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Abstract

Standard speaker adaptation algorithms perform poorly on
dysarthric speech because of the limited phonemic repertoi
of dysarthric speakers. In a previous paper, we proposed the
use of “metamodels” to correct dysarthric speech. Hereewe r
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by a particular dysarthric speaker when the intended phene i
presented to the recogniser. By forming a network of metamod
els that represent legal sequences of words, the intendetl wo
sequencéM, can be estimated from the noisy string supplied
by a phone recognise®,t. The metamodels are trained on

port on an improved technique that makes use of a cascade of Pairs Of transcriptions of correct and recognised phoriegsir

Weighted Finite-State Transducers (WFSTs) at the confiusio

matrix, word and language levels. This approach outpedorm
both standard MLLR and metamodels.

Index Terms: weighted finite transducers, speech recognition
accuracy, dysarthric speech, speaker adaptation

1. Introduction

Speech from dysarthric speakers often has low or very los-int
ligibility: the disorder means that the speaker has pootrobn
over his or her articulators, and the result is that theilespe

is often less than 100% intelligible, depending on the degre
dysarthria. The condition is usually associated with arictstl
phonemic repertoire, and hence, when using automatic Bpeec
recognisers, a high number of substitutions, deletionsiand
sertions of phonemes is observed [8]. In previous work [&, w
described a technique for incorporating a model of a dysarth
speaker’s confusion matrix into the ASR process in such a way
as to increase recognition accuracy. In this work, we extead
technique to a more powerful model that uses weighted finite-
state transducers, and we demonstrate increased perfgman
Most speaker adaptation algorithms are based on the piéncip
that it is possible to apply a set of transformations to the pa
rameters of a set of acoustic models of an “average” voice to
move them closer to the voice of an individual. Whilst this
has been shown to be successful for normal speakers, it may
be less successful in cases where the phoneme uttered eenot t
one that was intended but is substituted by a different pimene

or phonemes, as often happens in dysarthric speech. In this
situation, we argue that a more effective approach is to com-
bine a model of the substitutions likely to have been made by
the speaker with a language model to infer what was said. We
suppose that the speaker wished to utter a word seqiipce
which can be transcribed using a dictionary into the phoneme
sequenceS,. The sequence of phones decoded by the speech
recogniser iy, and we describe here a cascade of Weighted
Finite-State Transducers (WFSTSs) that estinvdtefrom Sout.

The transducers model the speaker’s phonetic confusibas, t
mapping from phonemes to words, and the mapping from words
to a word sequence described by a grammar.

In [3], we proposed using transducers that we termed “meta-
models”. A metamodel is a discrete hidden Markov model
(HMM) of a particular phone that models in a stochastic man-
ner the pattern of substitutions, deletions and insertioade

Although we reported some success using metamodels for this
task, they suffered from two disadvantages:

1. The models had a particular problem dealing with dele-
tions. If the metamodel network defining a legal se-
guence of words is defined in such a way that it is pos-
sible to traverse it by “skipping” every metamodel, the
decoding algorithm fails because it is possible to traverse
the complete network of HMMs without absorbing a sin-
gle input symbol. We attempted to remedy this problem
by adding an extra “deletion” symbol, but as this symbol
could potentially substitute every single phoneme in the
network, it led to an explosion in the size of the dictio-
nary, which was unsatisfactory.

2. The metamodels were unable to model specific phone
sequences that were output in response to individual
phone inputs. They were capable of outputting se-
quences, but the Markov property ensured that these se-
guences were conditionally independent, and so specific
sequences could not be modelled.

WSFTs [7] are an attractive alternative to metamodels fizr th
task. A WFST can be regarded as a network of automata, each
of which accepts an input symbol and outputs one of a finite
set of outputs, each of which has an associated probafilitg.
outputs are drawn (in this case) from the same alphabet as the
input symbols and can be single symbols, sequences of sgmbol
or the deletion symbd. The automata are linked by a set (typ-
ically sparse) of arcs and there is a probability associaféu

each arc. The usage proposed here complements and extends
the work presented in [6], in which WFSTs were used to cor-
rect phone recognition errors. Here, we extend the teckrtigju
convert noisy phone strings into word sequences.

2. Structure of the WFST network

As shown in, for instance, [7, 4], the speech recognitiortess
can be realised as a cascade of WFSTS. In our study, we define
the following transducers:

1. S, the phoneme sequence to be decoded into words
W
2. C, the confusion matrix transducer, which models the

probabilities of phoneme insertions, deletions and sub-
stitutions.



3. D, the dictionary transducer, which maps sequences of
decoded phonemes froRr C into legal words.

4. G, the language model transducer, which allows valid

Figure 1: Example of the Confusion Matrix Transducer C.
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sequences of words frob.

Thus, the process of estimating the most probable sequénce o
wordsW;, given Syt can be expressed as:

W =T*(SuoCoDoG). 1)
whereZ* denotes the operation of finding the most likely path
through a transducer arddenotes composition of transducers
[7]. Details of each the transducers used will be presemtéuki
following sections.

2.1. Confusion Matrix Transducer C

In this section, we describe the formation of the confusi@s m
trix transduceiC. Defining pl as thei'th phone inSx and

pl, as thej'th phone inSin, Pr(pl,|pby) is estimated from the
speaker’s confusion matrix, which is obtained from an aatur
alignment of many sequences®f and Sy [3].

However,C can also map multiple phone insertions and dele-
tions. Consider Table 1, which shows an alignment from one
of our experiments. The top row of phone symbols repre-
sents the transcription of the word sequence and the bottam r o
the output from the phone recogniser. It can be seen that the '
phoneme sequendeaa is deleted afteax, and this can be rep-
resented in the transducer as a multiple substitutiortiose

ax — axbaa. Similarly the insertion ohg dh afterih is mod-
elled ash ng dh — ih. The probabilities of these multiple sub-
stitutions/insertions/deletions are estimated againdunting.

In cases where a multiple insertion or deletion is made of the
form A — B C, the appropriate fraction of the unigram proba-
bility mass P(A — B) is subtracted and given to the probability mE
Pr(A — BC), and the same process is used for higher order in-
sertions or deletions.

A fragment of the confusion transducer that represents the
alignment of Table 1 is presented in Figure 1. For conve-
nience, the weight for each confusion in the transducer-is es
timated as—log(Pr(p,|phy)). In practice, we have found it
convenient to build an initial set of transducers directignf

the speaker’s “unigram” confusion matrix, which is estietat
using each transcription/output alignment pair availdiden

that speaker, and then to add extra transducers that represe
multiple substitution/insertion/deletions. The comelset of
transducers are thateterminized andminimized, as described

in [7]. The result of these operations is a single transdtmer
the speaker. tion of the probability mass on the diagonal and re-distiitgu
One problem encountered when limited training data is avail it along the associated row. This is equivalent to assigaing
able from speakers is that some phonemes are never decoded proportion of the probability of correctly decoded phonerte
during the training phase, and therefore it is not possible t ~ as yet unseen confusions. The proportion of the diagon&-pro
make any estimate @ (pl. | pl,¢). This is shown in Figure 2, ability that is used to estimate these unseen confusiorsndsp
which shows a confusion matrix estimated from a single talke ~ ©N the amount of data from the speaker: clearly, as the data in
Note that the columns are the stimulus and the rows are the Creases, the confusion probability estimates become ncote a
response in this matrix, and so blank rows are phonemes that ate and itis not appropriate to use a large proportion. Seme

have never been decoded. We used two techniques to smooth Perimentation on our data revealed that re-distributingap-
the missing probabilities. imately 20% of the diagonal probability to unseen confusion

worked well.

Figure 2: Confusion Matrix fo€
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assume that the associated phone is always correctly d&code
However, if the estimate of the overall probability of erobthe
recogniser on this speakerpsa more robust estimate is to set
any unseen diagonal elementgxtcand we begin by doing this.
We then need to decide how to assign non-diagonal prohabilit
for unseen confusions. We do this by “stealing” a small prepo

2.1.1. Base Smoothing

It is essential to have a non-zero value for every diagorel el

ment of a confusion matrix to enable the decoding process to The base smoothing described in section 2.1.1 could be re-
work using an arbitrary language model. One possibilityist  garded as “speaker dependent” in that it uses the (sparse) co
set all diagonal elements for which no data exists to 1.0ta.e fusion estimates made from the speaker’s own data to smooth

2.1.2. 9 Smoothing



Table 1:Alignment of transcription S, and recognised output Syt -

TR:

: ih
REC:

ih

ax b aa th
ax r

sil
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ax
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ng
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dh dh

ng

the unseen confusion. However, these estimates are likdlg t
noisy, so we add another layer of smoothing using the speaker
independent (SI) confusion-matrix whose elements are-well
estimated from the training-data described in Section & ifth
fluence of this confusion-matrix on the speaker-dependent m
trix is controlled by a mixing factoh. Defining the elements

of the SI confusion matrix aqi'n and qi)ut, the resulting joint
confusion-matrix can be expressed as:

Cioint = APH(Gy|Gout) + (L= N Pr(Piy[Poue).~ (3)
The effect of both the base smoothing and the SI smoothing can
be seen by comparing Figures 2 and 3.

Figure 3: SI Smoothing dE, with A = 0.25.
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2.2. Dictionary D and Language Modd G Transducers

The transducelD maps sequences of phonemes into valid
words. Although other work has investigated the possibdit
using WSFTs to model pronunciation in this component [1], in
our study the pronunciation modelling is done by the tranedu

C. A small fragment of the dictionary entries is shown in Fig-
ure 4 a), where each sequence of phonemes that forms a word is
listed as an FST. The minimized union of all these word esitrie
is shown in Figure 4 b). The single and multiple pronuncia-
tions of each word were taken from the British English BEEP
pronouncing dictionary [9].

The language model transducer consisted of a word bigram, as
used in our previous work [3], but now represented as a WFST.
HLStats [9] was used to estimate these bigrams and a script wa
designed to do the convertion into WFST format. A fragment of
the word bigram FST5 is shown in Figure 5. The NEMOURS
sentences are nonsense phrases that have a simple syritax of t
form “the X is Y the Z”, where X and Z are usually nouns and Y

is a verb in present participle form [2] (for instance, thegses
“The shin is going the who”, “The inn is heaping the shin”,
etc.) The network of Figure 5 allows sequences of this kind to

ih
ih

dh
dh

b
b

sil
sil

ax eh t

ax

ey
ax |

ng
ng

Figure 4: Example of the Dictionary Transdudr

a)

b)

be recognized explicitly, but an arbitrary word bigram graan
can be represented using one of these transducers.

Figure 5: Example of the Language Model Transdu@er

THE/0.125

All three transducers used in these experiments were deter-
minized and minimized in order to make execution more effi-
cient.

3. Speech Data, Recogniser, and Results

The Wall Street Journal (WSJ) database was used to build the
S| speech recogniser. The training set consisted of the WSJ
data from 92 speakers in settsi This was used to construct
45 monophone acoustic models. The models were a standard
three state left-right topology with eight mixture compotse

per state. The front-end used 12 MFCCs plus energy plus
delta and acceleration coefficients. From this system, the S
confusion-matrix described in Section 2.1.2 was estimated

ing a phoneme-bigram model with a grammar scale factor of
10. In order to keep both systems independent for confusion-
matrix estimation, this language model was estimated from
the corresponding WSJ speech transcriptions, and not fnem t
dysarthric database.

The dysarthric speech data was provided by the NEMOURS



database [2]. We used the data from 10 speakers (74 sentencesas the amount of training-data increases. The SI Smoothing i

per speaker) with varying degrees of dysarthria. Note that a
though each of the 740 sentences in this set is different, the
vocabulary is shared. A subset of the first 34 sentences from
each speaker was used for confusion-matrix estimationttend
remaining 40 were used for testing after adaptation [3].

The HTK package [9] was used throughout for the experiments.
The FSM Library [7] from AT&T was used for the experiments
with WFSTs. For comparison purposes, a standard speaker
adaptation technique, MLLR (maximum likelihood linear re-
gression [5] [9]) was applied, always using the same setaf-ad
tation sentences as were used for estimating the metamadels
our previous work [3] and training of the transduc&r The
word language model for all systems was a bigram model esti-
mated from the (pooled) 74 sentences provided by each speake
(113 different words).

In all the experiments reported here, MLLR adaptation was pe
formed using different numbers of adaptation utterancdse T
adapted acoustic models were then used in the phone reeognis
which supplied the output phone string for both the metarsode
and the WSFTs. This recogniser used a bigram phoneme lan-
guage model estimated from the training-data transcriptif
each speaker. The results marked “MLLR” in Figure 6 are for
a recogniser that used the adapted acoustic models but with a
word-level language model. This language model was the same
for all three techniques used.

3.1. Resultson dysarthric speakers

Figure 6 shows the mean word accuracies (i.e. (Hits
—Insertions)/ Nwords) across all the NEMOURS database
speakers for different amounts of adaptation data and wting
ferent decoding techniques. The baseline is the perforenanc
with no adaptation (horizontal line). The figure shows diear
the gain in performance given by the WFSTs over both MLLR
and our previous technique (metamodels).

Figure 6: Mean across all dysarthric speakers: compari§on o
% accuracy for different techniques
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In previous experiments using the metamodels on MLLR-
adapted models, we found that the word recognition accuracy
was much higher than that provided by MLLR alone when the
amount of training data was small (four sentences). However
this advantage decreased as the number of sentences réazhed
maximum (34) [3]. Using WFSTs on MLLR-adapted models,
performance on four utterances of adaptation data is 8fight
higher compared with metamodels, and continues to increase

creases the WFSTSs performance over the Base Smoothing when
the training data is small (four to 16 sentences): thergdfie
two smoothing schemes do not give significantly different pe
formance.

Figure 6 shows results for only two valuesXaf A = 0 (Base
Smoothing only) and SI Smoothing with = 0.25. Perfor-
mance decreases asincreases above 0.25. This is probably
because the confusion pattern of dysarthric speech igeliffe
from normal speech, and higher values\ahove the estimated
confusion matrices too much towards normal speech confusio
patterns.

4. Discussion and Future Work

In this paper, we have shown how a set of weighted finite state
transducers (WFSTSs) at the confusion-matrix, word and lan-
guage levels can be cascaded in order to correct errors made
by dysarthric speakers, whose pattern of errors is marlgaitily
ferent from normal speakers because of their condition. The
results obtained using this technique are significantlyebet
than those obtained using the standard speaker adaptation t
nique, MLLR, and also better than our previous approachgusin
metamodels. Future work will concentrate on integrating be
ter the confusion-matrix transducer with the speech reisegn
and also on robust estimation of confusion matrices fromsspa
data.
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