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ABSTRACT

As a first step to the task of understanding complex humanaicte
tions, we investigate the automatic labelling of “eventséiscenario
in which the events are unambiguous and the rules and go#ie of
interaction are well-defined, namely a sports game. We iteser
technique that utilises a hierarchy of language modelschvhre a
low-level model of acoustic observations and a high-levetat of
audio events that occur during a game: these models argateeg

using a maximum entropy approach. Our models of the audiotgve

also utilise duration and voicing information as well asctpzd con-
tent, and we show that further discrimination between evenpos-
sible using these features. Results on different tennisegashow
that the use of these techniques is better than using anagiptioat

does not use modelling of dependencies between frames antsev

or extra information in the form of duration and voicing.

1. INTRODUCTION

The long-term goal of the research reported here is to dpw®le-
tems that are capable of understanding, and thus partigpat,
complex human transactions. In order to achieve this amtsitijoal,

sports games can occur simultaneously, not all events an¢enést
or importance, and events can have very different duratiesns the
striking of a ball can be a significant event, a a long ovatiomf a
crowd).

In a tennis match, there are some characteristic audiotheatt
include ball striking sounds, crowd roars, commentatqueegh, the
chair umpire’s speech, line judges’ and players’ shouts €tese
can all be used in different ways to infer the state and pssgoéthe
game, and when combined with the events detected by a compute
vision system, are a powerful source of information. Fomepie,
the commentary can help us learn a detailed descriptionayeps’
actions in the match, and what has happened in the court. dibe v
of the chair umpire furnishes us with information about therss
and the long-term progress of the match, whether there isab ch
lenge, whether the ball touches the net etc. The line judgesits
indicate whether the ball has been played out or if theredsafault
during a serve. The sound of a racquet striking the ball isdi i
cation that play is in progress. Finally, the applause, gjasipeers,
roars etc. of the crowd can naturally be used as an indicafitime
start or the end of a point, a game, or a set in the match. Wit is
teresting about these audio events is that they providez deal of
complementary information, which is overlapping, and vwhieeds

we have set ourselves the task of understanding a form of imumao be gathered at different time-scales.

interaction in which both the objectives of the particigaand the
rules under which they engage are clear and highly constldia. a
sports game. Specifically, our goal is to construct a systerefinis
video annotation in such a way that it can be capable of atingta
automatically video of novel sports. This will be accomipéd us-
ing both the video and the audio information on the recordiiag
the cross-modal bootstrapping of high-level visual/liis§ja struc-
tures in a manner paralleling human capabilities. At thityestage
of the project, we need to develop tools for classificatiotihefvideo
and audio “events”, and here, we address the problem ofifyiegt
the class of a certain audio event in a tennis game.

There has been recent interest in applying multimodal aisaly
techniques to identity automatically events occurringhiitsport-
ing games, describe their contents, explore their depemegrand
summarize logical relations among them. The approach isilipeu
both video and audio signals to attempt to identify signiftevents.
Visual features are clearly a highly important source obinfation
about events and interactions [1, 2, 3, 4]. But some intiergse-
sults in [1] show that using only visual features does noldyiery
high performance in event recognition, and this has shifiedocus
towards incorporating audio information. The use of audior-
mation has some advantages in efficiently and effectivelgatiag
events in the domain of sports video, such as the tennis mateb
explored in this paper. The task of identifying such evestsather
different from that of speech recognition, where the “esérare
words or phones and occur sequentially. This is becausdsiren

In this paper, we present a hierarchical framework to detect
dio events in live tennis matches. The fundamental ideaas\wie
convert the audio event detection task into the problem &Gfrap-
ing language models in a two-level hierarchical structute.the
low level, a language model is trained over the output synskeel
guence obtained from the observed acoustic features, tvehithe
high level, an audio-event based language model is traifieel link
between the two levels is the mapping from the low-leveldfess to
high-level audio events. The construction of the languagdets at
two levels and the link between them are optimized using mari
entropy (ME).

The rest of this paper is organised as follows. Section 2vevi
related work. Section 3 explains the framework and theorghisf
hierarchical language modelling technique. Section 4 riless the
data used, and experiments and evaluation are presentettiors
5. We end with conclusions in Section 6.

2. RELATED WORK

Event detection in sports games and the highly similar tdskito-
matic segmentation of meetings have recently become izupiong-
search areas. Some approaches attempt to construct aldearas
work, while others focus on specific sequence labellingsadke
former usually utilize machine learning algorithms [5, §,2uch as
hidden Markov models (HMM) [1], support vector machines {BV



[5], conditional random fields [5, 6] and focus on optimipatiof
model parameters. The latter methods pay more attentiqretfic
labelling tasks, such as audio sequence labelling and \Gegmen-
tation [7, 1, 4, 2]. In these methods, lower-level audio arsliai
features are often separately or jointly used to detectul®avents
or segment videos, and some good results have been obtained.

Language modelling has, of course, been crucial in the dpvel
ment of speech recognition systems, but to our knowledge nba
been utilised much in audio event detection. The work prtesen
here focuses on combining low-level and high-level evendefilng
in a hierarchical framework that takes into account the ddpecies
between the two levels. The theoretical framework will beatibed
in detail in the next section.

3. THEORETICAL FRAMEWORK

In this section, we introduce the hierarchical frameworll ahow
how the different elements within it are estimated. We thescdbe
the application of maximum entropy (ME) to the density esties of
the observed audio features and show how the estimates fiiar&
integrated these information into our framework. We alsscdee
the use of duration models and pitch in modelling the acoestnts
in a game of tennis.

3.1. Theory

Our goal is to classify a sequence of acoustic featugeas a se-
guence ofaudio events, AE. In a maximum likelihood framework,
the most likely sequenc@ E* is obtained as

AE* = arg max Pr(AE|O) 1)
In the usual way, using Bayes’ theorem:
AE" = arg max Pr(O|AE) Pr(AE) 2

We now introduce an extra “latent” variabl€, so that we can re-
write equation 2 as

AE" = argrg%xZPr(O|F)Pr(F|AE)Pr(AE) (3)
F

= argrgaEXZF:Pr(O|F) Pr(AE|F)Pr(F) (4)

Here, AE; denotes the audio evemtE that occurs at timet.
Pr(AE|AE;_1) corresponds to a bigram “language model” of
audio events, which is estimated from the labelled trairdiagp.
Estimation of the termPr(AE:|F) = Pr(AE:|f:, fi—1ft—2) is
done using maximum entropy techniques and is describedtioae
3.2.

3. The termPr(F’) is computed from a trigram model of the frame
labels:

Pr(F) = Hpr(ft|ft—lft—2)~ (8)

Practically, it is not possible to use a model of frame evéms is
derived from the manual labelling of the frames. In such aehod
Pr(AE; = AE;|AE:—1 = AE;) ~ 1, because an event lasts for
many frames and all the frames within an event have the same la
bel. We therefore learn a model that is based on the labeifitige
training-set frames by the acoustic models. Although thislehis
errorful, it is a valuable source of information, as will bees in
section 5.

Estimation of the trigrams of equation 8 was performed using
standard linear interpolation techniques which were threaathed
using ME techniques (section 3.2).

In the usual way, Equation 4 can be approximated by the most
likely sequence over al’, in which case we can re-write the equa-
tion as:

AE" = argrgz}zx{Pr(AEﬁAEt,l) 9)
* mng{Pr(O|F) Pr(AE|F)Pr(F)}}

Although equation 9 looks complex, the algorithm that sslige
is actually very similar to that for connected word recoigmitfrom
a noisy phone sequence using the Viterbi algorithm [7]. &gl
illustrates this. The labelg, f> ... fx correspond to a sequence of
phone labels that have been provided by e.g. a phone loog-reco
niser. Audio events correspond to words, so tAetAE:|AE:—1)
is equivalent to a bigram word modePr(AE;|F') corresponds to
the probability of a word given a phone sequence, BnF) to a
trigram model of the noisy phone labels.

3.2. Mode Optimization using M aximum Entropy

The principle of maximum entropy (ME) is to model all that is
known and assume nothing about what is unknown[8]. The ME

In equation 4,F represents a sequence of audio event labels, latechnique estimates a set of parameters or coefficientgy wsin

belling the frames that comprise an example, ang. is read as
“sum over all possible label sequences”. A label for a frame the
value{1,2,... Nag}, whereN4g is the number of distinct audio
event classes: the label is the most likely audio event &teaowith
the frame, and is estimated from a Gaussian mixture modelMEM
of each audio event.

The three terms in equation 4 can be computed as follows:

optimization procedure. Each coefficient is associatedh wite
feature observed in the training data. The goal is to obtemtob-
ability distribution that maximizes the entropy—that isaximum
ignorance is assumed and nothing apart from the training idat
considered [9]. One advantage of using the ME frameworkas th
even knowledge-poor features may be used accurately [9haivee
adopt the ME model to optimize the model that maps betweelmaud

1. The termPr(O|F) is computed from acoustic models of the au- events and frame®r(AE;|F), and also the frame-based “language
dio events: we used GMMs, which are trained using manually lamodel”, Pr(f|ft—1 ft—2).

belled data. We assume independence of frames: this pafalsé
assumption is corrected during the later stages of praugskience

Pr(O|F) = [ [ Pr(od f2)- (5)

2. The termPr(AE|F) can be approximated as

Pr(AE|F) Pr(AE¢AE;—1) Pr(AE|F) (6)
where Pr(AE:|F) Pr(AE:| ft, fe—1ft—2). )

1

R

In the process of training an ME model, a measure of the unifor
mity of a conditional distributiorP(y|z) is provided by the condi-
tional entropy, and the optimization is subject to a set ofst@ints,
which are typically expressed as a marginal distribution:

) = b, y) fi(x,y) (10)

where the empirical distributiofi(z, y) can be computed from the
training data and’; (z,y) is a binary-valued indicator function. In
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Fig. 1. Viterbi decoding algorithm

our experiments, for the mapping modelcorresponds td”, a se-
qguence ofN labelled frames (atV-gram), y represents the audio
event AE, angi(x, y) denotes the empirical distribution 8f frames
and the audio event occurring together in the training data.the
frame based language modglis the current observed frame, and
can be theV frames that occur before frame To optimize the pa-
rameters of the ME model, we employ the improved iteratiedisg
(IIS) algorithm. The details of the principle of ME and paters
computation are referred to [10, 11].

We do not use ME to optimise the event based language model 4

because of data sparsity. Instead, we use the simpler tpehof
building a trigram language model with linear interpolatemooth-

ing.

3.3. Integration of Duration and Pitch Information

We can also make use of specific acoustic propoerties of ttie au

events, in this case, pitch within an event and duration @&trent.

Figure 2 shows the duration and pitch distribution of thregia
events: “chair umpire”, “commentator”, and “ball hit". Thep row
shows that the duration distributions of the three audim&svare
quite different: the duration of umpire’s voice ranges fra80ms
to 750ms, while most of the commentator’s segments last fmem
than 700ms.The impulsive sound of a racquet striking a kel d
mean duration of only about 90ms. Pitch information is a goag
of distinguishing between speech and non-speech everaspit€h
estimation algorithm is run on the audio events, the umpiveice
and commentators’ voices show that voicing is often deteced
the distributions are similar, whereas the “ball hit” htatam shows
very little voicing is detected, although there are a smathber of
voiced frames caused by the players grunting!

To integrate this information, we first set empirically ced

minimum and maximum thresholds of duration and pitch foreac

audio event. During traceback in Viterbi decoding, the tara
and the distribution of each detected audio event is notédhel
label of the decoded audio event is outside its permitteddiaet by
the thresholds mentioned above, it is changed to the nekelest
match in decoding, and this process is continued until antebat
does not fall outside the bounds of its threshold is founds Than
ad hoc approach that we intend to improve and develop later.

4. DATA

We performed our experiments on an audio corpus which dsris
four audio tracks, each lasting about 22 minutes, taken frioi@o
recordings of two different tennis games. Three of the saate

taken from the same tennis match but have some variationglio a
characteristics. The first track was judged to have fewerlape
ping/simultaneous audio events and was selected as antyaset
(Training). Tracks two and three are used as test SEtss(1,
Test2): these have more overlap of crowd noise and speech. The
data from the second match forms a third test $ets¢3).

Each audio track was manually segmented and each segment
was labelled with one of six different audio events. Theseney
were:

. silence;

n

speech from chair umpire;

3. speech from commentator(s);
4. cry from line judge(s);

5. sound of racquet hitting ball;
6. crowd noise.

Although simultaneous events will be of importance lateiiron
our work, for present purposes, any segment of an audio hadla
single label applied to it, which was what was judged to bentlost
prominent event during that segment.

Audio analysis was standard: the audio sequence was wirtHowe
into 30ms-length frames with 20ms overlapping from which26
MFCC vectors were generated, which consisted of 12-D MFGC co
eficients, overall energy, and their first differences. @apsnean
normalization was applied at the track level.

After the tracks had been manually labelled, each frame-effe
tively had an associated label that is one of the six audioteset-
egories above. We use frame error rate (FER) as our perfeaenan
measurement throughout these experiments.

5. EXPERIMENTSAND EVALUATION

The order of our experiments was as follows:
1. GMM labelling of the frames only;

2. as above, but with application of the frame based tri-gram
language model;

3. as above, but with application of the frame/event mapping
model and the event-based trigram language model;

4. as above, but with application of the duration and pitcldmo
elling.

Preliminary experiments indicated that a 16 mixture conembn
GMM was appropriate for modelling the audio events of “cheur-
pire” and “commentator’s speech”, whereas the other audiots,
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Fig. 2. Duration and Pitch distributions of three audio events

which are acoustically much simpler, could be well-modélising
only three components. These values could, of course, beusxh
tively optimised, but in this work, we focus on the integoatiof the
language models.

[ FER [ Training | Testl | Test2 | Test3 |
[GMM | 18.63% | 30.49% | 37.34% | 44.68% |

Table 1. Frame error rate using GMM acoustic models only

| | Training [ Testl [ Test2 [ Test3 |
GMM+Vit.+F-3LM 8.70% 17.20% | 23.41% | 31.93%
GMM+Vit.+F-3LM 8.68% 17.14% | 23.23% | 32.05%
M-LM
GMM+Vit.+F-3LM 8.66% 17.11% | 23.10% | 31.38%
M-LM+E-LM
[ Improvement | +0.46% | +0.53% | +1.32% | +1.72% |

Table 3. Comparison of performances using mapping model and
event based language model

Table 1 shows the frame error rate over the training- and test

sets and when labelling using only the GMMs. On the trairsag-
the error-rate is reasonably low, and most of the mis-diaasion
is between the umpire’s and commentator’'s speech. Ertes-me
much higher on the test-set, especially the third set, wisiffom a
different match that was (presumably) recorded in a shgtifferent
way.

#lteration | 1 | 2 | 3 | 4 ] 5 |
Training | 8.81% | 8.69% | 8.58% | 8.62% | 8.70% ]

|
|
[ Tesd
|
|

[ 17.68% | 17.58% | 17.20% | 17.16% | 17.20% |
Test2 | 24.06% | 23.90% | 23.70% | 23.54% | 23.41% |
Test3 | 32.19% | 32.14%] 32.00% | 31.95% | 31.93% |

Table 2. Frame error rate using GMM+Viterbi+F-3LM

In Table 2, the results of using the frame based trigram laggu
model (F-3LM) are listed. We iteratively run this step byngsthe
decoded frame sequence from the previous decoding as thiefanp
the next iteration. Performance here is substantiallyebeth both
training and test-set than using only GMMs. The iteratiorthaf
decoding gives a small improvement in performance.

| | Training [ Testl | Test2 | Test3 |
GMM+Vit.+F-LM 8.66% | 17.11% | 23.10% | 31.38%
M-LM+E-LM
[ +duration | 7.71% | 15.76% | 22.20% | 31.67% |
| +pitch [ 7.05% | 14.89% | 19.68% | 26.95% |

Table 4. Frame error rate using the information of event duration
and pitch distribution

than using GMMs alone. Secondly, at the moment, we are using a
“grammar factor” of one, i.e. the weights of the frame-basepiam
model and the event-based language model are equally kdlanc
It is likely that increasing the weight of the event-basedglzage
model will increase performance, but this is still undemistigation.
Thirdly, the frame-based trigram model is trained on thepotfrom

the GMM classifier, which is errorful, although its FER is rhuc
lower than the FER on the test-set. Applying the the franseta
trigram model to test data does improve performance, buntbdel

is inherently incapable of giving very low error-rates.

Table 3 compares the performances starting with the frame The final results listed in Table 4 show that very significamt f

based language model (F-3LM, as in Table 2), the mapping lanther improvements are obtained when the audio event daratid
guage model (M-LM), and the event based language model (Bgitch distribution are included. However, the error-rateTest Set
LM) are added step-by-step. Comparing with the resultsgusin 3 remains high, and using the duration actually increasadittie.
GMM+Vit. +F-3LM, the improvements obtained are small. This This may be because our duration model was from a differetthma

may be due to a number of reasons. Firstly, the frame basgdadge
model has an excellent ability to correct mis-labelled feanfrom

with a different set of commentators, a different umpirej ander
different conditions in which, for instance, the duratidritee crowd

the GMM, and so the baseline performance is already muckrbett noise may have been rather different.



Finally, Figure?? shows a typical result. The top pane shows
the audio waveform, the middle pane the manual labellind,tae
bottom pane the decoded labels. The example begins wittothe ¢
mentator’s voice, which is labelled as “3”, followed by a iperof
silence, and then a number of ball hits labelled as “5". After
final hit, the event sequence should be “crowd noise”, “lundge”,
“crowd noise”, whereas the decoding is “line judge”, “cromaise”,
but the deletion of a small segment of crowd noise is not inguar

6. SUMMARY AND DISCUSSION

In this paper, we have presented a technique for classifgirtio
events using a hierarchical structure that integrates &ve high-
level models of the events. We have also integrated duratimh
pitch information into the classification process. Ouriaitesults
are encouraging, giving relative improvements in the framer-
rate of the order of 50% when compared with labelling usingh&M
alone. The results show that using a low-level “languageeticaf
frame events is the most powerful technique, and the extrefigan
using the a “language model” of frame events is small. Howeve
we have not yet experimented with varying the “grammar fdaid
this language model. We have also shown using duration a@old pi
information can provide significant improvements in accyra

Our future work is to look at the issue of how to balance the
probabilities from the different language models used erd how
to integrate in a more effective way the contributions ofdbeation
and pitch information. We are also considering replacirmgGihvMs
with ergodic HMMs in order to provide more accurate initiedrhe
labelling.
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