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Abstract
Standard speaker adaptation algorithms perform poorly on
dysarthric speech because of the limited phonemic repertoire
of dysarthric speakers. In a previous paper, we proposed the
use of “metamodels” to correct dysarthric speech. Here, we re-
port on an improved technique that makes use of a cascade of
Weighted Finite-State Transducers (WFSTs) at the confusion-
matrix, word and language levels. This approach outperforms
both standard MLLR and metamodels.
Index Terms: weighted finite transducers, speech recognition
accuracy, dysarthric speech, speaker adaptation

1. Introduction
Speech from dysarthric speakers often has low or very low intel-
ligibility: the disorder means that the speaker has poor control
over his or her articulators, and the result is that their speech
is often less than 100% intelligible, depending on the degree
dysarthria. The condition is usually associated with a restricted
phonemic repertoire, and hence, when using automatic speech
recognisers, a high number of substitutions, deletions andin-
sertions of phonemes is observed [8]. In previous work [3], we
described a technique for incorporating a model of a dysarthric
speaker’s confusion matrix into the ASR process in such a way
as to increase recognition accuracy. In this work, we extendthe
technique to a more powerful model that uses weighted finite-
state transducers, and we demonstrate increased performance.
Most speaker adaptation algorithms are based on the principle
that it is possible to apply a set of transformations to the pa-
rameters of a set of acoustic models of an “average” voice to
move them closer to the voice of an individual. Whilst this
has been shown to be successful for normal speakers, it may
be less successful in cases where the phoneme uttered is not the
one that was intended but is substituted by a different phoneme
or phonemes, as often happens in dysarthric speech. In this
situation, we argue that a more effective approach is to com-
bine a model of the substitutions likely to have been made by
the speaker with a language model to infer what was said. We
suppose that the speaker wished to utter a word sequenceWin
which can be transcribed using a dictionary into the phoneme
sequenceSin. The sequence of phones decoded by the speech
recogniser isSout , and we describe here a cascade of Weighted
Finite-State Transducers (WFSTs) that estimateWin from Sout .
The transducers model the speaker’s phonetic confusions, the
mapping from phonemes to words, and the mapping from words
to a word sequence described by a grammar.
In [3], we proposed using transducers that we termed “meta-
models”. A metamodel is a discrete hidden Markov model
(HMM) of a particular phone that models in a stochastic man-
ner the pattern of substitutions, deletions and insertionsmade

by a particular dysarthric speaker when the intended phone is
presented to the recogniser. By forming a network of metamod-
els that represent legal sequences of words, the intended word
sequenceWin can be estimated from the noisy string supplied
by a phone recogniserSout . The metamodels are trained on
pairs of transcriptions of correct and recognised phone strings.
Although we reported some success using metamodels for this
task, they suffered from two disadvantages:

1. The models had a particular problem dealing with dele-
tions. If the metamodel network defining a legal se-
quence of words is defined in such a way that it is pos-
sible to traverse it by “skipping” every metamodel, the
decoding algorithm fails because it is possible to traverse
the complete network of HMMs without absorbing a sin-
gle input symbol. We attempted to remedy this problem
by adding an extra “deletion” symbol, but as this symbol
could potentially substitute every single phoneme in the
network, it led to an explosion in the size of the dictio-
nary, which was unsatisfactory.

2. The metamodels were unable to model specific phone
sequences that were output in response to individual
phone inputs. They were capable of outputting se-
quences, but the Markov property ensured that these se-
quences were conditionally independent, and so specific
sequences could not be modelled.

WSFTs [7] are an attractive alternative to metamodels for this
task. A WFST can be regarded as a network of automata, each
of which accepts an input symbol and outputs one of a finite
set of outputs, each of which has an associated probability.The
outputs are drawn (in this case) from the same alphabet as the
input symbols and can be single symbols, sequences of symbols
or the deletion symbolε. The automata are linked by a set (typ-
ically sparse) of arcs and there is a probability associatedwith
each arc. The usage proposed here complements and extends
the work presented in [6], in which WFSTs were used to cor-
rect phone recognition errors. Here, we extend the technique to
convert noisy phone strings into word sequences.

2. Structure of the WFST network
As shown in, for instance, [7, 4], the speech recognition process
can be realised as a cascade of WFSTs. In our study, we define
the following transducers:

1. Sout , the phoneme sequence to be decoded into words
W ∗

in

2. C, the confusion matrix transducer, which models the
probabilities of phoneme insertions, deletions and sub-
stitutions.



3. D, the dictionary transducer, which maps sequences of
decoded phonemes fromP◦C into legal words.

4. G, the language model transducer, which allows valid
sequences of words fromD.

Thus, the process of estimating the most probable sequence of
wordsW ∗

in givenSout can be expressed as:

W ∗
in = T

∗(Sout ◦C ◦D◦G). (1)

whereT ∗ denotes the operation of finding the most likely path
through a transducer and◦ denotes composition of transducers
[7]. Details of each the transducers used will be presented in the
following sections.

2.1. Confusion Matrix Transducer C

In this section, we describe the formation of the confusion ma-
trix transducerC. Defining pi

out as thei’th phone inSout and
p j

in as thej’th phone inSin, Pr(p j
in|p

i
out) is estimated from the

speaker’s confusion matrix, which is obtained from an accurate
alignment of many sequences ofSin andSout [3].
However,C can also map multiple phone insertions and dele-
tions. Consider Table 1, which shows an alignment from one
of our experiments. The top row of phone symbols repre-
sents the transcription of the word sequence and the bottom row
the output from the phone recogniser. It can be seen that the
phoneme sequenceb aa is deleted afterax, and this can be rep-
resented in the transducer as a multiple substitution/insertion:
ax → ax b aa. Similarly the insertion ofng dh after ih is mod-
elled asih ng dh → ih. The probabilities of these multiple sub-
stitutions/insertions/deletions are estimated again by counting.
In cases where a multiple insertion or deletion is made of the
form A → B C, the appropriate fraction of the unigram proba-
bility mass Pr(A → B) is subtracted and given to the probability
Pr(A → B C), and the same process is used for higher order in-
sertions or deletions.
A fragment of the confusion transducer that represents the
alignment of Table 1 is presented in Figure 1. For conve-
nience, the weight for each confusion in the transducer is es-
timated as−log(Pr(p j

in|p
i
out)). In practice, we have found it

convenient to build an initial set of transducers directly from
the speaker’s “unigram” confusion matrix, which is estimated
using each transcription/output alignment pair availablefrom
that speaker, and then to add extra transducers that represent
multiple substitution/insertion/deletions. The complete set of
transducers are thendeterminized andminimized, as described
in [7]. The result of these operations is a single transducerfor
the speaker.
One problem encountered when limited training data is avail-
able from speakers is that some phonemes are never decoded
during the training phase, and therefore it is not possible to
make any estimate ofPr(p j

in|p
i
out). This is shown in Figure 2,

which shows a confusion matrix estimated from a single talker.
Note that the columns are the stimulus and the rows are the
response in this matrix, and so blank rows are phonemes that
have never been decoded. We used two techniques to smooth
the missing probabilities.

2.1.1. Base Smoothing

It is essential to have a non-zero value for every diagonal ele-
ment of a confusion matrix to enable the decoding process to
work using an arbitrary language model. One possibility is to
set all diagonal elements for which no data exists to 1.0, i.e, to

Figure 1: Example of the Confusion Matrix Transducer C.

Figure 2: Confusion Matrix forC

assume that the associated phone is always correctly decoded.
However, if the estimate of the overall probability of errorof the
recogniser on this speaker isp, a more robust estimate is to set
any unseen diagonal elements top, and we begin by doing this.
We then need to decide how to assign non-diagonal probabilities
for unseen confusions. We do this by “stealing” a small propor-
tion of the probability mass on the diagonal and re-distributing
it along the associated row. This is equivalent to assigninga
proportion of the probability of correctly decoded phonemes to
as yet unseen confusions. The proportion of the diagonal prob-
ability that is used to estimate these unseen confusions depends
on the amount of data from the speaker: clearly, as the data in-
creases, the confusion probability estimates become more accu-
rate and it is not appropriate to use a large proportion. Someex-
perimentation on our data revealed that re-distributing approx-
imately 20% of the diagonal probability to unseen confusions
worked well.

2.1.2. SI Smoothing

The base smoothing described in section 2.1.1 could be re-
garded as “speaker dependent” in that it uses the (sparse) con-
fusion estimates made from the speaker’s own data to smooth



Table 1:Alignment of transcription Sin and recognised output Sout .
TR: sil ax b aa th ih ax z w ey ih ng dh ax b eh t sil
REC: sil ax r ih ng dh ax ng dh ax l ih ng dh ax b sil

the unseen confusion. However, these estimates are likely to be
noisy, so we add another layer of smoothing using the speaker-
independent (SI) confusion-matrix whose elements are well-
estimated from the training-data described in Section 3. The in-
fluence of this confusion-matrix on the speaker-dependent ma-
trix is controlled by a mixing factorλ. Defining the elements
of the SI confusion matrix asq j

in and qi
out , the resulting joint

confusion-matrix can be expressed as:

C joint = λSI +(1−λ)SD. (2)

C joint = λPr(q j
in|q

i
out)+(1−λ)Pr(p j

in|p
i
out). (3)

The effect of both the base smoothing and the SI smoothing can
be seen by comparing Figures 2 and 3.

Figure 3: SI Smoothing ofC, with λ = 0.25.

2.2. Dictionary D and Language Model G Transducers

The transducerD maps sequences of phonemes into valid
words. Although other work has investigated the possibility of
using WSFTs to model pronunciation in this component [1], in
our study the pronunciation modelling is done by the transducer
C. A small fragment of the dictionary entries is shown in Fig-
ure 4 a), where each sequence of phonemes that forms a word is
listed as an FST. The minimized union of all these word entries
is shown in Figure 4 b). The single and multiple pronuncia-
tions of each word were taken from the British English BEEP
pronouncing dictionary [9].
The language model transducer consisted of a word bigram, as
used in our previous work [3], but now represented as a WFST.
HLStats [9] was used to estimate these bigrams and a script was
designed to do the convertion into WFST format. A fragment of
the word bigram FSTG is shown in Figure 5. The NEMOURS
sentences are nonsense phrases that have a simple syntax of the
form “the X is Y the Z”, where X and Z are usually nouns and Y
is a verb in present participle form [2] (for instance, the phrases
“The shin is going the who”, “The inn is heaping the shin”,
etc.) The network of Figure 5 allows sequences of this kind to

Figure 4: Example of the Dictionary TransducerD.

be recognized explicitly, but an arbitrary word bigram grammar
can be represented using one of these transducers.

Figure 5: Example of the Language Model TransducerG.

All three transducers used in these experiments were deter-
minized and minimized in order to make execution more effi-
cient.

3. Speech Data, Recogniser, and Results
The Wall Street Journal (WSJ) database was used to build the
SI speech recogniser. The training set consisted of the WSJ
data from 92 speakers in set sitr. This was used to construct
45 monophone acoustic models. The models were a standard
three state left-right topology with eight mixture components
per state. The front-end used 12 MFCCs plus energy plus
delta and acceleration coefficients. From this system, the SI
confusion-matrix described in Section 2.1.2 was estimatedus-
ing a phoneme-bigram model with a grammar scale factor of
10. In order to keep both systems independent for confusion-
matrix estimation, this language model was estimated from
the corresponding WSJ speech transcriptions, and not from the
dysarthric database.
The dysarthric speech data was provided by the NEMOURS



database [2]. We used the data from 10 speakers (74 sentences
per speaker) with varying degrees of dysarthria. Note that al-
though each of the 740 sentences in this set is different, the
vocabulary is shared. A subset of the first 34 sentences from
each speaker was used for confusion-matrix estimation, andthe
remaining 40 were used for testing after adaptation [3].
The HTK package [9] was used throughout for the experiments.
The FSM Library [7] from AT&T was used for the experiments
with WFSTs. For comparison purposes, a standard speaker
adaptation technique, MLLR (maximum likelihood linear re-
gression [5] [9]) was applied, always using the same set of adap-
tation sentences as were used for estimating the metamodelsin
our previous work [3] and training of the transducerC. The
word language model for all systems was a bigram model esti-
mated from the (pooled) 74 sentences provided by each speaker
(113 different words).
In all the experiments reported here, MLLR adaptation was per-
formed using different numbers of adaptation utterances. The
adapted acoustic models were then used in the phone recogniser
which supplied the output phone string for both the metamodels
and the WSFTs. This recogniser used a bigram phoneme lan-
guage model estimated from the training-data transcriptions of
each speaker. The results marked “MLLR” in Figure 6 are for
a recogniser that used the adapted acoustic models but with a
word-level language model. This language model was the same
for all three techniques used.

3.1. Results on dysarthric speakers

Figure 6 shows the mean word accuracies (i.e. (Hits
−Insertions)/ Nwords) across all the NEMOURS database
speakers for different amounts of adaptation data and usingdif-
ferent decoding techniques. The baseline is the performance
with no adaptation (horizontal line). The figure shows clearly
the gain in performance given by the WFSTs over both MLLR
and our previous technique (metamodels).

Figure 6: Mean across all dysarthric speakers: comparison of
% accuracy for different techniques

In previous experiments using the metamodels on MLLR-
adapted models, we found that the word recognition accuracy
was much higher than that provided by MLLR alone when the
amount of training data was small (four sentences). However,
this advantage decreased as the number of sentences reachedthe
maximum (34) [3]. Using WFSTs on MLLR-adapted models,
performance on four utterances of adaptation data is slightly
higher compared with metamodels, and continues to increase

as the amount of training-data increases. The SI Smoothing in-
creases the WFSTs performance over the Base Smoothing when
the training data is small (four to 16 sentences): thereafter, the
two smoothing schemes do not give significantly different per-
formance.
Figure 6 shows results for only two values ofλ: λ = 0 (Base
Smoothing only) and SI Smoothing withλ = 0.25. Perfor-
mance decreases asλ increases above 0.25. This is probably
because the confusion pattern of dysarthric speech is different
from normal speech, and higher values ofλ move the estimated
confusion matrices too much towards normal speech confusion
patterns.

4. Discussion and Future Work
In this paper, we have shown how a set of weighted finite state
transducers (WFSTs) at the confusion-matrix, word and lan-
guage levels can be cascaded in order to correct errors made
by dysarthric speakers, whose pattern of errors is markedlydif-
ferent from normal speakers because of their condition. The
results obtained using this technique are significantly better
than those obtained using the standard speaker adaptation tech-
nique, MLLR, and also better than our previous approach using
metamodels. Future work will concentrate on integrating bet-
ter the confusion-matrix transducer with the speech recogniser
and also on robust estimation of confusion matrices from sparse
data.
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