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ABSTRACT

A new technique of speaker adaptation for use in speaker-
independent speech recognition systems is presented. The
training-data is used to build models (based on linear
regression) of sounds. At recognition time, the models
are used together with an incomplete set of sounds from
a new speaker to estimate values for unheard sounds,
which are then used to adapt the speaker-independent
models. The technique reduced the error-rate from 17%
to 5.3% when applied to a database of 104 speakers
speaking the English alphabet.

1 Introduction

A central problem in building speech recognition sys-
tems which are designed to work on previously unheard
voices is how to model the variation from voice to voice
in the acoustical signal representing a given speech unit.
This variation is caused by such effects as different vocal
tract sizes and shapes, different accents, speaking styles
etc. Given some data from a previously unheard speaker,
it seems natural to attempt to ‘tune in’ the system to
work better on the new voice, a technique which has
become known as ‘speaker adaptation’. Speaker adap-
tation techniques have usually concentrated on adapting
estimates of the system’s speech model parameters after
it has been exposed to vocabulary examples from a new
speaker e.g. [4]. In most cases, when the system hears an
example of a sound X from the new speaker, it updates
only the parameters of the model of X. In this work,
our premise is that an example of the sound X from
the new speaker contains potentially useful information
about many speech sounds that that speaker is likely to
produce, so that when the system hears an example of
sound X from the new speaker, it updates parameters
of several other models as well as the model for X. The
prediction of new sounds is made by building regression
models of vocabulary sounds produced by the speakers
available for training the system. Then, given an incom-
plete set of vocabulary sounds from a new speaker, the
models are used to predict values of unheard vocabulary
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sounds from the speaker, and these predictions are used
to adapt the system model parameters. In this work,
we have assumed that the sounds provided by the new
speaker are labelled (i.e. the adaptation is supervised)
but the technique can easily be extended to unsupervised
adaptation.

In [1], we reported on a preliminary investigation of this
idea in which we used 11 different vowel sounds from
30 speakers. The advantage of using this data was that
each example was a single vector which dispenses with
the need for time alignment procedures. In this paper,
we report on the extension of the technique to a real
speech recognition problem.

2 Preliminary investigation using
static vectors

To aid understanding of the technique used in these ex-
periments, a brief description of the work on isolated
vowel sounds is included here. For a fuller account, see
[1]. The data consisted of a single example of each of 11
different vowels from each of 30 speakers. Each exam-
ple was represented by an 8-dimensional mel-frequency
cepstral coefficient (MFCC) vector [3] obtained by aver-
aging several vectors representing a steady-state vowel.
The data was divided into a training-set of speakers 1-16
and a test-set of speakers 17-30. Each vowel class was
modelled as a multivariate Gaussian probability density
(based on the training-set examples) and an example
from the test-set was classified by computing the like-
lihood of each of the 11 probability densities producing
the example.

Throughout this work (and the new work presented here),
it was assumed that the vector dimensions were uncorre-
lated. Firstly, ‘scattergrams’ of the training-set speakers’
data were made for all possible pairs of vowel classes and
in each vector dimension. The correlation coefficients of
the data in each plot were computed, the average value
(over all vowel-pairs and all 8 dimensions) being 0.48,
with no significant negative correlations. In the first ex-
periment, the linear regression coefficients corresponding



to these ‘scattergrams’ were computed and stored. The
test-set speakers’ data was divided into an adaptation-
set of 5 vowels and a test-set consisting of the other 6.
Each ‘adaptation’ vowel was used with the appropriate
regression coefficients to obtain a prediction of each of
the 6 test-set vowels and these predicted values were used
to modify the estimate of the means of the correspond-
ing 6 vowel classes. The modification was of the form
new.mean = p * present_mean + (1 — p) * predicted_value
where 0 < p < 1 (p is chosen empirically). The 6 unseen
vowels (only) were then classified using the set of mod-
ified means. The result was a 40% decrease in the ‘no-
adaptation’ error-rate. It was also a small improvement
on another speaker-adaptation technique which was de-
scribed in [2] and which we may term ‘bias vector’ adap-
tation. Briefly, the technique consists of computing the
average distance d (the ‘bias vector’) between each of
the speaker’s sounds given for adaptation and their cor-
responding class means, and modifying the means of
the distributions of the unseen vowels by newmean =
present mean + p* d where 0 < p < 1.

In other experiments described in [1], multiple linear re-
gression was used to decrease the error-rate by a further
12%. However, the new work described here is based on
the simple linear regression technique described above.

3 The data and models

The speech database for these experiments was provided
by British Telecom [5] and consisted of 3 utterances of
the alphabet from each of 104 speakers recorded in a
soundproof room with a high-quality microphone at a
bandwidth of approximately 8 kHz. Each utterance was
manually endpointed and processed into frames of dura-
tion 16 ms, each frame consisting of a 17-d vector con-
taining 8 MFCCs, 8 differential coefficients and a log-
energy coefficient. The training-set (52 speakers) was
used to construct a 10 state continuous density hidden
Markov model (HMM) of each alphabetic class, the state
PDF's being unimodal Gaussian with a diagonal covari-
ance matrix. The topology of the HMM was a simple one
in which state ¢ was connected only to itself and state
1+ 1.

The test-speakers’ data was divided into a set of ‘adap-
tation classes’ and a set of ‘test classes’:

Adaptation classes: ADEFGIKMOPQRX
Test classes: BCHJLNSTUVWYZ

The division was made in such a way as to keep the data
as phonetically balanced between the two sets as possi-
ble. During testing, the HMMSs of all classes that could
be adapted were adapted, but only the utterances of the
test classes were tested. The rationale for this proce-
dure was that (a) less data would have been available
for adaptation if we had tested on all classes and (b) the
object of the experiment was to test the ability of the

model to predict the test classes and so it was felt that
it was less important to test the adaptation classes.

4 Experimental procedure

4.1 Overview

Firstly, the Viterbi algorithm was used to align the train-
ing set utterances with their corresponding models so
that each frame in an utterance was associated with
a state. Taking each training-set speaker in turn, all
the frames from his/her utterances associated with a
given state of a given model were averaged, so that each
speaker had a mean vector associated with each state of
each HMM. Throughout this paper, we term this vector
the speaker state vector. Hence the 13 x 10 = 130 HMM
states play the réle of the vowel classes in the previous
work and the adaptation method is:

(a)

make a prediction of the speaker state vector for
each state of each test class

(b)

use the prediction to adapt the corresponding HMM
state mean

Each state of each adaptation class was paired with each
state of each test class and a correlation coefficient and
two linear regression coefficients (for each vector dimen-
sion) were computed and stored. At testing time, the
adaptation utterances provided by a new speaker are
aligned with their corresponding models. The speaker
state vector of a given adaptation class model can then
be used to obtain a prediction of the speaker state vector
of any state of any test class model by transforming the
adaptation data using the appropriate pairs of stored re-
gression coefficients. This raises the question of how to
make the best use of the adaptation data for predictive
purposes which proves to be a key issue in the technique.

4.2 Making best use of the available adap-
tation data

Suppose we have available from a new speaker some ex-
ample utterances of a subset of the adaptation classes
speaker. It is clear that the suitability of an adaptation
class for predicting a given test class depends on the pho-
netic similarity of the two classes. For instance, we might
expect that data from the adaptation class ‘M’ would be
good at predicting the test class ‘N’ but not necessarily
at predicting class ‘W’. The correlations of the ‘scatter-
gram’ data between the states provide us with a quan-
titative way of assessing the suitability of states of the
adaptation classes to predict states of the test classes.
There are clearly many sensible ways of using the adap-
tation data to make predictions of the test class values,
but initially, we used the following simple method:



The prediction of the speaker state vector of
state k of test class [ (Si(k)) is made using
state i of adaptation class j (S%(i)), where
SJ(i) has the highest average correlation co-
efficient (averaged over all vector dimensions)
with S!(k).

Note that this criterion allows each speaker state vector
of an individual test class model to be predicted from a
state of a different adaptation class model, but ensures
that components within a speaker state vector are pre-
dicted from the same adaptation speaker state vector.

4.3 Bayesian adaptation of the state me-
ans

Suppose the optimum predictor (according to the above
criterion) of S(k) is S%(i). We use the speaker state vec-
tor of S (i) together with the appropriate set of regres-
sion coefficients (2 for each vector dimension) to make
a prediction of the speaker state vector of Si(k). Let
p be the correlation coefficient (in a given dimension)
between the two states. If |p| is high, we would be con-
fident of a good prediction of the speaker state vector.
However, if |p| is low, we would not want to place much
confidence in this prediction and would prefer to use
the existing ‘speaker-independent’ mean in the HMM.
A Bayesian approach is clearly appropriate here. The a
priori distribution of the state mean for a given speaker
can be taken as the sample distribution associated with
that state (estimated from the training-data). This is as-
sumed Gaussian with mean y and variance o2 in a given
vector dimension. Taking the predicted value (say y)
of the speaker state vector in this dimension to also be
an estimate of the mean, the distribution of the predic-
tions is also assumed Gaussian with mean y and variance
(1—p*)o?, where p is the correlation coefficient between
the states in this dimension. We may thus write the
likelihood of observing a mean value of z in this vector
dimension as:

L(z) = \/%0 exp [_(2;2“)2] +
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The optimum value of z maximises L(z) in equation 1.
Notice that when |p| is close to 1, the second term be-
comes very large as z — y, i.e. the expression is max-
imised by choosing z to be close to the value predicted
by the regression. When p = 0, the terms are both Gaus-
sians with equal variances, the first with mean y and the
second with mean y. Hence it appears that equal weight
is given to the a priori mean and the prediction, the lat-
ter being worthless when p = 0. However, when p = 0,
the regression line is horizontal and the prediction y = p,
always, so that equation 1 is maximised by z = u. In

practice, the maximisation of equation 1 cannot be done
in closed form and rather than implement a numerical
maximisation, some simulations showed that using:
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gave a good approximation to the observed maximum.
It is intended to experiment with rigorous maximisation
of equation 1 at a later date.

z=|ply + (1= |p|*)p

5 Results

We investigated the effect on the recognition error-rate of
making data available for adaptation from an increasing
number of classes, and compared the performance of this
new technique with that obtained by using the ‘bias-
vector’ technique described in [2]. In Fig 1, the abscissa
is the number of classes for adaptation available from
each speaker. The identities of these classes are given in
Table 1 below:

| No of classes | Class identities |

E
EA

EAX

EAXI

EAXIQ

EAXIQD

EAXIQDK
EAXIQDKM
EAXIQDKMP
EAXIQDKMPF
EAXIQDKMPFG
EAXIQDKMPFGO
EAXIQDKMPFGOR
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Table 1: Identities of the adaptation classes in
Fig 1.

It should be noted that the results in Fig 1 are for testing
on the test classes only, although all the models were ac-
tive for each recognition. The models of the test classes
were adapted according to the new technique described
in section 4; the models of the adaptation classes avail-
able from the speaker were adapted by replacing the
mean of the appropriate state PDF by the speaker state
vector. Any adaptation classes not available from the
speaker were not adapted. In practice, we found that
adapting the adaptation class means made very little dif-
ference to the result when testing only the test classes.

The results show that when only a single class (‘E’) is
available for adaptation, the error-rate is reduced from
17% to 9.6%. A system which did not use a predictive
technique (i.e. which adapted only the model of ‘E’)
could not hope to obtain such a large improvement given
data from only a single class in the vocabulary. Addition
of adaptation data increases performance monotonically



until a plateau (5.3%) is reached after nine classes are
given. No statistical analysis of the results has been
performed but given the size of the test set (about 2000
utterances), an improvement of about 1% is statistically
significant and the improvement of about 12% shown
here is of real practical significance.

6 Conclusions and Future Work

We believe the method of speaker adaptation proposed
here has good potential and should be of particular rele-
vance to large-vocabulary speech recognition systems in
which rapid adaptation to a new speaker’s voice is es-
sential. In this first study, we have used a very simple
method of using the available adaptation data for predic-
tive purposes and a key issue in the further development
of the technique is how to make better use of this data.
The preliminary studies on static vowel vectors suggest
that multiple linear regression is a promising technique
for improving estimates.
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