
Simultaneous speaker normalisation and word recognition using neural
networks/Bayesian techniques.

Stephen Cox
�

and John Bridle
��

British TelecomResearchLaboratories,MartleshamHeath,IpswichIP57RE,U.K.�
SpeechResearchUnit, Royal SignalsandRadarEstablishment,Malvern,Worcs.,U.K.

1. Introduction
One of the most important problemsin Automatic Speech
Recognition(ASR)ismethodsof dealingwith differencesin the
voicesof differentpersons(andin somecasesdifferencesbe-
tweenthevoiceof asinglepersonondifferentoccasions).Most
attemptsto constructASRsystemswhichcanbeusedby many
peoplehave usedeithermultiple modelsfor eachword, or so
calledspeaker-independentmodels.In eithercase,whendecod-
ing a shortsequenceof wordsthereis no way of imposingour
knowledgethatall thespeechis utteredby oneperson.Although
thereis probablya lot that can be doneby using representa-
tionsof theacousticdatathatarelesssensitive to speaker dif-
ferencesthan the current techniques,it is generallyaccepted
that high-performanceASR systemswill needto “tune in” to
characteristicsof the speaker, probablyat several levels such
asacousticandphonological. In this paperwe areconcerned
with speaker characteristicswhich can be expressedas trans-
formationsof baseformmodels,with thetransformationparam-
eterisedby continuous“speaker variables”. We areespecially
interestedin thepossibilityof estimatingsuchparametersfrom
quite small amountsof unlabelledspeech,suchasa few short
words or one longer word, so adaptationand recognitionare
combined.Although the typesof modelsandtransformations
we have usedarevery simple,we hopethe generalapproach
will be applicableto quite sophisticatedmodelsand transfor-
mationswhich will be necessaryfor future high-performance
ASR systems.This is a continuationof work on simultaneous
adaptationandrecognitionof vowel spectrareportedin [4].

2. A Neural network approach to
simultaneous recognition and normalisation
In this sectionwe outline a rathergeneralbut intuitively ac-
cessibleversionof our approach,basedon adaptive networks.
Supposewe have a network with three(vector-valued)termi-
nals,which encapsulatesour knowledgeof therelationshipbe-
tweenacousticpatterns,X, classlabels(e.g.word identities)C,
andspeaker parameters,Q. Imaginefor now that the network
workslikeaBoltzmannMachine[6]: wecanclampany pattern
ontoany of thethreeterminals,andtheappropriateconditional
distributionsappearon theotherterminals.Trainingsucha net-
work seemsdifficult, becausealthoughwe can supply (X,C)
pairs,we do not know the appropriatevaluesof Q. However,
we do have setsof (X,C) pairs from the samespeaker, so we
imaginea setof networks,onefor eachtraining-pair, with the
Q terminalsfor networksfor thesamespeakerstrappedtogether
(we do not mind whatvalueof Q is usedfor eachspeaker, but
it mustbe consistent.)Training the network proceedsin two
phases.First,wekeeptheQ inputsat theirdefault settings(e.g.
all zero)andtrain a speaker-independentsystem.Thenwe use

thesame-speaker Q- straptrick: derivativesof theclassification
errormeasurearepropagatedbackto thestrappedQ terminals
andusedto adjustthe speaker parameters.This is donesepa-
ratelyfor eachspeaker, andotherparametersof thenetwork are
adjustedalso.Dependingon thenetwork structure,theQ-strap
canalter theparametersfoundby speaker-independentadapta-
tion, andin particularwe try to learnan appropriatemapping
from speaker parametersQ to modificationsto the �����
transformation.Oncethenetwork is trainedwehavetwo modes
of use. If we have available one or more known utterances
by our speaker, thenwe can“tune-in” to the speaker (asdur-
ing training) except that only the Q inputs areadjusted. The
caseof most interestin this paper, however, is whenwe have
a few unknown wordsfrom an unknown speaker. We setup a
Q- strappedsetof networks, one for eachword, initialise the
Q valuesto their defaults,propagateforwardsto producea set
of distributionsacrossword labels,andthenweuseatechnique
which tendsto sharpenthesedistributions.In thesimplestcase,
thesharpeningprocesscouldbea matterof:� for eachutterance,pick the word label with the largest

output;� assumingthis is correct,back-propagatederivatives to
thecommonQ;� repeat;

In practice,we can usea more gentlemethodin which large
outputsgetmost‘encouragement’.For somenetworksit is pos-
sibleto show thatsucha“phantomtarget”procedurecanleadto
hillclimbing on the likelihoodof thedatagiven anassumption
abouttheform of thegeneratorof thedata[3]. As anexample
of a network with an interpretationin termsof a setof hidden
Markov model (HMM) word recognisers,see[2]. In the fol-
lowing sections,we describethesystemfrom a Bayesianpoint
of view - wefind it usefulto have both persepectives.

3. The Bayesian perspective
In the experimentsreportedhere, the Q-parameterisedtrans-
formationswereof a very simplekind (linear) and therewas
no learningof the control mapping. The ���	� mapping
is via a setof 
 whole-word HMM word recognisers(onefor
eachclass)andweattemptto find modelandspeakerparameters
which togethermaximisethe likelihoodof the data. In prac-
tice, we estimateparametersin two stagesasdescribedin sec-
tion 2.Firstly, all speaker-specificparametersaresetto zeroand
the Baum-Welch algorithm is usedto estimateparametersof
speaker- independentHMMs. Standardoptimisationtechniques
arethenusedto estimateparametersfor aparticularspeaker. In
our previouswork on spectraof isolatedvowels [4], we exam-
ined the effect on recognitionaccuracy of simple linear trans-



formationsappliedto a setof speaker’s vowel spectra. If the
adaptationis supervised,thelikelihoodto bemaximisedis:�
����������� ���������! #"%$��#&

(1)� �
is the ' ’ th dataexample,

� � �
arethemodelparametersof the

classof the ' ’ th exampleand

"($)�
arethetransformationparame-

tersappropriateto thespeakerof the ' ’ th example.For unsuper-
visedadaptation,we mustsumover classes(which we assume
equiprobable).Hencefor datafrom asinglespeaker, equation1
becomes:�+*,�-� �/.0132�4 � 1 � ' & �-� �/.015264 ����� �7��� 1  8"(& (2)

where 
 is the number of different classesand q are the
speaker-specifictransformationparameters.Weconsideredtwo
parameterisedtransformationsof thespectrumdata,bothorig-
inally proposedby Hunt [7].In each,the vowel classeswere
modelledasmultivariateGaussiandistributionswith common
diagonalcovariancematrices. In the first (the“spectrum-bias
only” model), therealisationof a vowel classby a particular
speaker wasmodelledasa biasspectrumshape9 addedto the
classmeanspectrumshape:� � ��: ���(; 9 ;=<8� (3)

where > � is the classof the ' ’ th exampleand

<#�
is the residual

modellingerror. A moresophisticatedmodel(the “fix ed shift
andbias”model) allowedfor shiftsalongthefrequency axisof
thespeakers’s spectrarelativeto themeanspectraaswell asthe
bias:? � �A@ & �CB�D ��� �A@6EGF &H;JI D �)� �A@ &H;JK D ��� �A@ ; F &H; 9 �A@ &H;�< � �A@ &
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Here,thevaluesof

B  �I
and

K
areconstantwith frequency-band

so that the shift is the samethroughoutthe spectrum. In this
paper, we alsoreportresultsusingvaluesof

B  LI
and

K
which

vary alongthespectrum(the“variableshift andbias”model).

4. The data and the speaker-independent
models

The datausedthroughouttheseexperimentswasfrom the BT
connectionismprojectdatabase[9]. This consistsof utterances
from 104 speakers, divided into a training-setof 52 speakers
and a test-setof 52 speakers, eachset having equalnumbers
of malesand females. The speakers recordedin randomor-
der threeutterancesof eachof the lettersof thealphabet.The
recordingsweremadein anacousticboothusinga high- qual-
ity widebandmicrophoneat a samplingfrequency of 20kHz
and using a 16 bit A/D converter. After checking the ut-
terances,eliminatingbadonesandmanuallyendpointinggood
ones,atotalof 3999trainingutterancesand3978testutterances
remained.Thesewereparameterisedto 27 log magnitudefil-
terbankchanneloutputsusingtheSRUbankfilterbankanalysis
facility [1]. Eachframewasnormalisedby subtractingtheaver-
agevaluefrom eachcomponentanda 28thenergy channelwas
appendedto theframe.Thespeaker-independentmodelsusedin
theexperimentswerecontinuousdensityHMMs with 15 states
anda mixture of 3 Gaussiandistributionsper state.Thetopol-
ogyof themodelsallowedtransitionsfrom stateM to stateM andM ; F only. Thestatesandmixturesof a givenmodelshareda
commondiagonalcovariancematrix. Model parameterswere
estimatedusingtheBaum-Welchtrainingalgorithm.Themod-
elsalsoincorporateda “voicing factor” (seesection5.1).

5. Adaptation using whole word data
To extend the transformationtechniquesdevelopedon single
framedatato wholeword data,it is neccessaryto dealwith se-
quences of framesrepresentinga class. The classmodelsare
now whole-word HMMs andtheadaptationis performedonly
on the stateparametersof thesemodels. The techniquesde-
scribedherecould be extendedto enableadaptationof model
transitionprobabilitiesbut for presentpurposes,thesearenot
changed.

5.1. Voicing marking

The transformationsdiscussedin section 3 are suitable for
voiced speechonly - our techniquesdo not yet attempt to
deal with unvoiced sounds.Accordingly, every frame M of the
databasewasannotatedwith a real numberNPO1 ( QSRTNPO1 R F ),
which gave the”voicing factor”; NPO1 � Q for unvoicedsounds,NPO1 �UF

for fully voiced. This wasdoneautomaticallyusing
informationderived from the amplitudeof low order cepstral
coefficentsandlow-frequency spectrumcoefficents.Thevoicing
informationis usedin two ways.Firstly, NPO1 weightsthe‘signifi-

cance’foradaptationof eachdata-frame:aframewith NPO1 � Q is
effectively ignoredwhenestimatinga setof speaker parameters
whereasa framewith N O1 �VF

contributesfully. Frameswith
intermediatemarkingcontribute in proportionto their voicing
factor. Secondly, eachHMM state M of eachword model W
wasalsomarked with a voicing factor N $X 1 at training time by
applyingBaum-Welchstylere-estimationto N $X 1 . This voicing
factor is usedwhen the modelsare transformedto determine
how muchof the transformationeachstateshouldreceive (see
equation9).

5.2. Likelihood-weighted adaptation

An important idea for unsupervisedadaptationintroducedin
our previous work is that of normalised likelihood weighting.
To illustratethis,considertheestimationof 9 in themodelgiven
in equation3. Whentheclassof each

� �
is unknown, our esti-

mateof 9 is: Y9 � FZ\[0 � 2�4 ] � � E^.0132�4�_ 1 � ' & : 1H` (5)

where
Z

is the numberof examplesanda 1 _ 1 � ' & ��F
i.e.

a probability weightedsum of the prototypesis used. The
weights,_ 1 � ' & , arepseudoposteriorprobabilitiesderivedfrom
thelikelihoodsof thedatagiventhemodels,

� 1 � ' & , asfollows:

_ 1 � ' & � � 1 � ' &(bca�d � d � ' &ebc (6)f
is a factorwhich sharpens(

f ��Q ) or smooths(
f ��g )

theseweighting functions. The sameidea is usedin the es-
timation of any speaker parametersfrom unknown datagiven
models. In our work on isolatedvowels,eachunknown vowel
spectrumhada likelihoodassociatedwith eachvowel model.
Usingwholeword data,eachframe of datahas 
ihj
 $ hk
ml
associatedlikelihoods,where 
 is the numberof models, 
 $
is the numberof statesin eachmodeland 
 l the numberof
modesin themixturein eachstate.Theweightingfactorfor the
meanof mode

@
of stateM of model ' for a frameat time n is



thus: _ X 1 d � n & �
K X 1 d � n &%bc.a� 2�4 .eoa15264 .(pad 2�4 K X 1 d � n &%bc (7)

where

K X 1 d � n & is the probability of occupying mode
@

of the
mixture of stateM of model W at time n . Whenthese_ X 1 d � n &have beencalculatedfor eachframeof eachunlabelledutter-
anceofferedfor adaptation,a weightedmean

: X � n & for each
time n is computedas:: X � n & � .0 � 264 .(o0132�4 .(p0d 2�4 _ X 1 d � n & : X 1 d (8)

where
: X 1 d is the meanof mode

@
of the mixture of stateM

of model W .This weightedmeanis exactly analogousto the
weightedmeanin equation??. Once theseweightedmeans
have beencalculated,the speaker parametersare calculated
using the data-frame/weightedmeanpair. In the caseofthe
spectrumbias transformation,this canbe donedirectly using
the equivalentof equation?? where

Z
is the total numberof

frames. For the shifting transformations,we useda nonlinear
optimisationtechnique(conjugategradientmethodwith an ap-
proximateline search[8]) to estimateparameters.Inbothcases,
themixturemodemeansarethenupdatedaccordingto::q*X 1 d �T��FrE N $X 1 & : X 1 d ; N $X 1�sut : X 1 d�v (9)

where sCtxw v representsthe effect of the transformationon the-
means.The effect of the voicing factor is to adapteachmean
accordingto the degreeof voicing associatedwith it.In prac-
tice, we found this BaumWelch style procedurefor calculat-
ing weightedmeansto be verycomputationallyexpensive and
insteadadoptedthe following Viterbi procedurewhich gaveal-
mostnodeteriorationin performance:

1. Eachutterancefor adaptationwasViterbi alignedto each
model. The alignmentof frame

? � n & to a statein each
model y X is notedas z X � n & andthemixturemodecon-
tributing thehighestlikelihoodin thisstatewasnotedas{ X � n & .

2. The likelihoodsof the whole utterancesarenormalised
acrossthemodelsi.e. for a givenutterance:

_ X � | X bca X | X bc (10)

where | X is the Viterbi likelihoodof model W for this
utterance.

3. For eachtime n , a weightedmeanis computedas:: X � n & � .0 � 2�4 _ X : Xe} $�~+����� } � ~��x��� (11)

4. Parameterestimationthenproceedsasabove.

6. Experimental procedure and results
In [4], our scenariowasonein which a new speaker uttereda
few vowel soundsof unknown class,from which we estimated
the speaker transformationparameters.The new transforma-
tion was then applied to the modelsand the utteranceswere
re-classified. We have usedthe sameexperimentalparadigm

in theseexperimentswith whole word utterances.Setsof ut-
terancesweredrawn randomly(without replacement)from the
poolof 78utterancesnominallyavailablefrom eachspeaker, un-
til thepoolwasexhausted.Because(noof utterancesavailable)
/ (no of utterancesin a set)wasnot alwaysinteger, the last set
wassometimessmallerthanthe othersets,but eachutterance
wasusedonly oncein anadaptationset.Theresultsshown are
averagesacrossall thesetsusedandacrossall 52test-setspeak-
ers.Fig1 indicatesthebestperformancewecanhopefor usinga
giventypeof transformation.In theseexperiments,thespeaker
parameterswereestimatedusingthe trueclassof all theavail-
ableutterances(supervisedadaptation).Theefectof using the
“voicing factor” is alsoshown. In thebiasonly (BO) andfixed
shift andbias(FSB)transformations,useof thevoicing- factor
producesasmallbut (usingthetestdescribedin [5]) statistically
significantimprovement.The resultfor variableshift andbias
(VSB) is interestingbecausetheresultis muchbetterwhenthe
voicing informationis ignored. This maybebecausetheVSB
transformationisableto produceappropriateshiftsfor unvoiced
soundsaswell asvoicedsounds,but it worksmoreeffectively
with moredatabecauseof thegreaternumberof parametersas-
sociatedwith it (107parameters,asopposedto 31 for FSBand
28 for BO). Fig 1 suggeststhat thepower of thesetransforma-
tions is limited, althoughthe very significantimprovementin
error ratewhenthe VSB transformationwasgiven moredata
for adaptationmayindicateits power for supervisedadaptation
onlargeramountsof data.Figs2 and3 show resultsusingunsu-
pervisedadaptation.Fig 2 showstheeffectof the“temperature”
parameterusedon the data likelihoods. All utteranceswere
usedfor adaptation,aswasvoicinginformation.Theadaptation
is unstablefor the two shifting transformationswhen

f ��g
i.e. whenthe likelihoodsof all classesaresetequal.Although
themodellingerror( a � } d <8�� �A@ & in equation4) decreasesduring
theprocessof parameterestimation,thesumof theViterbi like-
lihoodsof thedatais lower aftermodeladaptationthanbefore
adaptation.This pointsto the deficency of estimatingfirst the
modelparametersandthenthespeaker parameters.Thesetwo
setsof parametersshouldbe jointly re-estimatedstartingfrom
theirdefaultsi.e. thenull transformationfor thespeaker param-
etersandthespeaker-independentvaluesfor themodelparam-
eters.Fig 3 simulatesa real applicationwith either3,10,20or
78 utterancesfor adaptation,usinga harddecisionon theclass
(
f ��Q ) andvoicing information. This figure shows that the

FSBtransformationperformedmarginally betterthantheother
two for a limited numberof utterances,probablybecauseithas
thebestcompromiseof power andnumberof parametersto be
estimated.For eachtransformation,theerror-rategenerallyde-
creasesas the numberof adaptationutterancesincreases,but
by only a small amount. However, the final error-rateis close
(in all cases)to that obtainedwhensupervisedadaptationwas
used,which suggeststhatany limitation in power lies with the
transformationsratherthan the unsupervisedadaptationtech-
nique.Inevery caseshown in thesefigures,the differencebe-
tweentheerror-ratewhenusingnoadaptationandtheerror-rate
afteradaptationis significantat at leastthe99.9%level.

7. Conclusions
The resultsreportedhereshow that simultaneousword recog-
nition and speaker normalisationcan be madeto work, that
it improves performanceover the correspondingspeaker-
independentversion,and that given 3 to 10 unknown words,
performancecanbe almostasgoodaswhenthe adaptationis
doneusingknowledgeof thewordidentities.However, therela-



tiveimprovementsobtainedby adaptation,althoughstatistically
significant,arepossiblynot of sufficient practicalsignificance
to warranttheextra complexity, andtherearewaysof improv-
ing speaker-independentperformance.Nevertheless,we remain
convincedthat thegeneralapproachdescribedherehaspoten-
tial. Among the improvementsandadditionswe have in mind
are: � estimationanduseof priors or otherconstraintson the

speaker parameters� integration of the model parameterestimationand the
speaker transformation(evenin thesimplest(shift only)
casethisaltersthevariancesof outputdistributions)� trainingthesetof wordmodels(with speaker parameter-
isation)asa setof discriminators� learningthe form of a (non-linear)relationshipbetween
speaker parametersandword-modelparameters� applicationto connectedword recognitionor very large
vocabulary isolatedword recognition� in aninteractiveapplication,theuseof informationfrom
thedialogueto assistspeaker adaptation
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