confusion
matrix on a certain vocabulary is from that of a
human. In order to be able to measure HENR and
stress, Moore required a way of predicting the
confusion matrix for a human on a given vocabu-
lary at a certain SNR.

At that time, there were a few studies of con-
fusions of consonants and confusions of vowels
available. The most useful was a study by Miller
and Nicely (1955) of consonant confusions at
different bandwidths and different SNRs. There
were also papers by Peterson and Barney (1952)
and Pickett (1957) on vowel confusions, although
these were less complete in terms of their SNR
coverage than the consonant confusion work of
Miller and Nicely. However, even this work was
insufficient to build a full model of consonant
confusion as it covered only 16 of the consonants,
whereas something like 24 are required for full
coverage of English words. Hence Moore used
data from some other studies (Singh et al., 1972;
Wang and Bilger, 1973) and ingeniously inte-
grated it with Miller and Nicely’s data using a
multi-dimensional scaling technique. The result
was a model that could predict a confusion matrix
for consonants and a confusion matrix for vowels
at any required SNR. Having constructed these
two matrices, he used them with another model to

predict the confusion matrix for an isolated word
vocabulary.

Moore’s work was extended to predicting
speech recognition accuracy in a study by Simons
(Simons, 1995). Simons was interested in the
problem of predicting the recognition accuracy of
a speech recogniser on a certain vocabulary, spo-
ken in isolated word fashion. Rather than building
confusion matrices from data gathered from
experiments using listeners, she used the phoneme
confusion matrix generated by the recogniser to-
gether with the technique of dynamic program-
ming to produce a confusion matrix for the
vocabulary words. This was done at only a single
SNR. The results were very encouraging: her final
system achieved a correlation of 0.95 between
predicted and measured accuracy on a given
vocabulary.

2.2. Selection of a testing technique

The conventional methods of subjective and
objective measurement are problematical for this
study for the reasons given in Section 2. Moore’s
technique is attractive because it enables prediction
of confusion performance rather than simply intel-
ligibility. Furthermore, Moore verified it using a
panel of 11 subjects on a vocabulary of 40 words,
and found a ““diagonal rank correlation” of 0.73,
which was judged to represent a good prediction by
the model. Although it has not been verified for
human performance, the work by Simons shows
that a similar technique gave excellent results in
prediction of accuracy for an automatic speech
recogniser. It was therefore decided to use a syn-
thesis of the ideas of Moore and Simons to predict
confusion performance. However, predictions from
the model will have to be verified by listening tests to
establish the validity of the model. The details of the
techniques used are given in Section 3.1.

3. Modelling technique

3.1. Overview of technique

The probability of confusion of a certain
phrase-set is estimated by producing a phrase-set
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Phonetic transcriptions
of speech material
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Fig. 1. Overview of the complete process used to generate a confusion matrix.

confusion matrix, C. C is an N x N matrix (where
N is the number of phrases in the phrase-set) which
records the probability C(i,j) of the “response”
phrase being R; given that the “stimulus™ phrase
S; is input. The essential steps in producing C for
a certain phrase-set at a certain SNR are shown
graphically in Fig. 1.

1. Use a dictionary to transcribe each phrase in
the phrase-set into a phonetic sequence.

2. If required, manually edit these sequences to
reflect more realistic pronunciations in rapid
speech using the co-articulation rules de-
scribed in Section 3.6.

3. Use a phoneme recogniser to recognise a stan-
dard speech database.

4. Use the phonetic transcriptions of the items in
the database to obtain a phoneme confusion
matrix (Section 3.2).

5. Model the effect of a certain SNR on the con-
fusion matrix using the processes described in
Section 3.5.

6. Use dynamic programming (DP) together with
the confusion matrix to produce a matrix of
confusion probabilities for the phrase-set (Sec-
tion 3.3).

7. Normalise and analyse the probabilities (Sec-
tion 3.4).

The studies by Moore and Simons differed in
steps four, five and six. In steps four and five,
Moore used ‘“human” confusion matrices for
vowels and for consonants predicted by his model
at different SNRs, whereas Simons used a single
confusion matrix from a speech recogniser. In step
six, Moore used a deterministic approach based on
the rules of English syllabic structure for matching
phones between corresponding syllables, and a
rather ad hoc approach for lining up syllables,
whereas Simons used dynamic programming.

3.2. Choice of confusion matrix

In this study, it was decided to use a confusion
matrix produced by an automatic speech recogn-
iser rather than confusion matrices derived from
experiments on listeners. There were several rea-
sons for this:

1. Although the human confusion data for con-
sonants from Miller and Nicely’s study is rea-
sonably comprehensive (16 consonants at 6
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different SNRs tested on 10 listeners), it does
not cover all the consonants and, in addition,
the vowel data is very sparse and only avail-
able at a single low SNR. Moore overcame
these problems ingeniously in his model, but
doubts must remain about the assumptions
he was forced to make in doing so.

2. There is no human data for consonant/vowel
confusions available.

3. A confusion matrix generated by a recogniser
is derived from speech from an order of mag-
nitude larger number of speakers than the
number of speakers and listeners used to gen-
erate the human confusion matrices, and so
may be more representative of real confusions.

The obvious objection to the proposal to use a
confusion matrix generated by an automatic rec-
ogniser is that the kind of mis-recognitions made
by an automatic recogniser are different from
those made by a human. This point was checked
carefully in this study, and our conclusions are
that this was not the case: the automatic recogniser
has a pattern of confusions similar to humans.
Section 5.2 takes up this question in much more
detail.

3.3. Comparison of phoneme sequences

A second problem was how to compare two
phoneme strings using a certain phoneme confu-
sion matrix. Comparison of words that have the
same number of phonemes is straightforward.
Consider, for instance, computing the probability
that the word BIT (/b ih t/) is recognised given
that POD (/p oh d/) is spoken i.e. it is required to
calculate Pr(R=b ih t|S=p oh d). ' Using the
notation Pr(R = a|S =) to mean “the probability
that the response is a given that the stimulus is b”,
this probability can be estimated by assuming that
the three events Pr(R=Db|S=p), Pr(R=1ih]

"In this paper, the computer-readable ARPAbet symbols
are used to provide a broad phonetic transcription of the words
in the lexicon. Appendix A gives an equivalence between
ARPABET and IPA symbols.

S=oh) and Pr(R =t|S=4) are independent, so
that Pr(R=b ih t|S=p ohd)=Pr(R =Db|S=p)x
Pr(R=1ih|S=oh)xPr(R=t|S=d), and these
three probabilities can be looked up in the confu-
sion matrix. The independence assumption has
been verified for CVC nonsense syllables (Fletcher,
1953), but is unlikely to hold for words. However,
it would be impractical to estimate joint or con-
ditional probabilities for groups of phonemes.

When there are unequal numbers of phonemes
in the two words, Moore considered that the syl-
lable was the important unit and developed a set of
rules for matching syllables. In his formulation,
when a monosyllabic word such as THREE is
matched to a disyllabic word such as ZERO, the
“extra” syllable in ZERO is matched to the repea-
ted first syllable i.e. Pr(R = THREE|S = ZERO) =
Pr(R=THREE|S=ZE)xPr(R=THREE|S=RO).
Moore stated that these rules had no data to sub-
stantiate them and this rule seems incorrect, as it
forces matching of events that occur at different
times in the utterance.

Since Moore’s paper was published, dynamic
programming (DP) has been extensively used in
speech processing to align both speech segments
and symbol sequences of different lengths. DP will
produce the optimal alignment of two sequences
according to a specified criterion, such as mini-
mum overall Euclidean distance. Each entry in a
phoneme confusion matrix can be regarded as
the probability of a “response’ phoneme given a
“stimulus™ phoneme. Hence if one of the phrase-
set phoneme strings is regarded as the stimulus and
the other as the response, the criterion “maximum
response probability” will find the DP alignment
of the two sequences that produces the highest
response probability.

Consider the problem of matching THREE
(/th r iy/) with ZERO (/z ia r ow/). One
possibility is to allow the introduction of a null
phoneme (#), as follows:

th r iy #
Z ia T oW

On the assumption that phoneme confusions
are independent, an alignment that has a higher
overall probability according to the confusion
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matrix is as follows:

th # r iy
Z ia r ow

There are some problems (identified by Simons)
with the idea of using a null phoneme for matching
and we prefer not to do this. Hence it is required
to repeat either the th or r phoneme in THREE,
and the DP algorithm chooses which to repeat on
the basis of “maximum response probability”.

The merit of using DP to compute the similarity
between two phoneme sequences is that ad hoc
assumptions about which the important phonemes
are, or how phonemes may or may not match are
not used. Rather, the matching is done by the
principle of maximising response probability. This
may produce some alignments that are implausible
from a phonetic point: however, we argue that this
may not be completely undesirable. An automatic
procedure of this sort cannot be expected to
produce results that are as accurate as testing on
humans. If they are inaccurate, it would be better
for them to err by reporting a higher rather than a
lower mis-classification probability than was
actually the case. Because the DP procedure seeks
to maximise the probability that a stimulus pho-
neme string S is mis-recognised as R, it may have
the effect of boosting the mis-classification prob-
ability.

3.4. Normalising the confusion matrices

Consider a simplified situation in which there
are only two “phonemes” in the language, X and
Y, and only two “words” in the phrase-set, XY and
YX. Suppose the phoneme confusion matrix is as
shown in Table 1.

The phrase-set confusion matrix is then as
shown in Table 2.

Notice that both rows of the phrase-set confu-
sion matrix sum to 0.62, not 1.0. This is because
there are two other possible “words”, namely
/XX/ and /YY/, which are missing from the
phrase-set. If the probabilities Pr(R =XX|S=
XY)=0.24 and Pr(R=YY|S=XY)=0.14 are
added to row one, the sum is 1.0 as expected.
These missing responses can be accounted for by

Table 1
An example phoneme confusion matrix
Input Recognised
X Y
X 0.8 0.2
Y 0.3 0.7
Table 2
The phrase-set confusion matrix
Input Recognised
XY YX
XY 0.8x0.7 = 0.56 0.2x0.3 =0.06
YX 0.3%x0.2 =0.06 0.8x0.7 = 0.56
Table 3
Normalised phrase-set confusion matrix
Input Recognised
XY YX
XY 0.9 0.1
YX 0.1 0.9

assuming that the proportion of the total proba-
bility in row i held by element (i, j) of the confu-
sion matrix is what matters, and to normalise each
element in row i by dividing by the sum of the
elements in row i. Hence the phrase-set confusion
matrix becomes as shown in Table 3.

Prior to any normalisation, a phrase-set con-
sisting of phrases made up of long phoneme
sequences will produce a row of response proba-
bilities that are lower in value than probabilities
produced by another phrase-set that is similar in
every other way except that it consists of phrases
that are made up of shorter phoneme sequences.
However, what is important is the relative response
probabilities for a given stimulus phrase, and
normalisation along a row will tend to reduce
the difference between vocabularies of different
lengths. Normalisation was applied to all the
phrase-set confusion matrices computed in this
study.



296 S. Cox, L. Vinagre | Speech Communication 42 (2004) 289-312

3.5. The effect of noise

In this study, the effect on the confusion matrix
of decreasing the SNR was modelled in two ways.
The first and simpler way was to assume that the
effect of additional noise is to re-distribute prob-
ability “mass” from a diagonal element of the
matrix to elements along the corresponding row. It
seems reasonable to use a model in which the rel-
ative probabilities of confusion amongst the off-
diagonal elements are preserved. If the diagonal
element §; of row i of a confusion matrix is scaled
by a;, it is easy to show that the scaling for each
off-diagonal element of row i that preserves the
relative probability of on-diagonal and off-diago-
nal elements in the row is

1-— OCi(S,'
b= 1)

provided 0 < o;0; < 1. The second technique was
based on Moore’s work. The consonant confusion

data he used was available at SNRs of 12, 6, 0, -6,
—12 and —18 dB (at a bandwidth of 200-6500 Hz)
and he was able to use this to make predictions for
any SNR. Moore used a standard method from
“multidimensional scaling”, a technique in the
field of mathematical psychology described by
Duda and Hart as ““the process of finding a con-
figuration of points whose inter-point distances
correspond to dissimilarities” (Duda et al., 2001).
The idea is to transform confusion matrices to
distance matrices between the sounds, to scale
these distances according to the amount of noise
present, and then transform back to a confusion
matrix. Moore used an expression due to Wilson
(1967) to estimate a distance table from a matrix
of confusion counts of the type shown in Fig. 2.
The expression is

ALV

D(i, j) = 0.51og,, m

Phoneme confusion matrix produced by automatic speech recognition system

3o xa.oo
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ol Gl , DO, ,» » o ¢ o o o (B, o B w0 s

IlIllIlIIIll.llIllIIilI\lllllilI\lIll
H m b

lIII_L]ll]IIIl]lIll]III.l..l]lI_|.EIIIELIIIIEI_|_LI'|-

pbtdkgmnngsshzzhf vdhthchjhhh | r w y asaeahacanwaxayeaehereyia ih iy olowoyuautuwsil

Fig. 2. The phoneme confusion matrix generated by the speech recogniser.
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where f'(i,/) is an entry in the matrix of counts.
The assumption is then made that the addition of
noise decreases the distances between sounds uni-
formly, so that a new matrix

D/(ivj) = nD(ivj) Vi, j (3)

is constructed, where 7 is the “noise-figure”. D’ is
then transformed back into a new confusion
matrix C'(i,) using

w;l 0—20'(iy)

C,)=—"—"—"
(2.7) Zf:l Wi 10-20'(ik)

(4)
In Eq. (4) P is the number of phonemes and w; is a
vector of response weights or biases which is to
account for asymmetry in the original f matrix. In
general f'(i,j) # f(j,i), but since D( ) is a distance
function, it must be the case that D(i,j) = D(j, i),
and Eq. (4) ensures that this is the case. The
asymmetry in the matrix f( ) is caused mainly by
the fact that different phonemes have different
attributes which cause them to be more or less
likely to be recognised. The expression given by
Shephard (1957) for this vector w of weights is

P i) | [fGD
PE:ﬁlvfuﬁ/ 70)

T ~+ ik ] ik
Dkt 2aict /(;,z)/ 7(0)

w(j)

(5)

The more symmetrical a confusion matrix is, the
closer these weights are to 1.0.

3.6. Modelling spontaneous speech effects

Some effects of assimilation, insertion and
deletion of phonemes in spontaneous or rapid
speech were modelled by manually modifying the
pronunciation strings corresponding to the phra-
ses in the phrase-set. These modifications were
done in consultation with a phonetician and were
intended to model likely effects in rapid speech. We
group these effects under the term ‘‘co-articula-
tion”, although strictly, co-articulation occurs in
all speech, even carefully articulated speech. The
following modifications were made:

1. Any t at the end of a phrase was removed (e.g.
FOUR-EIGHT=/f aoey t/— /f ao ey/)

2. A double n within a phrase was deleted (e.g.
SEVEN-NINE=/s eh v n n ay n/—
/s ehvnayn/)

3. A double s within a phrase was deleted (e.g.
SIX-SEVEN=/s ih k s s eh v n/—>
/s ih k s eh vn/)

4. A double f within a phrase was deleted (e.g.
GOLF-FOUR=/g oh 1 f f ao/— /g oh
1 f ao/)

5. A double t within a phrase was deleted
(e.g. EIGHT-TWO=/ey t t uw/—> /ey t
uw/)

6. Any t preceding an h was deleted (e.g.
EIGHT-THREE=/ey t t th r iy/—>
/ey thriy/)

7. Any k preceding a t was deleted (e.g. QUE-
BEC-TWO=/k w ih b eh k t uw/—
/kwihbeh t uw/)

8. Any t preceding an s was deleted (e.g.
EIGHT-SIX=/ey t s ihk s/— /ey s ih
ks/)

9. Any t preceding a z was deleted (e.g.
FOXTROT-ZERO=/f ohk s t r oh t z
iarow/—>/ohkstrohziarow/,)

10. Any t preceding a n was deleted (e.g. EIGHT-
NINE=/ey tnayn/— /ey nayn/)

11. Any /v preceding an f was deleted (e.g. FIVE-
FOUR=/fayv fao/— /fay f ao/)

12. Any z following an s was deleted (e.g. SIX-
ZERO=/s ihk s z iar ow/— /s ih k
s ia r ow/)

13. Any f following a t was deleted (e.g. EIGHT-
FOUR = /ey t f ao/— /ey f ao/)

14. Any trailing r was deleted (e.g. OSCAR =
/oh s kaxr/— /oh s k ax/).

Some of these modifications are accurate rep-
resentations of pronunciations in spontaneous
speech (for instance, the removal of any re-occur-
ring sound, rules 2-5). Some are over-simplifica-
tions, notably those that concern the removal of
the final t in a word (rules 6, 8-10). This reduces
the word EIGHT to the single vowel y i.e. the
word /A/, and /A-SIX/ is not a very realistic
realisation of the phrase EIGHT-SIX even in very
rapid speech. However, the object of this part of
the study was to model mis-classification for the
worst case (i.e. the most rapid and co-articulated
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speech) and so these possibly somewhat unrealistic
pronunciations were included.

4. Speech data and processing
4.1. The speech recogniser

The speech recogniser used to provide the con-
fusion matrices used in these experiments was a
hidden Markov model recogniser available as part
of the Entropic Hidden Markov Model Toolkit
(HTK) software, version 2.2 (Jansen et al., 1996).
The speech recogniser was trained using speech
data from the WSJCAMO database (Fransen et al.,
1994). This database was collected at the Cam-
bridge University Engineering Department in 1994
and consists of sentences read from the Wall Street
Journal newspaper by 53 males and 39 females with
British English accents. The recording quality is
high: recording was done in a soundproof room
using a Sennheiser HMD414-6 close-talking
microphone at a 16 kHz sampling-rate and using
16-bit sample resolution. After recording, each
sentence waveform was segmented at both the word
and the phoneme level using an automatic proce-
dure. About 90 sentences from each of the speakers
in the WSJCAMO database (a total of approxi-
mately 12 h of speech) was used to train a set of 45
phoneme models. The speech waveforms were first
filtered using a bandpass filter in the range 300-
2500 Hz to simulate the restricted bandwidth of the
radio telephone over which the speech is passed.
The upper bandwidth limit of 2500 Hz is very low
for speech communication. The reason for this is
that the region above 2500 Hz is used for signalling
information (e.g. press-to-talk signals), radio con-
trol and monitoring. The waveforms were then
converted to a mel-frequency cepstral coefficient
(MFCC) representation (Davis and Mermelstein,
1980), which consisted of 12 MFCCs and a log-
energy value, together with the first and second
differentials of these (39 components in all). Each
phoneme model consisted of a three-state left-to-
right HMM, with a five-mode 39-d Gaussian mix-
ture modelling the distribution of vectors in each
state. A diagonal covariance matrix was used for
each component of the distribution.

4.2. Generation of a confusion matrix

To generate the confusion matrix, the recogn-
iser was configured to output the sequence of
phonemes that best matched the input speech,
unconstrained by the need to form words or se-
quences of words. By turning off these constraints,
a confusion matrix is obtained which depends only
on acoustic confusion performance and not on
word or language context. The confusion matrix
was generated by recognising the same speech as
was used to train the recogniser, and using DP to
align the transcription and recognition strings.
Insertions (extra phonemes in the recognised string
not present in the transcription) were disregarded.
It is considered poor practice to test on the train-
ing material when quoting recognition accuracy
results because this approach overestimates the
performance of the recogniser on unseen data.
However, in this case, our goal was to generate a
confusion matrix rather than to measure recogni-
tion performance. The normalised phoneme con-
fusion matrix is shown in Fig. 2. In this matrix, the
phonemes have been arranged in groups, with the
main division being between consonants (upper)
and vowels (lower). In Fig. 2, as in all other con-
fusion matrices in the paper, probability has been
non-linearly coded on a grey scale to deliber-
ately emphasise low probabilities. Accordingly, all
probabilities above 0.45 are black.

Most of the dark colouring in Fig. 2 is con-
centrated on the diagonal of the matrix indicating
that correct recognitions predominate—the pho-
neme accuracy of the recogniser is 55.0%. It can
also be seen that there appear to be two square
areas in which mis-recognitions occur, around the
upper diagonal (consonants) and the lower (vow-
els). The fact that there are few mis-recognitions
outside these two squares indicates that vowels
and consonants are rarely confused by the rec-
ogniser.

Although there are single squares of grey scat-
tered about these two squares, there is evidence of
a pattern to the mis-recognitions, especially for
the consonants. The consonants (b through zh)
have been grouped according to their manner of
articulation: stops, nasals, fricatives, laterals.
Consonants within a group are similar in their
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articulation and acoustic characteristics and hence
more likely to be confused by humans. This
behaviour is shown in the machine confusion
matrix by the presence of squares of grey colouring
around the diagonal associated with these groups.
The vowels (aa to uw) have been sorted alpha-
betically in Fig. 2, but because of the close rela-
tionship between orthography and sound, this
reflects their “closeness” in phonetic space and a
similar pattern of confusion near to the diagonal is
seen. The question of how similar the confusion
matrix generated by the recogniser is to a human
confusion matrix is taken up in detail in Section
5.2.

5. Experimental details and results

5.1. The words and vocabularies used in the experi-
ments

There appears to be no standard vocabulary or
syntax for an aircraft call-sign. In a circular to
airline operators (Services, 1996), the CAA advises
them to “avoid use of similar numerical call-signs

2 ¢

within the same company”, “avoid multiple use of
the same digit”, “consider a balance of alphanu-
meric and numeric call-signs”. This study has
focused on the digits and the ‘“‘airline alphabet”
(ALPHA, BRAVO,...,ZULU). Table 4 gives the
list of words used in the study together with their
pronunciations. Notice that four words have two
pronunciations. Three of these words (FOUR,
OSCAR, VICTOR) are words that end with r and
can be pronounced with or without the final r. In
addition, PAPA can be pronounced as /p ax p aa/
or as /p ae p ax/ and SIERRA has two variants
depending on how one pronounces the central
diphthong. The BEEP (British English Example
Pronouncing) dictionary (Robinson et al., 1996)
was used to look up the pronunciations for each
word used in the study. Each pronunciation was
checked and in one case (SIERRA) altered. The
single pronunciation ZERO was used for “0”, and
OH and NOUGHT were not included.

The confusion performance of two phrase-sets
was investigated in these experiments:

1. the digit-triple (DT) phrase phrase-set (ONE-
ONE-ONE, ONE-ONE-TWO,...,ZERO-
ZERO-ZERO);

2. the alphabet-digit (AD) phrase phrase-set
(ALPHA-ONE, ALPHA-TWO,...,ZULU-
ZERO).

The DT phrase-set was made by first generating
all possible triples of the eleven digit words
(11x11x11=1331 phrases). The pronunciations
of the three words in a triple were then concate-
nated into a string for use by the DP algorithm. A
set of co-articulated digit-triple pronunciations
(CDT) was made by editing the pronunciation
strings according to the rules described in Section
3.6. The AD and CAD phrase vocabularies
were made in the same way. The AD phrase-
set had 31x 11 =341 phrases when no co-articu-
lation was modelled and 29x10=290 phrases
when co-articulation was modelled (some alterna-
tive pronunciations disappear with co-articulation
modelling). The vocabularies are summarised in
Table 5.

Vocabularies were tested at particular SNRs by
simulating the effect on the confusion matrix of
additive broadband noise. Two techniques were
tested for this: direct scaling of the confusion
matrix values and transformation of distances (as
discussed in Section 3.5).

5.2. Experimental testing of simulation of different
SNRs

Section 3.2 outlines the reasons why it was
decided to use a machine-generated confusion
matrix rather than matrices derived from testing of
humans. Although it was stated in Section 4.2 that
the machine-generated matrix was similar in the
pattern of its confusions to the human matrix, no
evidence was offered for this. In addition, it was
not known what the Human Equivalent Noise
Ratio (HENR, Section 2.1) of the recogniser was.
In order to check that the machine did indeed
exhibit a pattern of mis-recognitions similar to
those made by a human and also to calibrate it in
terms of human performance, the confusions for
the consonants that were studied in Miller and
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Table 4

The words used in the study and their pronunciations
ONE wahn KILO kiy 1 ow
TWO t uw LIMA 1iymax
THREE thriy MIKE may k
FOUR_1 f ao NOVEMBER nowvehmbax
FOUR_2 faor OSCAR_1 oh s k ax
FIVE fayv OSCAR_2 ohskaxr
SIX sihks PAPA_1 p ax p aa
SEVEN sehvn PAPA_2 p ae p ax
EIGHT ey t QUEBEC_1 kwihbehk
NINE nayn QUEBEC_2 kwaxbehk
ZERO z ia r ow ROMEO rowmiy ow
ALPHA ae 1l f ax SIERRA_1 s ia r ax
BRAVO b raavow SIERRA_2 s ih ea r ax
CHARLIE chaaliy TANGO t ae ng g ow
DELTA dehltax UNIFORM yuwn ih faom
ECHO eh k ow VICTOR_1 vihktax
FOXTROT fohkstroht VICTOR_2 vihktaxr
GOLF gohlf WHISKEY wihsk iy
HOTEL hhowtehl XRAY ehksrey
INDIA ihndia YANKEE yaengkiy
JULIET jhuh1liheht ZULU z uw 1 uw

Table 5

The vocabularies used in this study

Phrase-Set name

Example

Coarticulation modelled? Number of phrases

DT TWO-EIGHT-FOUR
CDT TWO-EIGHT-FOUR
AD FOXTROT-ZERO
CAD FOXTROT-ZERO

No 1331
Yes 1000
No 341
Yes 290

Nicely’s paper were extracted from the machine-
generated matrix and normalised to probabilities.
The resulting matrix was transformed to simulate
the effect of added noise using the two methods for
transforming confusion matrices discussed in Sec-
tion 3.5 (i.e. direct scaling of the values and
transformation of distances), and compared with
the six human confusion matrices (normalised to
probabilities) in Miller and Nicely’s paper. These
matrices were made at SNRs of 12 dB, 6 dB, 0 dB,
—6dB, —12 dB and —18 dB at a bandwidth of 200—
6500 Hz (Tables I-VI in Miller and Nicely’s
paper). The two matrices were compared by sum-
ming the squared differences between equivalent
elements, and normalising this sum to generate a
stress figure between 0 and 1 (Kruskal, 1964). The
expression for the stress ¢ between two N x N
matrices A and B is given in Eq. (6).

_ Z:\il E;‘V:I(A(ivj)iB(ivj))z
o XL A2 ) Sy X B )

g

(6)

For each human confusion matrix, a transforma-
tion of the machine-matrix was sought which
minimised the stress between the two matrices.
This was accomplished by a search though values
of o (for the scaling method) and # (for the dis-
tance transformation method) to find the trans-
formation that gave minimum stress. To enable
interpretation of the stress value, several (30)
randomly generated confusion matrices were made
for each SNR, and the mean and standard devia-
tion of the stress value between these matrices and
the appropriate human confusion matrix was cal-
culated. These matrices were generated by setting
the diagonal value for a row to be the same as the
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Table 6

301

Results of experiment comparing human confusion matrices with transformed machine-generated confusion matrices and randomly

generated confusion matrices

SNR (dB) Direct scaling of machine generated matrix

Distance transformation of machine-gener-
ated matrix

Randomly-gener-
ated matrix

Optimum value of o Stress Optimum value of 5 Stress Average stress
12 1.25 0.002 1.57 0.001 0.0014 £0.0002
6 1.16 0.004 1.34 0.003 0.005 = 0.0007
0 1.08 0.009 1.09 0.01 0.016£0.0017
-6 0.85 0.04 0.76 0.04 0.09 £0.007
-12 0.62 0.14 0.53 0.12 0.29+0.012
-18 0.31 0.59 0.10 0.19 0.77£0.019
2 : : . : onal, and hence most off-diagonal entries will
i be close to zero.
; 2. For 0 dB SNR and below, both techniques for

Log (stress)
&

-5t sl
Random matrices i
HF  Eem Recogniser matrices ., <
5 . . . . . B
-20 -15 -10 -5 0 5 10 15
SNR

Fig. 3. The (log) stress between confusion matrices generated
by the speech recogniser and from 30 “randomly” generated
matrices. Error-bars are +2¢.

diagonal value of the human matrix, and then re-
distributing the remaining probability for the row
randomly amongst the off-diagonal elements. This
has the effect of generating a confusion matrix that
has the same overall accuracy as a human confu-
sion matrix (since the diagonal elements are the
same) but a random pattern of errors. The results
of these experiments on stress are given in Table 6.

The following observations can be drawn from
Table 6 and Fig. 3.

1. The stress between both the machine-gener-
ated and the randomly generated matrices
and the human matrices increases as the
SNR decreases. This is as expected, since at
higher SNRs, the accuracy is high, so most
of the probability is concentrated on the diag-

transforming machine-generated matrices give
matrices that are statistically significantly low-
er in stress than randomly generated matrices,
indicating that they are more similar to human
confusion matrices. In fact the distance-trans-
formation technique achieves a statistically
significant difference from random at an
SNR of 6 dB.

3. There is little to choose between the two tech-
niques for transforming machine-generated
matrices at high SNRs, but the distance-trans-
formation technique gives a much lower stress
value at —18 dB SNR.

4. Tt is interesting that both techniques have a
scaling close to 1.0 for a 0 dB SNR. For both
techniques, a scaling of 1.0 leaves the matrix
unaffected, indicating that the HENR of the
recogniser used is in the region of 0 dB (i.e.
the speech recogniser has performance approx-
imately equivalent to a human listening at 0
dB SNR).

This experiment indicated that transforming
machine-generated confusion matrices could pro-
vide matrices that approximated human perfor-
mance. It should be borne in mind that the
bandwidth of the speech used to make the ma-
chine-generated confusion matrix (300-2500 Hz)
was significantly lower than the bandwidth used by
Miller and Nicely (200-6500 Hz). The more re-
stricted bandwidth of the speech used by the rec-
ogniser would have the effect of lowering the
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recogniser’s accuracy and altering the pattern of
mis-recognitions it made. It is not possible to say
whether the recogniser confusion matrix made at
300-2500 Hz bandwidth is actually closer to a
human confusion matrix at this bandwidth than
the human confusion matrices in Miller and Ni-
cely’s paper that were made at a higher bandwidth.
In view of the slightly superior stress performance
of the distance-transformation technique over the
scaling technique, it was decided to use the former
for simulating different SNRs in subsequent
experiments. In Figs. 4 and 5, the human confu-
sion matrices from Miller and Nicely’s paper are
shown together with the optimally transformed
machine-generated matrix using the distance
transformation method.

Comparing the human and machine confusion
matrices, it can be seen that the patterns of the
blocks of confusion around the diagonals are sim-
ilar at all SNRs. However, as the SNR decreases, in
the machine confusion matrices, bands become
more and more prominent on either side of the
diagonal whereas the human matrices become
more random in their pattern of confusions. These
bands are due to confusion of voiced and unvoiced
consonants in the machine. This effect does occur
in the human confusion matrices (faint bands are
discernible) but it is not nearly so marked.

5.3. Simulation results

In this section, we summarise the results of
experiments aimed at comparing the confusability
of the two vocabularies at different SNRs. The six
SNRs used by Miller and Nicely (12, 6, 0, —6, —12
and —18 dB) were suitable points at which to
conduct our experiments, as we had experimented
with transforming our machine confusion matrix
to work at these points. Simulations of the con-
fusions for the four vocabularies (DT, CDT, AD
and CAD) were run at all six SNRs. Examination
of the results for SNRs of 6 and —6 dB showed
that results at these SNRs were very similar to the
results for 12 and 0 dB respectively, so they have
been omitted from the presentation of results.

The resulting phrase-set confusion matrices
from the different vocabularies and SNRs were
analysed in three different ways:

1. comparison of the predicted accuracies (Section
5.3.1);

2. comparison of the distributions of a statistic de-
rived from the confusion matrices (Section
5.3.2);

3. estimating a “potential confusion matrix” for
the individual words within a phrase by identifi-
cation of the “closest” phrase to the stimulus
phrase (Sections 5.3.3 and 5.3.4).

5.3.1. Phrase-set accuracy

The accuracy predicted by the model for a
given vocabulary at a given SNR is estimated by
computing the probability of each response-
phrase given each stimulus-phrase, and then
noting the number of “correct recognitions”. A
“correct recognition” occurs when, for a given
stimulus phrase, the response phrase whose
probability is highest is the stimulus phrase. The
raw data from a simulation of a phrase-set consist
of six confusion matrices (one for each SNR) each
of approximate size 1000x1000. We have at-
tempted to draw summary data and salient points
about the confusions from this very large body of
data.

The mean accuracies predicted by the model are
given in Table 7. The trend of the accuracies
shown here is typical of the intelligibility to
humans of speech in noise, in that intelligibility
remains high until a “cut-off” is reached (here
between —12 dB and —18 dB) and then falls off
sharply. On a given row in Table 7, the accuracy
figure in a given column is either the same or lower
than the accuracy in the column to its left, which
means that the predicted recognition accuracy
never increases as the SNR is decreased. This, of
course, is a minimal requirement for a model to be
considered realistic. We are sceptical about the
absolute values of the figures in Table 7 because,
given the many assumptions that have been made
in the simulations, the ability of the model to
predict accurately recognition accuracy at a given
SNR must be doubted. However, it should be
possible to compare and rank relative confusability
effects, both within a certain phrase-set and across
different vocabularies, and we concentrate on this
kind of analysis here.
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Human consonant confusion matrix at SNR 12 dB ASR consonant confusion matrix scaled by 1.469
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Fig. 4. Comparison of human confusion matrices (left column) and transformed machine-generated matrices (right column) at 12 dB
(top), 6 dB (middle) and 0 dB (bottom).
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Human consonant confusion matrix at SNR - 6 dB
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Fig. 5. Comparison of human confusion matrices (left column) and transformed machine-generated matrices (right column) at -6 dB

(top), —12 dB (middle) and —18 dB (bottom).
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Table 7

Accuracies predicted by the model for the four vocabularies
Phrase-set Noof 12dB 0dB -12dB -18 dB

phrases

DT 1331 99.99 99.98 96.6 4.44
CDT 1000 99.98 99.91 95.72 4.06
AD 341 99.99 99.99 99.99 9.85
CAD 290 99.99 99.99 99.76 10.06

5.3.2. The random variable 6 as a confusion
indicator

In cases where the probabilities from the correct
response phrase are close to those from one or
more incorrect response phrases, a small alteration
to the probabilities can have a large effect on the
overall average accuracy. The model makes several
assumptions which make the probabilities in any
confusion matrix it generates subject to errors.
Hence the estimated mean accuracy may not be a
very reliable guide to actual performance of a
vocabulary at a certain SNR. A more qualitative
but potentially more insightful measurement of the
relative potential confusability of two vocabularies
Vi and V5 is to compare the distributions of the
random variables 6y, and J,, where

8y € {C(1,1) = C:(1,2),Ci(1,1) — C(1,3), ...,
Ci(lv 1) - Cz‘(LNi)vci(zaz) - Ci(27 l)a
Cz(zaz) - Ci(zv?’)a R CL(2,2) - C[(Z,M),

Ci(Nj,]Vi)_Ci(]vi; 1); Ci(Ni;Ni)_Ci(Nfa 2)7' t
Ci(N;,N;) — Ci(N;, Niey) } (7)

In Eq. (7), Ci(j,k) is the phrase-set confusion
matrix for phrase-set V; and N; is the number of
phrase-set items, so that dy, is the set of differences
between the on-diagonal probability (from the
correct response) and the off-diagonal probabilities
(from the incorrect responses) for each row.
Clearly, the closer this value is to zero, the more
likelihood there is of confusion. It is interesting to
compare the distributions of ¢, for the two
vocabularies at the same SNR. A priori, there are
two effects that should make the AD phrase-set
easier to recognise than the DT phrase-set:

1. The AD phrase-set is about 1/4 of the size of
the DT phrase-set. Hence if the vocabularies
were otherwise similar, AD would have a low-
er confusion probability than DT.

2. The AD phrase-set uses many more different
phonemes than the DT phrase-set because of
the presence of the “phonetically rich™ airline
alphabet words.

There is also one effect that should make it
harder to recognise the AD phrase-set: the AD
phrase-set has an average of 7.9 phonemes in a
phrase whereas the DT phrase-set has an average
0f 9.0, so AD would be slightly harder to recognise
if the phrase-set content were similar.

Fig. 6 shows the values of ;- for the AD phrase-
set (top) and the DT phrase-set (bottom) for an
SNR of —18 dB. It can be seen that the distribution
for the AD phrase-set has a median that is greater
than that for the DT phrase-set and has a long tail
of high values. If we can make the reasonable
assumption that two phrase-set items v; and v; are
likely to be confused by a listener if the value of
C(i,j) is less than some threshold value T (7 must
be determined experimentally), then the interpre-
tation of Fig. 6 is that the AD phrase-set is
inherently less confusable than the DT. This is
backed up by the results in Table 7 for —18 dB
SNR, where accuracy on the AD phrase-set is
double that on the DT phrase-set.

Fig. 7 shows the values of ¢, for the CDT
phrase-set (top) and the DT phrase-set (bottom).

The distributions showing that the effect of co-
articulation on the probability distributions ap-
pears to be very small and we would not expect
much difference in confusability between these
two vocabularies. The same effect is observed in
comparing the AD and CAD vocabularies i.e.
there is little difference in relative confusion
probabilities caused by the co-articulation mod-
elling.

5.3.3. Analysis of confusions of individual words in
the digit triples (DT) phrase-set

Potential confusions for individual words within
the DT phrase-set at a given SNR were identified
as follows:
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Fig. 6. Comparison of differences in (on-diagonal probability)—(off-diagonal probability) for AD phrase-set (top) and DT phrase-set

(bottom).

1. for each stimulus phrase, zero the (diagonal)
probability associated with a correct recogni-
tion of this phrase and hence identify the most
probable incorrect phrase;

2. compare the stimulus phrase with the the most
probable incorrect phrase to form a “potential
confusion matrix”, PCM, for a given SNR (for
instance, if the stimulus string were ONE-
TWO-THREE and the most probable incor-
rect response ONE-TWO-FIVE, the element
PCM (3, 5) would be incremented);

3. when all the phrases have been processed, nor-
malise PCM across its rows to form probabili-
ties.

This analysis is based on identifying the single
“closest” phrase to the stimulus phrase rather than
examining the complete distribution of probabili-
ties of responses as was done in Section 5.3.1. The
rationale for this approach is that we believe that
the absolute probabilities in a predicted confusion
matrix C are subject to error, but expect the
ranking of responses associated with a given
stimulus phrase to be more robust. Examining the
most probable incorrect phrase gives insight into
potential mis-recognitions in the phrase-set: a
“potential confusion matrix” shows the most
probable confusions for a stimulus phrase when
the SNR drops sufficiently low for confusions to
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Fig. 7. Comparison of differences in (on-diagonal probability)—(off-diagonal probability) for CDT phrase-set (top) and DT phrase-set

(bottom).

occur for listeners. Table 8 shows the PCM matrix
for the DT phrase-set at 12 dB SNR.

The model predicts some well-known confu-
sions in the digit phrase-set such as ONE/NINE,
FOUR/FIVE and TWO/EIGHT, although not
FIVE/NINE. The least confusable digits are pre-
dicted to be ZERO, SIX and THREE and the
most confusable ONE and NINE.

This approach was refined to examine whether
the mis-recognition rate was influenced by the
position of a digit in the phrase. Three separate
PCM matrices were estimated, one for each digit

position. The matrices are not given here for rea-
sons of space, but the average “accuracy” in each
digit position was as follows: first digit=83.9%,
central digit=152.3%, final digit=_81.4%. If the
null hypothesis is that each digit position should
have the average “accuracy” (72.5%) within sam-
pling error, this hypothesis can be rejected at the
0.1% level for the central digit. There is significant
difference between accuracy for the outer digits.
Hence the model predicts that the central digit is
significantly more likely to be mis-recognised than
the outer digits.
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Table 8

Potential confusion matrix for DT phrase-set at 12 dB SNR

ONE TWO THREE FOUR_1 FOUR_2 FIVE SIX SEVEN EIGHT NINE ZERO

ONE 0.143 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.857 0.000
TWO 0.000 0.672 0.000 0.129 0.000 0.000 0.000 0.000 0.198 0.000 0.000
THREE 0.000 0.094 0.904 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
FOUR_1l  0.000 0.088 0.000 0.625 0.000 0.287 0.000 0.000 0.000 0.000 0.000
FOUR_2  0.000 0.000 0.000 0.003 0.576 0.421 0.000 0.000 0.000 0.000 0.000
FIVE 0.000 0.000 0.000 0.303 0.198 0.499 0.000 0.000 0.000 0.000 0.000
SIX 0.000 0.006 0.000 0.000 0.000 0.000 0.981 0.003 0.011 0.000 0.000
SEVEN 0.074 0.000 0.000 0.000 0.000 0.000 0.000 0.923 0.003 0.000 0.000
EIGHT 0.000 0.273 0.003 0.003 0.000 0.000 0.008 0.003 0.711 0.000 0.000
NINE 0.686 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.314 0.000
ZERO 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.983

Table 9 Table 10

Analysis of potential confusions in the AD phrase-set Most common potential confusions in the AD phrase-set
SNR # alphabet # digit Mean Mean digit Alphabet words Digit words
(dB) confusions confusions alphabet probability ALPHA/DELTA ONE/NINE

probability DELTA/VICTOR TWO/FOUR
12 30 311 1.00x10°¢  6.8x10° ECHO/X-RAY TWO/EIGHT
0 43 298 3.92x 10—6 11.9x%x 10—5 KILO/LIMA THREE/TWO
-2 8 298 0.0037 0.0073 OSCAR/ECHO FIVE/NINE
-18 140 201 0.053 0.049 TANGO/YANKEE
ZULU/KILO

5.3.4. Analysis of confusions of individual words in
the alphadigit (AD) phrase-set

Potential confusions within the AD phrase-set
at a given SNR were identified using the same
technique described in Section 5.3.3. In this case,
the highest probability response phrase was com-
pared with the stimulus phrase to find whether the
“mis-recognition” was in the alphabet word or the
digit word (there were no cases where the highest
probability response differed from the stimulus in
both words). The mean probability of the highest
response phrase was also computed for the case
when the mis-recognition was an alphabet word,
and the case when it was a digit.

Table 9 shows the results of this analysis.

It can be seen that the confused word was
about 8-10 times more likely to be a digit than
an alphabet word for SNRs of 12, 0 and —12 dB,
and the associated probability of confusion was 2—
50 times higher in cases where the confused word
was a digit rather than an alphabet word. At —18

dB, the numbers of potential confusions and
associated probabilities become more similar
for the two groups of words. The most common
confusions of the two groups are given in Table
10.

When all 340x340 incorrect response proba-
bilities were sorted, it was found that in the
highest 1000 incorrect probabilities, there were
only 44 that were due to “mis-recognition” of an
alphabet word rather than a digit. These findings
all point to the same conclusion, that the digits
are inherently more confusable than the airline
alphabet.

5.4. Benchmarking the model performance using
real confusions

The performance of the model was bench-
marked using a set of confusions available from
the CAA database (N.B. none of these confusions
led to an air-safety incident). This database con-
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tained 61 confusions of digit triples with other
triples in which the response was not a transposed
version of the stimulus, indicating a perceptual
rather than a cognitive confusion. Of these, 59 had
a single digit in a certain position different in
stimulus and response, and these were used in this
evaluation. The performance of the model was
evaluated using the DT phrase-set at 12 dB SNR
(no information about the SNR under which these
confusions were observed was available—it is most
likely they were made at a range of SNRs). Each of
the 59 “stimulus” phrases (i.e. the digit triple
phrases that were spoken), were input into the
model and the response phrases produced were
ordered by probability. In addition, the rank of the
phrase that had been erroneously “recognised”
was recorded. A perfect model of mis-recognition
would record a rank of one for every example, and
a model that simply guessed the answer would give
a uniform distribution of ranks with a mean rank
close to 999/2 ~ 500, since there are 999 possible
incorrect responses to the stimulus phrase (the
correct response was not included in the ordering).

Using these data, the model was tested under
two conditions:

1. the possible responses to the stimulus phrase
were unrestricted and could be any of the
999 digit triples that were different from the
stimulus;

2. the possible responses were restricted to the 27
responses that differ from the stimulus phrase
by one digit in one position.

The rationale for testing a model in which the
response was restricted to digit triples that differed

Table 11
Results of comparison of model predictions with real confu-
sions

Model Mean rank of Lowest rank
actual response  of actual
in model response
999 possible responses 17.9 53
(unrestricted)
27 possible responses 13.2 27

by only a single digit in one position is that this
response is the most likely mis-recognition, as
borne out by the examples in the database (59 of
the 61 examples showed this pattern of response—
the other two examples had two errors). A useful
model would be able to give a better prediction
of confusion than choosing randomly a response
that differs by only a single digit in one position
from the stimulus phrase. The results are given in
Table 11.

For the unrestricted response case, a random
selection for the rank of the actual response would
yield a mean rank of about 999/2 = 500. The
fact that the mean ranking from the model is
17.9 shows that it is much better than random.
This inference is supported by the fact that low-
est rank assigned to any one actual response is
53. However, when only 27 responses are allowed,
the mean rank obtained using random selection
would be 27/2=13.5 and the mean rank of 13.2
obtained using the model is not significantly dif-
ferent from this. In one case, the model assigned
the lowest possible ranking, 27, to the actual re-
sponse.

In addition, it was noted that that the number
of confusions in each digit position in the supplied
data was as follows:

First digit 11
Central digit 35
Final digit 13

A null hypothesis is that the expected number
of errors in each digit position is the same and is
equal to 59/3=19.66. The results above lead to
rejection of the null hypothesis at the 0.1% level
i.e. digits in the central position are significantly
more likely to be mis-recognised than digits in the
outer positions. This result is in agreement with
the model prediction stated in Section 5.3.3, that
the probability of a confusion in the central digit is
higher than a confusion in either the first or final
digits. The confusion probabilities predicted from
the three PCM matrices estimated in Section 5.3.3
are 0.161, 0.477 and 0.186 for the first, central and
final digit respectively. It is interesting that the
predicted confusion probability for the central
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digit is about three times that of the first and final
digits because the error-rate for the central digit in
the real confusion data is also about three times
the error-rate for the first and final digits. How-
ever, the predictive power of the model needs to be
verified before it is possible to state whether this is
merely a coincidence.

The analysis suggests that, if it is assumed that
the confusion of a digit triple is most likely to be
another triple that differs in one location, the
model performs no better than making a random
choice for the response. However, very little
information on the confusions in this database was
available: the conditions under which the confu-
sion was made, the SNR of the channel, whether
the pilot or controller was a native English speaker
etc., are all unknown. It would be wise to conclude
that the conditions under which the data for this
evaluation was gathered were not sufficiently well-
defined or well-controlled to lead to any hard
conclusions about the performance of the model,
except to say that its performance is not unrea-
sonable, in that its average ranking of the actual
response was about 18 compared with an average
of 500 that would be obtained by random choice.
However, a proper evaluation with controlled data
under controlled conditions is required before any
firm conclusions about the predictive power of the
model can be drawn.

6. Summary and discussion

An examination of the potential confusions
between short phrases of the kind that are used in
the dialogue between a pilot and an air-traffic
controller was made. This study has concentrated
on modelling perceptual rather than cognitive
confusions. The suitability of using established
subjective and objective techniques to estimate
confusability was reviewed, and these techniques
were considered to be unsuitable for different
reasons. A technique using a model for prediction
of confusability (based on work originally done by
Moore and separately by Simons) was proposed,
developed and implemented. The technique dif-
fered from the work of Moore in that a confusion

matrix derived from a speech recogniser was used
rather than one derived on studies on human
performance, and the validity of this substitution
was tested carefully. The technique was used in a
study that simulated the effect of the restricted
bandwidth of the communication channel, the ef-
fect of additive broadband noise on the speech
signal and the effect of a spontaneous speaking
style. Two different vocabularies were used: triples
of digits (DT phrase-set) and an airline alphabet
word (ALPHA, BRAVO, CHARLIE etc.) fol-
lowed by a digit (AD phrase-set). The overall
behaviour of the model, as measured using real
confusions extracted from the CAA database, is
reasonable, and its predictions of confusable
words within phrases accord with experience.
However, before any more development is done to
the model, its predictions need to be tested and
validated by subjective tests using a panel of lis-
teners. These tests will not be unwieldy because
they will be restricted to testing of predictions
made by the model. However, they will be suffi-
ciently general to enable the model to be properly
calibrated for different SNRs. A comparison of the
results from the model with the actual results will
enable us to identify the assumptions in the model
that need to be adjusted or corrected to make it
more realistic.

This study has only begun to scratch the surface
of a complex problem in which perceptual and
cognitive effects are intertwined, and further re-
search is required to gain a deeper insight into the
reasons for confusion of call-signs. The goal of the
research is to be able to understand the confusions
well enough to enable design of a tool that would
aid air-traffic controllers in assigning call-signs to
aircraft to increase reliability of communication
and hence air safety. If successful, this tool would
be useful in many situations where it is required to
design an optimally intelligible set of phrases from
a closed phrase-set.
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Appendix A. Correspondence between AZRPABET transcription symbols and IPA symbols

IPA symbol ARPABET symbol IPA symbol ARPABET symbol
Vowels i 1y Consonants p p
I ih b b
e ch t t
x ae d d
u uw k k
O uh g g
A ah f f
D oh v v
] ax 0 th
3 er 0 dh
) ao s s
a aa z z
Dipthongs el ey I sh
a1 ay 3 zh
o1 oy i ch
a0 aw & jh
=10) ow m m
19 ia n n
) ea 1 ng
09 ua 1 1
U8 ua r r
J j
w W
h h
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