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1. Introduction

One of the most important problemsin Automatic Speech
Recognition(ASR)is methodwf dealingwith differencesn the
voicesof differentpersongandin somecasedifferencede-
tweenthevoiceof asinglepersorondifferentoccasions)Most
attemptgo constructASR systemswhich canbe usedby mary
peoplehave usedeither multiple modelsfor eachword, or so
calledspeakrindependentnodels.In eithercasewhendecod-
ing a shortsequencef wordsthereis no way of imposingour
knowledgethatall thespeectis utteredoy oneperson.Although
thereis probablya lot that can be doneby using representa-
tions of the acousticdatathat arelesssensitve to spealer dif-
ferencesthan the currenttechniquesit is generallyaccepted
that high-performancéASR systemswill needto “tunein” to
characteristicof the spealer, probablyat several levels such
asacousticand phonological. In this paperwe are concerned
with spealer characteristicsvhich canbe expressedas trans-
formationsof baseforrmodels with thetransformatiorparam-
eterisedby continuous‘spealer variables”. We are especially
interestedn the possibility of estimatingsuchparameterérom
quite small amountsof unlabelledspeechsuchasa few short
words or one longer word, so adaptationand recognitionare
combined. Although the typesof modelsand transformations
we have usedare very simple, we hopethe generalapproach
will be applicableto quite sophisticatednodelsand transfor
mationswhich will be necessaryor future high-performance
ASR systems.This is a continuationof work on simultaneous
adaptatiorandrecognitionof vowel spectrareportedn [4].

2. A Neural network approach to
simultaneous recognition and nor malisation

In this sectionwe outline a rathergeneralbut intuitively ac-
cessibleversionof our approachpasedon adaptve networks.
Supposewe have a network with three(vectorvalued)termi-
nals,which encapsulatesur knowledgeof therelationshipbe-
tweenacoustigatternsX, classlabels(e.g. wordidentities)C,
and speakr parametersQ. Imaginefor now that the network
workslike aBoltzmannMaching[6]: we canclampary pattern
ontoary of thethreeterminals,andthe appropriateconditional
distributionsappearon the otherterminals. Faining sucha net-
work seemsdifficult, becausealthoughwe can supply (X,C)
pairs, we do not know the appropriatevaluesof Q. However,
we do have setsof (X,C) pairsfrom the samespeakr, sowe
imaginea setof networks, onefor eachtraining-pair with the
Q terminalsfor networksfor thesamespealkr strappedogether
(we do not mind whatvalueof Q is usedfor eachspealer, but
it mustbe consistent.) Training the network proceedsn two
phasesFirst,we keepthe Q inputsattheir default settings(e.g.
all zero)andtrain a speakr-independensystem.Thenwe use

thesame-speak Q- straptrick: derivativesof theclassification
error measurarepropagatedackto the strappedQ terminals
andusedto adjustthe spealer parametersThis is donesepa-
ratelyfor eachspeakr, andotherparametersf thenetwork are
adjustedalso. Dependingon the network structure the Q-strap
canalterthe parametergound by speakr-independentdapta-
tion, andin particularwe try to learnan appropriatenapping
from spealer parameters) to modificationsto the X — C
transformationOncethenetwork is trainedwe have two modes
of use. If we have available one or more known utterances
by our spealker, thenwe can“tune-in” to the speakr (asdur
ing training) exceptthat only the Q inputs are adjusted. The
caseof mostinterestin this paper however, is whenwe have
a few unknown words from an unknown speakr. We setup a
Q- strappedsetof networks, onefor eachword, initialise the
Q valuesto their defaults, propagatdorwardsto producea set
of distributionsacrossword labels,andthenwe useatechnique
whichtendsto sharperthesedistributions. In thesimplestcase,
thesharpeningrocessould be a matterof:

o for eachutterance pick the word label with the largest
output;

e assumingthis is correct, back-propagatelerivatives to
thecommonQ;

e repeat;

In practice,we canusea more gentlemethodin which large
outputsgetmost‘encouragement’For somenetworksit is pos-
sibleto shav thatsucha“phantomtarget” procedureanleadto
hillclimbing on thelikelihood of the datagiven anassumption
aboutthe form of the generatoof thedata[3]. As anexample
of a network with aninterpretationin termsof a setof hidden
Markov model (HMM) word recogniserssee[2]. In the fol-
lowing sectionswe describethe systemfrom a Bayesiarpoint
of view - we find it usefulto have both persepecties.

3. TheBayesian perspective

In the experimentsreportedhere, the Q-parameterisedrans-
formationswere of a very simplekind (linear) and therewas
no learningof the control mapping. The X — C mapping
is via asetof N whole-word HMM word recognisergonefor
eachclass)andwe attempto find modelandspealker parameters
which togethermaximisethe likelihood of the data. In prac-
tice, we estimateparameterin two stagesasdescribedn sec-
tion 2.Firstly, all speakr-specificparameteraresetto zeroand
the Baum-Wélch algorithmis usedto estimateparameterof
speakr- independentiMMs. Standaraptimisationtechniques
arethenusedto estimateparameteror a particularspealkr. In
our previous work on spectraof isolatedvowels [4], we exam-
ined the effect on recognitionaccurag of simplelineartrans-



formationsappliedto a setof speakr’s vowel spectra. If the
adaptationis supervisedthelikelihoodto be maximiseds:

L=HP(X¢|pc,-,Cls,-) @

x; is thes'th datasample,p.; arethemodelparametersf the
classof thei’th exampleandq,,; arethetransformatiorparame-
tersappropriateo thespealer of thes’ th example.For unsuper
visedadaptationye mustsumover classegwhich we assume
equiprobable)Hencefor datafrom asinglespealer, equationl
becomes:
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where N is the number of different classesand q are the
speakr-specifictransformatiorparametersWe consideredwo
parameterisetransformation®f the spectrundata,both orig-
inally proposedby Hunt [7].In each,the vowel classeswere
modelledas multivariate Gaussiardistributionswith common
diagonalcovariancematrices. In the first (the“spectrum-bias
only” model), therealisatiorof a vowel classby a particular
speakr wasmodelledasa biasspectrumshaped addedto the
classmeanspectrurrshape:

X; =me; +0+¢ 3)

wherec; is the classof thei'th exampleande; is the residual
modellingerror A more sophisticatednodel (the “fix ed shift
andbias”model) allowedfor shiftsalongthefrequeny axis of
thespeakrss spectracelative to themeanspectraaswell asthe
bias:

zi(k) = ame; (k—1)+Bme; (k) +yme,; (k+1)+0(k) +ei(k)
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Here thevaluesof a, 8 and~y areconstanwith frequeng-band
so that the shift is the samethroughoutthe spectrum. In this
paper we alsoreportresultsusingvaluesof «, 8 and~y which
vary alongthe spectrum(thévariableshift andbias” model).

4. Thedata and the speaker-independent
models

The datausedthroughouttheseexperimentswasfrom the BT
connectionisnprojectdatabas¢9]. This consistof utterances
from 104 speakrs, divided into a training-setof 52 speakrs
and a test-setof 52 spealers, eachset having equalnumbers
of malesand females. The speakrs recordedin randomor-
derthreeutterance®f eachof the lettersof the alphabet. The
recordingsveremadein an acousticboothusinga high- qual-
ity widebandmicrophoneat a samplingfrequeng of 20kHz
and using a 16 bit A/D corverter After checkingthe ut-
terances,eliminatinpad onesand manuallyendpointinggood
onesatotal of 3999trainingutterancesind3978testutterances
remained. Thesewere parameterisetb 27 log magnitudefil-
terbankchanneloutputsusingthe SRUbankfilterbankanalysis
facility [1]. Eachframewasnormalisedby subtractingheaver
agevaluefrom eachcomponentinda 28thenegy channelwas
appendedo theframe.Thespeakrindependenmodelsusedin
the experimentswerecontinuousgdensityHMMs with 15 states
anda mixture of 3 Gaussiardistributions per state.Thetopol-
ogy of themodelsallowedtransitionsrom statej to statej and
j + 1 only. The statesandmixturesof a given modelshareda
commondiagonalcovariancematrix. Model parametersvere
estimatedusingthe Baum-Welchtraining algorithm. The mod-
elsalsoincorporated “voicing factor” (seesection5.1).

5. Adaptation using whole word data

To extend the transformationtechniquesdevelopedon single
framedatato wholeword data,it is neccessarjo dealwith se-
quences of framesrepresenting class. The classmodelsare
now whole-word HMMs andthe adaptationis performedonly
on the stateparameter®f thesemodels. The techniquesde-
scribedherecould be extendedto enableadaptationof model
transitionprobabilitiesbut for presentpurposestheseare not
changed.

5.1. Voicing marking

The transformationsdiscussedin section 3 are suitable for
voiced speechonly - our techniquesdo not yet attemptto
dealwith unvoiced sounds.Accordinglyevery frame j of the
databasevasannotatedvith a realnumberv; (0 < vf <1,

which gave the"voicing factor”; vf = ( for urvoicedsounds,

vjf = 1 for fully voiced. This was doneautomaticallyusing
information derived from the amplitudeof low order cepstral
coeficentsandlow-frequeng spectruntoeficents.Thevoicing
informationis usedn two ways. Firstly, v]f weightsthe'signifi-

cance’foradaptatiorof eachdata-frameaframewith v]f =0is
effectively ignoredwhenestimating setof speakr parameters
whereasa frame with vjf = 1 contritutesfully. Frameswith
intermediatemarking contritute in proportionto their voicing
factor Secondly eachHMM statej of eachword model w
wasalsomarked with a voicing factorvy,; attrainingtime by
applyingBaum-\Weélch style re-estimatiorto vy,;. This voicing
factoris usedwhenthe modelsare transformedto determine
hov muchof thetransformatioreachstateshouldreceve (see
equatior9).

5.2. Likelihood-weighted adaptation

An importantidea for unsupervisedadaptationintroducedin
our previous work is that of normalised likelihood weighting.
To llustratethis, considettheestimatiorof § in themodelgiven
in equation3. Whentheclasof eachx; is unknavn, our esti-
mateof § is:

|
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where X is the numberof examplesand)_; p; (i) = 1 i.e.
a probability weighted sum of the prototypesis used. The
weights,p; (¢), arepseudaposteriorprobabilitiesderived from
thelikelihoodsof the datagiventhemodels,L; (), asfollows:

Li()T
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T is afactorwhich sharpengT — 0) or smooths(T" — o)
theseweighting functions. The sameideais usedin the es-
timation of ary spealkr parametergrom unknavn datagiven
models. In our work on isolatedvowels, eachunknavn vowel
spectrumhad a likelihood associatedvith eachvowel model.
Usingwhole word data,eachframe of datahasN * N, * N,
associatedik elihoods,where IV is the numberof models, N
is the numberof statesin eachmodeland V,,, the numberof
modesin themixturein eachstate. Theweightingfactorfor the
meanof modek of statej of model: for aframeattime ¢ is



thus: )
wj t)T
P (t) = —— 2t 7)

Y33 k()T

i=1j=1k=1

where~.,;x(t) is the probability of occupying modek of the
mixture of statej of modelw attime ¢t. Whenthesep.,;x(t)
have beencalculatedfor eachframe of eachunlabelledutter
anceofferedfor adaptationa weightedmeanm® (¢) for each
timet is computedas:

N Nsg Np

m¥(t) = ZZprjk(t)mwjk (8)
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wherem,; is the meanof modek of the mixture of statej

of model w.This weightedmeanis exactly analogousto the
weightedmeanin equation??. Oncetheseweightedmeans
have been calculated,the speakr parametersare calculated
using the data-frame/weightedneanpair. In the caseofthe
spectrumbias transformationthis can be donedirectly using
the equivalent of equation?? where X is the total numberof

frames. For the shifting transformationswe useda nonlinear
optimisationtechnique(conjugatgradientmethodwith an ap-

proximateline search8]) to estimateparameters.lbothcases,
the mixture modemeansarethenupdatedaccordingto:

myj = (1 — vg; )Mk + viy; T [myi] 9

whereT [.] representshe effect of the transformatioron the-
means.The effect of the voicing factoris to adapteachmean
accordingto the degree of voicing associatedvith it.In prac-
tice, we found this Baum Welch style procedurefor calculat-
ing weightedmeansto be verycomputationallyexpensve and
insteadadoptedhe following Viterbi procedurevhich gaveal-
mostno deterioratiorin performance:

1. Eachutterancdor adaptatiorwasViterbialignedto each
model. The alignmentof frame z(t) to a statein each
modelM,, is notedass,, (t) andthe mixturemodecon-
tributing the highestik elihoodin this statewasnotedas
Ty (1).

2. Thelikelihoodsof the whole utterancesre normalised
acrosghemodelsi.e. for agivenutterance:

1
VT
Pw=——T (10)
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whereV,, is the Viterbi likelihood of modelw for this
utterance.
3. Foreachtimet, aweightedmeanis computedas:
N
m® () =) puMu,s, ()0 ®) 11)

i=1

4. Parameteestimationthenproceedsasabove.

6. Experimental procedure and results

In [4], our scenariowasonein which a new speakr uttereda
few vowel soundsof unknawvn class,from which we estimated
the speakr transformationparameters.The new transforma-
tion was then appliedto the modelsand the utterancesvere
re-classified. We have usedthe sameexperimentalparadigm

in theseexperimentswith whole word utterances.Setsof ut-
terancesveredravn randomly(without replacementjrom the
poolof 78 utterancesnominallgvailablefrom eachspealer, un-
til the poolwasexhaustedBecauséno of utterancesvailable)
/ (no of utterancesn a set)wasnot alwaysintger, the last set
was sometimessmallerthanthe othersets,but eachutterance
wasusedonly oncein anadaptatiorset. Theresultsshavn are
averagescrossll thesetsusedandacrossll 52 test-sespeak-
ers.Figl indicateghebestperformanceave canhopefor usinga
giventype of transformationln theseexperimentsthe spealker
parametersvere estimatedusingthe true classof all the avail-
able utterancegsupervisedadaptation). Thefect of usingthe
“voicing factor”is alsoshavn. In thebiasonly (BO) andfixed
shift andbias(FSB) transformationsyseof the voicing- factor
producessmallbut (usingthetestdescribedn [5]) statistically
significantimprovement. The resultfor variableshift andbias
(VSB) is interestingbecaugie resultis muchbetterwhenthe
voicing informationis ignored. This may be becausehe VSB
transformations ableto produceappropriateshiftsfor urvoiced
soundsaswell asvoicedsoundshut it works moreeffectively
with moredatabecaus®f the greatemumberof parameteras-
sociatedwith it (107 parametersasopposedo 31 for FSBand
28 for BO). Fig 1 suggestshatthe power of thesetransforma-
tions s limited, althoughthe very significantimprovementin
error ratewhenthe VSB transformatiorwas given more data
for adaptatiormayindicateits power for superviseddaptation
onlargeramountof data.Figs2 and3 shav resultsusingunsu-
pervisedadaptationFig 2 shavstheeffectof the“temperature”
parameterusedon the datalikelihoods. All utteranceswere
usedfor adaptationaswasvoicing information. Theadaptation
is unstablefor the two shifting transformationsvherll’ — oo
i.e. whenthelikelihoodsof all classesaresetequal. Although
themodellingerror (3, , €7(k) in equatiord) decreaseduring
theprocesof parameteestimationthe sumof the Viterbi lik e-
lihoodsof the datais lower after modeladaptatiorthanbefore
adaptation.This pointsto the deficeng of estimatingfirst the
modelparameterandthenthe spealker parametersThesetwo
setsof parametershouldbe jointly re-estimatedtartingfrom
theirdefaultsi.e. the null transformatiorfor the spealker param-
etersandthe speakrindependenvaluesfor the modelparam-
eters. Fig 3 simulatesa real applicationwith either3,10,200r
78 utterancedor adaptationusinga harddecisionon the class
(T — 0) andvoicing information. This figure shavs thatthe
FSBtransformatiorperformedmarmginally betterthanthe other
two for alimited numberof utterancesprobablybecauséthas
the bestcompromiseof power andnumberof parameterso be
estimatedFor eachtransformationthe errorrategenerallyde-
creasesas the numberof adaptationutterancesncreasesput
by only a smallamount. However, the final errorrateis close
(in all cases)o thatobtainedwhen supervisecadaptationvas
used,which suggestshatary limitation in power lies with the
transformationgatherthan the unsuperviseddaptationtech-
nique.Inevery caseshavn in thesefigures, the differencebe-
tweentheerrorratewhenusingno adaptatiorandtheerrorrate
afteradaptations significantat atleastthe 99.9%level.

7. Conclusions

The resultsreportedhereshov that simultaneousvord recog-
nition and speakr normalisationcan be madeto work, that
it improves performanceover the correspondingspealer-
independentersion,and that given 3 to 10 unknavn words,
performancecan be almostas good aswhenthe adaptationis
doneusingknowledgeof theword identities.However, therela-



tiveimprovementbtainedy adaptationalthoughstatistically
significant,are possiblynot of sufficient practicalsignificance
to warrantthe extra compleity, andtherearewaysof improv-
ing speakr-independenperformance.Neerthelesswe remain
corvincedthatthe generalapproachdescribecherehaspoten-
tial. Amongtheimprovementsandadditionswe have in mind
are:

e estimationand useof priors or otherconstrainton the
spealker parameters

e integration of the model parameterestimationand the
speakr transformatior{evenin the simplest(shift only)
casethis altersthe varianceof outputdistributions)

o trainingthe setof word models(with spealer parameter
isation)asa setof discriminators

e learningthe form of a (non-linear)relationshipbetween
speakr parameterandword-modelparameters

e applicationto connectedvord recognitionor very large
vocahulary isolatedword recognition

e in aninteractive application theuseof informationfrom
thedialogueto assistspealer adaptation
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