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ABSTRACT

In previous work, we experimented with different techniques of
vector-based call routing, using the transcriptions of the queries
to compare algorithms. In this paper, we base the routing de-
cisions on the recogniser output rather than transcriptions and
examine the use of confidence measures (CMs) to combat the
problems caused by the “noise” in the recogniser output. CMs
are derived for both the words output from the recogniser and
for the routings themselves and are used to investigate improv-
ing both routing accuracy and routing confidence. Results are
given for a 35 route retail store enquiry-point task. They suggest
that although routing error is controlled by the recogniser error-
rate, confidence in routing decisions can be improved using these
techniques.

1. INTRODUCTION

When a customer contacts a medium-size or large business or in-
stitution by telephone, the first stage in the process of answering
his or her query is to decide to which department or individual
the call should be routed. The goal of call routing technology is
to use computational speech and language processing techniques
to complete this task automatically. An ideal call routing sys-
tem would be able to decide correctly the “destination” of any
call that a human operator could also route. From the user’s
point of view, call routing technology is highly preferable to the
rigid menu-driven systems that are commonly used today, which
require the user to respond using touch-tone keyings or single
spoken words or phrases. However, it is a challenging task to
automate: because of the deliberately open prompt given to the
caller (e.g. “How may I help you?”, or “How may I direct your
call?”), a wide range of responses is elicited from callers. These
responses may be very different in length, ranging from single
words to long responses that may be syntactically and semanti-
cally complex or ambiguous, and that may use a large vocabulary.
The call routing task is made feasible by the fact that the number
of possible “destinations” for a call is usually quite low (< 40)
and the majority of calls can be unambiguously routed to a single
destination.

In two previous papers [8, 6], we considered and tested some
alternative techniques for the vector-based approach to call rout-
ing. In this approach (described in section 2.1), a spoken query is
viewed as a “vector” of words and pattern processing techniques
are used to route it to the correct destination. The previous pa-
pers used the transcriptions of the spoken utterances to form the
vectors that are input to the routing engine. To avoid confusion,
we refer to these in this paper as the “true-transcriptions”. In this
paper, we extend the preliminary studies of the previous two pa-
pers by using the output from the speech recogniser, which we
refer to as the “recogniser-transcriptions”, rather than the true-
transcriptions. This makes the experiments more realistic but in
doing so, introduces “noise” into the text input into the router in
the form of word substitutions, deletions and insertions. Rout-
ing performance drops compared with performance obtained us-
ing the true-transcriptions—the amount of drop depends on the

accuracy of the speech recogniser. To combat this loss of per-
formance, we experiment here with estimating and using confi-
dence measures (CMs) for both the words decoded by the speech
recogniser (recognition CMs) and the destinations decided by the
router (routing CMs). The routing CMs can be used in the same
way that word CMs are used in intelligent speech-driven systems
e.g. to warn the system of an potentially incorrect decision, per-
haps because of ambiguous input, and so prompt it to request
the user for more input for clarification and confirmation. The
recognition CMs can potentially be used both to improve routing
accuracy and to estimate the routing CMs.

This paper is organised as follows: in section 2 we outline
the essential techniques behind vector-based call-routing used in
these experiments and describe the data used. Section 3 details
how transcriptions were processed for call-routing. Section 4 de-
scribes how the CMs were calculated: section 4.1 describes the
recognition CMs and 4.2 the routing CMs. The experiments with
the CMs are described in sections 4.3 and 4.4 and results are
given in these sections. Finally, we end with a discussion in sec-
tion 5.

2. BACKGROUND

2.1. Vector-based call routing

The vector-based approach to call routing has been described in
e.g. [4, 6] and is summarised as follows. A matrix W is formed
using either the true-transcriptions or recogniser-transcriptions of
the queries available to train the system. The true (intended) des-
tination of each query is provided by an expert who has listened
to the query. The rows of W correspond to different words (or
sequences of words) in the vocabulary, and are usually called
the ferms. In the experiments performed here, the columns cor-
respond to the different routes and are usually called the doc-
uments, a term originating in information retrieval. Element
W (4, j) is the number of times term ¢; occurred in document d;;.
W is then weighted using a weighting scheme that emphasizes
terms that are useful for identifying a route and de-emphasizing
terms that are not. In these experiments, W was then further
trained to give minimum classification error on the training-set
using a discriminative algorithm (see section 3.1). The final ver-
sion of W is referred to as the routing-matrix. To route a new
query, it is first represented as an additional column vector of W,
weighted, and then matched to the other column vectors in W
using an appropriate metric. The route assigned to the query is
the route corresponding to the column vector of W that is most
similar to the query vector. Note that this approach ignores word
order in queries (other than the word order given by using a se-
quence of words as a single term).

2.2. Application data and recogniser

The application studied here was the enquiry-point for the store
card for a large retail store. Customers were invited to call up
the system and to make the kind of enquiry they would normally
make when talking to an operator. Their calls were routed to 61



different destinations, but some destinations were used very in-
frequently. 95% of the calls were routed to the top 35 routes, and
these were the calls used in this study. Each call was transcribed
and labelled by an expert with the appropriate destination (e.g. “I
need my account balance, please” would be routed to Balance, “1
lost my card” to LostCard etc.). These true-transcriptions were
divided into a training-set of 6674 queries and a development set
of 4713 queries.

Speech recognition was performed using an HMM recog-
niser whose recognition models had been trained on a large cor-
pus of telephone speech and which had separate models for males
and females. The language model used by the recognition system
was a trigram model trained on the 6674 training queries: the vo-
cabulary size of the training-set was 1494 words. The recogniser
was configured to output the N-best decodings. N was set to be
a maximum of 20, but the number of decodings available varied
with the length of the input utterance: short utterances generated
only a few hypotheses whereas longer utterances generated all
N. The word error-rate is measured as (#substitutions + #inser-
tions + #deletions)/(# words in true-transcription) and is given for
the training-set and development-set in Table 1. In Table 1, the

1-best N-best
Training-set 32.01 26.69
Development-set  40.97  35.25

Table 1: Word error rates on the training and development sets

N-best error-rate is the error-rate obtained by using the decoding
that most closely matches the true-transcription.

3. CALL ROUTING AND CONFIDENCE
MEASURES

3.1. Call routing technique

In [6], a number of different discriminative techniques for vector-
based call-routing were compared. These included Generalised
Probabilistic Descent (GPD), Corrective Training (CT) and Lin-
ear Discriminant Analysis (LDA). It was found that the GPD
technique due to Kuo and Lee was the most effective. The GPD
algorithm minimizes classification error on the training-set by ad-
justing the model parameters of competing classes—see [9] for
a full description of the algorithm. The error-rate using GPD
quoted in [6] for testing on the training-set and development set
true-transcriptions respectively was 4.67% and 12.08%, but these
figures were subsequently reduced to 2.67% and 11.08% by fur-
ther algorithm optimisation. The experiments reported here all
used the GPD algorithm to train the discriminative matrices used
for routing.

In [6], we described the use of a “stop-list” of words that do
not contribute to identification of a destination and hence are ex-
cluded from the list of terms. In keeping with the result reported
in [9], we found that using a stop-list offered no improvement
when using GPD because the algorithm automatically adjusts the
weights of terms so that terms that do not contribute to classi-
fication accuracy are given a low weight. Using sequences of
N words (N-grams) as terms increases performance over using
single words, but this technique has the disadvantage that it in-
creases the number of terms considerably, which increases com-
putation time. Using co-locations (word sequences, of variable
length, that can be regarded as operating as a single word) suffers
from the same problem. Hence in these experiments, no stop-
list was used and the terms consisted of single words: there were
1494 terms in the training-set.

After forming the term/document matrix of counts W as de-
scribed in section 2.1, W' is weighted according to the weighting

scheme due to Bellegarda [3]. This is a mutual-information based
weighting that has been found previously to perform well [8]—
details are given in [3] or [8].

The routing module performs route classification by com-
puting the angle between the query test vector and each of the R
column vectors of W that represent the 35 different routes and
then assigning the query to the route giving the lowest angle.

3.2. Choice of training transcriptions

In previous experiments, we tested our routing algorithms on a
set of true-transcriptions, and trained the system on an indepen-
dent set of true-transcriptions. When testing on the recogniser-
transcriptions, the question arises as to whether it is better to
train on the recogniser-transcriptions of the training-set queries
rather than the true-transcriptions. A priori, this seems an attrac-
tive idea: if a word or phrase that occurs in both the training-
and development-sets is incorrectly decoded but in a consistent
fashion, the result will be the same substituted word or phrase
in both sets, and this may mean that routing accuracy is not de-
graded. Table 2 shows, firstly, that when recognition- rather than

Router tested with
True-trans Rec-trans
Router trained on  Train Dev Train Dev
True-trans 2.67 11.08 | 1436 21.89
1-best rec-trans 7.54 19.94
N-best rec trans 8.85 20.43

Table 2: Comparison of % routing error-rates under different
train/test conditions

true-transcriptions are used, there is a large increase in error-
rate. Given the high word error-rates shown in Table 1, this is
as expected. However, it also shows that it is advantageous to
use the recognition-transcriptions for training. Using true- rather
than recogniser-transcriptions gives a large improvement on the
training-set (as would be expected), and a significant improve-
ment on the development set. Also, using all N-best transcrip-
tions rather than just the top decoding (1-best) degrades perfor-
mance. Unless otherwise stated, all experiments reported here
used the top recognition-transcription as training for the router.

4. EXPERIMENTS

4.1. Recognition confidence measures

Confidence measures for each word output in the N-best decod-
ings of an input query were estimated using a technique that ef-
fectively records the stability of each word within a recognition
output lattice [7]. The technique can be described as follows:

For each decoding D;,i=1,2,...,N:
Align D; with Dj,j=:¢+1,2,...,N
using dynamic programming.
For each word wf in D;:
Count the number of times Nf that
word wf in D; occurs in the same
position in the other decodings
end
Pool all counts of the same word to
give counts Pi,Ps,... Py . (M = no
of different words in the decodings).
a=P/(N(N-1)),l=1,2,..., M.

end.
The result of this is that a word that appears in the same position
in all N decodings has a confidence ¢; = 1.0 and a word that

appears in only one decoding has ¢; = 1/N (NN — 1). Note that
if the same word occurs in different positions in the utterance, it
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Figure 1: Distributions of recognition confidence scores for cor-
rect and incorrect words, all words in N-best decodings

is assigned a single confidence measure (maximum value 1.0), as
the routing module discards the position of the word within an
utterance.

Figure 1 shows the distribution of the recognition confidence
scores for correct and incorrect words from all decodings of
all utterances in the development-set. Examination of Figure 1
shows that most words (over 70%) have a confidence score of ei-
ther 1.0 or below 0.05 i.e. the majority of words occur either in
all decodings or only once. Furthermore, 67% of correct words
have confidence 1.0 and 51% of incorrect words have confidence
< 0.05. When all N-best decodings are considered, there are
31085 correct (‘C’) words and 39249 incorrect (‘I’), so by guess-
ing, 55.8% of words would be tagged correctly as either ‘C’ or
‘T’. By classifying all words whose score is above a threshold
of 0.52 as ‘C’ and all others as ‘I’, this is increased to 78.15%.
Hence this CM is a useful tool to aid identification of correctly-
and incorrectly-decoded words.

4.2. Routing confidence measures

Each of the N-best decodings of an input query was input to the
routing module. The output for each decoding is a set of 35 co-
sine scores (angles) and each decoding may be classified by as-
signing to the destination giving the highest cosine score (lowest
angle). A confidence score for the top-choice destination associ-
ated with the ¢’th decoding of the j’th input query was estimated
as C7 = S7(1)/S7(2), where S7 (1) is the score of the top choice
class and 85(2) the score of the second choice class. When the
dot-product is used, as here, C’g > 1.

Figure 2 shows the distribution of the confidence scores for
the routes when only the top decoding is routed. The distribu-
tions show a clear trend for correctly routed queries to have a
higher confidence score than incorrectly routed queries, with a
large number of correctly routed queries having a score > 3.0.
However, the overlap of the distributions at the low end means
that C/I query classification increases from 80.05% by guessing
to only 81.37% using the CM, so overall, this CM cannot be de-
scribed as being very effective.

4.3. Using recognition confidence to increase routing perfor-
mance

Two ways of using the recognition confidences to boost the rout-
ing performance were investigated:

1. Weighting of words by their confidence score.

2. Exclusion of words whose confidence score is below a
threshold.
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Figure 2: Distributions of routing confidence scores for correctly
and incorrectly routed queries in dev. set, top decoding only

The first technique is based on the premise that when using
recognition-transcriptions for routing, the recognition confidence
measures described in section 4.1 may be regarded as probabili-
ties that a certain word occurs in the true-transcription of a query.
Hence the counts in the routing-matrix W may be replaced by
probabilities. The routing-matrix was re-trained using the GPD
algorithm, but with recognition confidence measures in the initial
matrix rather than counts. For testing, the recognition confidence
measures for each word were used (rather than counts) before
weighting and matching to the other columns of the matrix. The
result was a routing accuracy of 20.43%, about 0.5% worse than
using the top decoding (19.94%).

The second technique may increase performance by exclud-
ing some incorrect words from the input to the router. However,
as the CM is not perfect, some correct words will also be ex-
cluded, and some of the excluded incorrect words may not harm
routing classification anyway. By varying the threshold, the low-
est error-rate obtained was 21.65% when the threshold was set
to 0.1, 1.7% higher than using the top decoding with no confi-
dence. We conclude that simply excluding utterances that may
be incorrect is not effective.

After this result, it was of interest to “cheat” and find the
best performance obtainable using a perfect CM which gives a
confidence of 0.0 for incorrect words and a confidence of 1.0
for correct words. This is equivalent to inputting to the router
only words in the IN-best decodings that appear in the true-
transcription. It was tested using both the true-transcriptions
and the 1-best recognition-transcriptions to train the router. The
results of these experiments were error-rates of 18.19% and
18.49% respectively, which are 1.8/1.5% better than the error-
rate obtained using the top decoding with no CM, but still much
worse than that obtained using the true-transcriptions for testing
(11.08%). The conclusion is that missing words in the N-best
recognition-transcriptions are responsible for poor performance,
and this problem can clearly only be solved by improving the
recogniser. In fact, 85% of the recogniser errors in the figure
of 35.25% word error rate (Table 1) are due to substitutions and
deletions, which lead to missing words in the recognition output.

4.4. Improving confidence for routing decisions using a clas-
sifier

The CM whose score distributions are shown in Figure 2 takes
into account only the confidence in the routing assigned to the top
decoding of the input query. Just as the recognition confidence
measures described in section 4.1 are based on the proportion of
occurrences of a word in the /N-best decodings, a routing confi-
dence measure can be based on the proportion of occurrences of



arouting in the set of routings of the N-best decodings. A similar
but more sophisticated measure is the “diversity” of the routings:
our confidence in the routing of a query that produced N differ-
ent routings from N decodings is clearly lower than our confi-
dence in the routing of a query where all decodings produced the
same route. This diversity can be measured using the entropy of
the routing decisions: if the N-best decodings produce a set of
M routing decisions, M < N, the entropy E can be computed
from estimates of the probability of each different routing, and
0 < E <log, M. A feature suitable for use as a CM can then
be estimated as Fgnt = 1 — (E/logy M): FEnt has a value
of 1.0 when all the routings are the same, and 0.0 when they are
all different. A further useful feature that can be obtained from
the CMs derived from the different decodings of an utterance is
Fnean, the mean value of the confidence score for the query, C?,
as defined in section 4.2.

Both FEnt and Fiean give a small decrease in error-rate
when used separately to determine whether a routing is correct or
not: using F'gn¢, the error-rate falls to 18.84% and using Frnean,
to 19.22%, compared with 19.94% when guessing all routes as
correct. It is also worth pointing out that 65% of queries have
Fene = 1.0 and 89% of the routes assigned to these queries are
correct. Inspection of a scatterplot of the two features for correct
and incorrect queries showed that F'g,: was quantized to only
about 30 different values. This suggested using a “piecewise”
classifier: for each different F'g,: value, determine a threshold on
the Frneqn value that gives optimum C/I classification. We also
represented each query as a 2-d feature vector [Frn: Fmean]”
and tested a support vector machine (SVM) classifier trained on
these vectors [5].

However, it was noted that the distributions of the F'g.,;: and
Frean features obtained from the training- and development-
sets were different. This is probably a consequence of the
fact that the training-set queries were used to build the recog-
niser’s language model, and in fact C/I classification error on the
training-set queries (14.4%) is much lower than on the devel-
opment set (19.94%). Because of this difference, when thresh-
olds determined from the training-set were used to classify the
development-set, performance was not as good as might be ex-
pected if appropriate thresholds were used. To gain a truer pic-
ture of the capability of the classifiers, we did cross-validation
of the development-set data as follows. The data were divided
into 10 equal sets S1, S2,...,S10, and a training-set consist-
ing of all sets except set S; made. Parameters for the classi-
fier were estimated from this training-set and tested on set .S;.
This was repeated for © = 1,...,10.The error-rates quoted in
Table 3 are the mean of the 10 error-rates obtained. When de-

Classifier % CI/1 error-rate
No CM classifier 19.94
Threshold on Feqr (only) 19.22
Threshold on Fgn: (only) 18.84
Piecewise classifier 18.14
SVM, isotropic Gaussian kernel 18.32

Table 3: % C/I classification error-rates on development set
queries using the Fpynt and Fr,eqn features

signed using appropriate thresholds, the piecewise classifier gives
the lowest error-rate (18.14%). It is perhaps surprising that the
SVM classifier performs slightly worse than the simple piece-
wise classifier—this may be because the SVM is strongly biased
towards forming smooth decision boundaries, which is not ap-
propriate for the highly quantized entropy feature.

S. DISCUSSION

In this paper, we have explored the use of two different kinds of
confidence measures (CMs) in call-routing: a CM for the words
decoded from the query and a CM for the routing. The CM for the
decoded words was based on measuring the stability of a word in
the N-best list produced by the recogniser and it performed well,
increasing the accuracy of tagging a word as “correct” (C) or
“incorrect” (I) from 55.8% (by guessing) to 78.15%. However,
it was unable to increase routing performance over that obtain-
able from using the top decoding. We showed that a “perfect”
CM that tagged correctly decoded words with 1 and incorrectly
decoded words with 0, working on the output from our recog-
niser, would only decrease routing error slightly (from 19.94%
to 18.19%), and concluded that the problem was words miss-
ing from the recogniser output, a problem which can only be
addressed by increasing the recogniser performance. The CM
for routing was based on two features derived from the N-best
decodings of a query provided by the recogniser. By combining
these features into a CM, the error in tagging a routing decision
as C or I was decreased from 19.94% by guessing to 18.14%.
These routing error rates are quite high, but it should be pointed
out that the queries used in these experiments were labelled with
a single destination despite the fact that many were ambiguous
and could have been routed by a human to two (and sometimes
more than two) destinations. The large increase in routing error
when recogniser-transcriptions with a word error-rate of about
40% are used, as opposed to true-transcriptions, is in accord with
other results reported in the literature [1, 2]. These show that in-
formation retrieval accuracy is maintained until error-rates climb
to the 40%—50% area. Our current work is focused on using the
constraints of the routing task to improve this accuracy.
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