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Abstract

Automatic lip-reading (ALR) is a challenging task because the visual speech signal is known to be missing some important
information, such as voicing. We propose an approach to ALR that acknowledges that this information is missing but
assumes that it is substituted or deleted in a systematic way that can be modelled. We describe a system that learns
such a model and then incorporates it into decoding, which is realised as a cascade of weighted finite-state transducers.
Our results show a small but statistically significant improvement in recognition accuracy. We also investigate the issue
of suitable visual units for ALR, and show that visemes are sub-optimal, not because they introduce lexical ambiguity,

but because the reduction in modelling units entailed by their use reduces accuracy.
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1. Introduction

In the past thirty years, the development of automatic
speech recognition (ASR) has received enormous atten-
tion to the point where ASR is now a useful and reli-
able technology. By contrast, automatic lip-reading (ALR))
has received very little attention. This is not surprising,
since lip-reading is used by only a very small proportion of
the population who have hearing difficulties, and although
some of these users can apparently lip-read with high ac-
curacy, it is an imperfect form of communication. Audio-
visual speech recognition (AVSR) is now gaining in impor-
tance as attention turns towards making ASR more robust
to interfering noise. A number of different techniques have
been proposed for AVSR, but all of them would benefit
from higher accuracy when decoding speech purely from a
visual signal. Although this is the most significant motiva-
tion for researching ALR, it also has a number of possible
applications in its own right in areas such as provision of
automatic training systems for teaching lip-reading, as an
aid for people who are able to make speech gestures but
whose voice function has been removed, and in fighting
crime, as well as being an interesting topic in speech com-
munication.

Speech is primarily an audio form of communication,
and a considerable amount of information about speech
sounds is missing from the visual speech signal (47). The
approach taken in this paper is to acknowledge that er-
rors will occur in ALR because of this missing informa-
tion, and to model and compensate for them, an approach
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which was inspired by previous work on dysarthric speech
(43). Dysarthric speakers have poor control over their ar-
ticulators because of medical conditions (such as cerebral
palsy, stroke, brain tumour etc.) that affect their motor
functions. This leads to a reduced phonemic repertoire and
poor quality articulation, and hence to speech that has low
intelligibility and is difficult for ASR systems to recognise.
Similarly, in visual speech, certain speech sounds cannot
be distinguished because they differ in a feature that is
not present in the visual signal (e.g. voicing, place of ar-
ticulation when it is in the rear of the vocal tract). In
previous work on dysarthric speech recognition, patterns
of phonemic confusions made by a talker were learnt by
the system, and when these confusions were compensated
at recognition time, recognition accuracy increased (43).
In this work, we take a similar approach to lip-reading:
we model visual speech as if it were a speech signal pro-
duced by a speaker who has a limited phonemic reper-
toire, and learn the resulting patterns of phoneme confu-
sion by comparing the ground-truth phoneme sequences
with the recognised sequences. At recognition time, we
find the most likely interpretation (word-sequence) of the
distorted phoneme output sequence in the light of these
patterns. The approach is conveniently realised as a cas-
cade of weighted finite-state transducers (WFSTs), one of
which implements the confusion modelling, whilst the oth-
ers implement familiar speech recognition tasks such as
a pronunciation dictionary and language modelling. We
compare this approach with the standard speech recogni-
tion approach in which no knowledge of confusions is used.

Until recently, the ALR community has concentrated
(with a few exceptions) on small and restricted lip-reading
tasks, usually isolated letters and/or digits, as this kind
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of task is appropriate in the initial stages of developing
a technology. Here, we report ALR results on continuous
speech utterances that have a medium-size (~1000 words)
vocabulary. We use a specially-recorded dataset consisting
of videos of 3000 sentences spoken by a single speaker.

This unusually large corpus enables us to investigate
a fundamental question in ALR, which is whether the use
of phoneme-to-viseme mappings is effective. Visemes (dis-
cussed more thoroughly in section 4) are claimed to be the
visual equivalent of phonemes i.e. they are units of vi-
sual speech. It is common practice to employ a phoneme-
to-viseme mapping (several are available) in ALR on the
grounds that there are many phonemes that cannot be dis-
tinguished visually, and indistinguishable phonemes should
logically be grouped together as a single unit for purposes
of recognition. Although there has been some work on
testing these mappings (8; 1), it is not conclusive, and we
investigate this in the first part of this paper.

The paper is organised as follows: in Section two, we
set the scene for our work by reviewing the state-of-the-art
in ALR. Section three describes the two databases that we
recorded for these experiments, and section four describes
our work in exploring the mapping between phonemes to
visemes. Section five gives a brief background to WFSTs
and describes our new approach in detail. Results based
on the two databases used are described in sections six
and seven respectively. We conclude with a discussion in
section eight.

2. Previous work

The first attempts to automatically recognise speech
from a visual signal date back to the 1980s and the work
of Petajan (50; 51). Even from that date, the focus was
on using the visual signal to enhance audio ASR, and
most work since then has concentrated on such integra-
tion rather than lip-reading per se. However, this work
was important in laying the foundations for techniques of
deriving features suitable for speech recognition from vi-
sual images. These early systems tended to use very small
vocabularies, such as a subset of the alphabet or the ten
digits, uttered by a single speaker (57; 59), and used clas-
sification techniques such as hidden Markov models (5),
neural networks (13) or hybrid models (4; 3). Work on
continuous speech began about 2000 with continuously
spoken digits (14). A summer workshop at Johns Hop-
kins in 2000 (45) enabled major advances in AVSR by
recording a very large database of 290 speakers speaking
material with a vocabulary of 10500 words (unfortunately
it is unavailable). It pioneered the use of active appear-
ance models (AAMs, (10)) as visual features and produced
some of the first sets of speaker-independent ALR and
AVSR results. Since then, there have been many different
approaches to AVSR (52) including coupled HMMs (44),
dynamic Bayesian networks (20), use of articulatory-based
features (32), segment-based approaches (23; 22) and more
recently, deep neural networks (48; 26). A recent review

of AVSR research that considers especially the selection of
visual features for visual speech is (63).

Work in ALR itself has grown significantly in the last
ten years, although many authors use the term “lip read-
ing” to describe work in AVSR rather than ALR. The work
has covered essentially three areas: development of new vi-
sual features (30; 56; 31; 34), research into suitable units
for lip reading (62; 25; 7) and exploration of new classifi-
cation techniques (54; 56; 49). Much of this work still uses
small datasets of isolated words from a single speaker but
a recent paper (58) presents speaker-independent results
on a 1000 word connected speech task.

3. Data and Visual Features

We recorded two datasets for the experiments in this
work. A single speaker was recorded in each to eliminate
the variation in visual features between speakers. We con-
sider that this is a good strategy when exploring an inno-
vative technique such as the one proposed here. In other
recent work using multiple speakers from the large LiLiR
dataset (29), we have shown how to compensate (to some
extent) for speaker variation by using techniques such as
speaker adaptive training and deep neural networks, and
these techniques can be added later to the work described
here.

The first dataset, called ISO-211, was an audio-visual
database of 211 isolated words. It was designed for rapid
experimentation in developing WFSTs for lip-reading. ISO-
211 has a vocabulary of 211 phonetically rich words which
were chosen to give maximum bigram coverage. The data
were captured in a specialised recording environment us-
ing a Sanyo Xacti camera in portrait orientation at 1080 x
1920 pixel resolution using progressive scan at a sampling
frequency of 59.94 frames per second. Audio was captured
using a clip microphone at a sampling frequency of 48 kHz.
A single native English speaking female speaker spoke six
repetitions of each word.

The second dataset, called RM-3000, consists of audio-
visual recordings of 3000 sentences spoken by a single na-
tive English-speaking male speaker. The sentences were
randomly selected from the 8000 sentences in the Resource
Management (RM) Corpus (53). The motivation for record-
ing RM-3000 was to obtain a large database of continuous
visual speech that had a medium size vocabulary and that
was spoken by a single speaker. Sentences from the RM
Corpus were chosen because its format (sentences of vary-
ing length whose grammar can be well-modelled with a
language model) and its vocabulary size (1000 words) are
ideal for research into lip-reading in its current state of
development. The recording setup was the same as for the
ISO-211 dataset.

Phoneme transcriptions of the sentences were derived
from the BEEP Dictionary (6). Some statistics about the
two databases are shown in Table 1.



1SO-211  RM-3000
Total number of sentences - 3000
Total Number of unique words 211 979
Total number of unique phonemes 45 45
Total number of word tokens 1255 26114
Total Number of phoneme tokens 7040 105561
Average number of words per sentence - 8.70
Average number of phonemes per sentence - 35.19
Average number of phonemes per word 5.61 4.04

Table 1: Statistics of the ISO-211 and RM-3000 corpora.

3.1. Features for lip-reading

n (46), three video resolutions (640 x 360, 1080 x 720
and 1920 x 1080) were compared in a visual-phone lip-
reading recognition task, and it was found that there was
no significant difference in the accuracy obtained. There-
fore, to improve the efficiency of the feature extraction
and modelling processes, all videos were down-sampled
to a third of their original resolution to 360 x 640 pix-
els. Between 20 and 30 frames from each recording ses-
sion were selected for hand-labelling: we labelled frames
that described the extremities of mouth movements to
capture as much variance of shape and appearance pos-
sibilities as possible. In each selected frame, 111 points
were labelled over the whole face to ensure stability when
tracking, which was done using the inverse compositional
project-out AAM algorithm (37). An example frame is
shown in Figure 1 with landmark points on the face: eight
points on each eyebrow, 12 points on each eye, 2 points per
nostril, 19 points around the chin and up the edge of the
head to eye-level, 28 points on the outer lip contour, and
20 on the inner lip contour. After tracking the complete
datasets, only the inner and outer lip contour points were
retained prior to the AAM feature extraction process.

It seemed possible that the RM-3000 database (recorded
by a male speaker) might be “noiser” than the ISO-211
database (recorded by a female speaker) because of the
presence of facial hair and the lack of makeup (particu-
larly lipstick) on the former recording. In practice, these
differences did not seem to affect tracking or accuracy of
segmentation in the feature extraction process.

AAMs encode the shape and appearance information
of the lips. The shape, s, of an AAM is described by the x
and y-coordinates of a set of n vertices that delineate the
lips: s = (1,91, .-, Zn, yn)T,. These points are obtained
using the tracking method described above. A compact
model that allows a linear variation in the shape is given
by:

s=so+ ) pisi, (1)
i=1

where sg is the mean shape and s; are the eigenvectors
corresponding to the m largest eigenvectors of the covari-
ance matrix—these vectors accounted for 95% of variation
in the shape mode and 90% variation in the appearance

Figure 1: An example frame from the isolated-word dataset. Land-
marks are hand-labelled on 20 to 30 images of the face to aid tracking.
Points on other parts of the face are discarded for feature extraction.

mode. The coefficients p; are the shape parameters that
define the contribution of each eigenvector in the represen-
tation of s. Such a model can be computed using Principal
Component Analysis (PCA).

The appearance, A, of an AAM is defined by the pix-
els that lie inside the base shape sqg. AAMs allow linear
appearance variation, so A can be expressed as a base
appearance Ag plus a linear combination of | appearance

images A;:
!

A=Ay + Z NA;, (2)

i=1
where \; are the appearance parameters. The mean ap-
pearance Ag and basis appearance images A; can be com-
puted by applying PCA to the images after warping to
the mean shape, sg (10). Although separate shape and



the appearance components of an AAM can be used as
features for lipreading, combined AAM features (10) are
more discriminative (28), and we used these. Velocity (A)
and acceleration (AA) features are added, and we apply
a per-speaker z-score normalisation to the features to re-
move the mean and normalize the standard deviation.

4. Recognition Units for Lip-Reading

A phoneme can be defined as ‘The smallest contrastive
linguistic unit which may bring about a change of mean-
ing’ (12). A speaker must be capable of producing sounds
that are recognisable as distinct phonemes for their speech
to be understood. However, there is no requirement for
a speaker’s wvisual signals (e.g. mouth shapes) to form
contrastive patterns, and hence there is no precise visual
equivalent of the phoneme. The term wiseme is loosely
defined (16) to mean a visually indistinguishable unit of
speech, and a set of visemes is usually defined by grouping
together a number of phonemes that have a (supposedly)
indistinguishable visual appearance. Several many-to-one
mappings from phonemes to visemes have been proposed
and investigated (16; 18; 9; 1).

For visual speech recognition, it seems intuitive that
the units of recognition to be modelled should be visemes
rather than phonemes, since the phonemes that are mapped
to a single viseme are (supposedly) not visually distin-
guishable. However, because of the many-to-one map-
ping of phonemes to visemes, two words that have distinct
phonemic transcriptions may have identical visemic tran-
scriptions. These words are termed homophenous words—
they sound different but look identical (e.g. ‘bat’, ‘pat’
and ‘mat’). So it seems that for visual speech recognition,
we are faced with a choice: model visemes, and deal with
ambiguous word transcriptions; or model phonemes, and
thus attempt to model events that are apparently indis-
tinguishable. Here, we investigate the results from these
two approaches.

Some studies have calculated that as many as 40%-60%
of English spoken words could be homophenous, something
that poses a significant problem for visual speech recogni-
tion (2). Here, we define a set of words to be homophenous
if they all have the same viseme transcription in whatever
phoneme/viseme mapping we are using. Of the 979 dif-
ferent words spoken in our database, 106 (10.83%) are
homophenous when the Fisher phoneme-to-viseme map-
ping ((16), Table 2) is used. However, because of the un-
even distribution of words in the 3000 sentences, these
homophenous words account for 8988 (34.42%) of all word
tokens out of a total of 26114 tokens. Therefore, even with
perfect viseme recognition, the recogniser’s performance
could be as low as 65.58% if it were always to make the
wrong choice between a group of homophenous words.!

1 Homophones share the same phonetic transcription e.g. ‘for’
and ‘four’. Although these are a nuisance in speech recognition,
they make up a tiny proportion of all words, unlike homophenous
words.

Viseme Class Mapped Phonemes
Vi /b/ /p/ /m/
V2 /[t I/
V3 /t/ /4] [s/ [z/ /th/ /dh/
V4 /w/ [x/
V5 /k/ /g/ /n/ /1) /ng/ /hb/ [y/
V6 /ch/ /ih/ /sh/ Jzh/
V7 /eh Jey/ Jae/ Jaw/ [er/ [ea/
V8 Juh/ Juw/
V9 /iy/ /ih/ /ia/

V10 Jah/ Jax/ Jay/
V11 Jao/ Joy/ Jow/ Jua/
Vi2 Jaa/

V13 Joh/

V14 Jsil/

Table 2: Description of the Fisher phoneme-to-viseme mappings to
collapse 45 phoneme classes into 14 viseme classes. A viseme is
reserved for the silence model (/sil/)

4.1. Ezxperiments

For our recognition experiments, we used a conven-
tional HMM/GMM system, an approach that has been
successful for automated lip-reading (11; 35; 24). We trained
monophone models of recognition units using 20 itera-
tions of the embedded Baum-Welch re-estimation algo-
rithm. An exhaustive search was performed to find the
optimum number of states (three) and mixture compo-
nents (19 per state). A short-pause model (sp) was tied
to the centre state of the HMM that modelled silence to
allow a short-duration silence between words. Ten-fold
cross-validation was used, so that 2700 sentences of the
RM-3000 dataset were used for training and the other 300
for testing. We built word, viseme and phoneme bigram
language models (as required for a particular experiment)
from the transcriptions of the 5000 RM sentences not used
to make the RM-3000 dataset. The grammar-scale factor
was optimised to give the best results.

Figure 2 shows the results obtained for audio and vi-
sual recognition as a function of the number of sentences
used as training data. Note that the accuracy here is
the accuracy of the recognition unit used, not word accu-
racy. We used phoneme and viseme units for both audio
and visual data. As the terms used to describe the units
used might be confusing, Table 3 clarifies their meaning.
Figure 2 shows that, as expected, we can achieve very
good phoneme recognition accuracy on single-speaker au-
dio data. It is interesting to note that viseme recogni-
tion accuracy is actually a little lower (about 2%) than
phoneme accuracy when using audio data, despite the num-
ber of viseme classes being less than one third of the num-
ber of phoneme classes. We can attribute this to the fact
that the phoneme-to-viseme mapping of Table 2 groups to-
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Figure 2: Unit recognition accuracy on 3000 speaker-dependent sentences from the Resource Management Corpus (RM). See Table 3 for an
explanation of the units used. Error bars (a result of testing on different folds) have been omitted because they are too small to discern.

Term Description

Audio phoneme  Results obtained on audio data using 45 monophone units.

Audio Viseme Results obtained on audio data using 14 viseme units (mapping as per Table 2.)
Visual Phoneme Results obtained on visual data using 45 monophone units.

Visual Viseme Results obtained on visual data using 14 viseme units (mapping as per Table 2.)

Table 3: Clarification of the terms used in the experimental results.
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Figure 3: Word recognition performance on 3000 speaker-dependent sentences from the Resource Management Corpus (RM). See Table 3 for
an explanation of the units used. Error bars on points omitted because they are too small to discern.

gether phonemes that have very different acoustic features,
and so the variation in the features within the classes is
high, and therefore difficult to model. Using visual data,
the situation is reversed: we obtain better accuracy (near
10% better) using visemes rather than phonemes, which is
what we would expect from using the phoneme-to-viseme
mapping, which is designed to combine visually similar
phonemes into a lower number of relatively homogeneous
classes. However, the accuracy is significantly lower than
that obtained with audio data.

But wnit recognition accuracy is not of great inter-
est (8)—we could reduce the number of units to two and
get probably near 100% unit accuracy, but word accuracy
would be very low. Figure 3 shows what happens when we
use either phoneme or viseme units to recognise words. For
audio data, the best performance (about 96% accuracy)
is obtained when the units used are phonemes, and when
viseme units are used with audio data, performance suffers
considerably (about 15% lower), because one is combining
sounds that may be quite different into a single unit. This
effect is even more pronounced when using visual data:
word recognition accuracy is about 23% worse when using
viseme rather than phoneme units. Given that the viseme
recognition rate is higher than the phoneme recognition
rate, it is tempting to attribute this result to the pres-
ence of homophenous words. In other words, the decoded
viseme strings may actually be more accurate than the
decoded phoneme strings, but because there are often two
or more words that share the same viseme transcription,

performance is low because of the difficulty of selecting the
correct word. In the next section, we demonstrate that this
explanation is wrong, and give an alternative explanation
for the drop in performance.

For phoneme, viseme or word recognition, Figure 2 and
Figure 3 show that with audio data, optimum recognition
performance is obtained with about 600 training sentences,
whereas for visual data, performance is still increasing
when the full set of 2700 sentences has been used for train-
ing. This implies that lip-reading requires considerably
more data to reach optimum performance than audio ASR.
It is also interesting to note that word recognition perfor-
mance is about the same using both viseme and phoneme
units when only 200 sentences are used for training, but
performance using phonemes outstrips performance using
visemes as more training sentences are added. This may be
explained by the fact that phonemes require more training
to achieve maximum performance because there are three
times as many phoneme classes as viseme classes.

4.1.1. Analysis of the effect of homophonous words on recog-
nition performance

We expected to get increased word accuracy for vi-
sual speech by combining ‘indistinguishable’ visemes into
the same class, but performance was actually considerably
lower using visemes than using standard phoneme units.
Was this due to the formation of homophenous words,
which now constituted 34% of the spoken vocabulary? We
devised an experiment to see how well a word bigram lan-
guage model was able to disambiguate the correct word



from a set of homophenous words within a given context
in a sentence. During decoding, the relative influence of
the acoustic and language models on word selection is con-
trolled by the grammar scale factor (GSF). The higher the
GSF, the more weight is placed on word sequences that are
a priori likely (i.e. trained by the language model) rather
then ones suggested by the evidence from the viseme mod-
els.

We synthesised a set of ‘perfect’ features for a number
of sentences in our corpus in the following way. Firstly,
each sentence was transcribed as a sequence of visemes.
The resulting viseme sequence was replaced by the cor-
responding sequence of concatenated HMMs, S, and the
viseme feature vectors corresponding to the sentence were
force Viterbi-aligned to S. Suppose N, feature vectors
had been Viterbi-aligned to state s; of S. Then the mean
vector of the most-frequently used mixture component of
state s; was duplicated N; times, and the resulting vector
sequence added on to the end of a store. This resulted in
a sequence of synthetic feature vectors of the same length
as the original utterance that matched perfectly to the se-
quence of viseme HMMs corresponding to the sequence
of words in the sentence. However, when decoding this
sequence to a word sequence, two ambiguities must be re-
solved:

1. different possible segmentations of the viseme string
into words;
2. homophenous words.

These ambiguities are resolved by the language model.
Figure 4 shows the effect on the word accuracy of increas-
ing the GSF when the ‘perfect’ features were decoded by
the recogniser. When the GSF is 0 the language model has
no effect, and the word accuracy is rather low (92%) be-
cause of the above ambiguities. If the GSF is increased to
1, the language model now chooses more correctly from the
possible segmentations and from the sets of homophenous
words, and accuracy increases to about 98%. However, if
the GSF is further increased, accuracy falls, because the
recogniser now places too much weight on high-probability
word sequences that it has learnt from the training data
at the expense of likelihood information from the viseme
HMMs. An analysis of the remaining 2% errors showed
that they were indeed caused by the ambiguity of ho-
mophenous words. A pair of confused words usually had
the same viseme transcription and could plausibly appear
in the same position in the decoded sentence i.e. the as-
sociated bigrams with the surrounding words presumably
had similar probabilities. Examples are the pairs ‘hep-
burn/campbell’, ‘westpac/rathburn’, ‘mind/miles’, ‘sen-
sors/texas’, ‘barge/march’, ‘six/since’ etc. Another com-
mon error was a confusion of plural/singular versions of a
word that ends with a phoneme in the same viseme group
as the phoneme /s/ e.g. ‘threat/threats’, ‘speed/speeds’,
‘length/lengths’. The final /s/ of of these words is the
same viseme (V3) as the preceding phoneme. So our con-
clusion is that, providing that a suitable language model

is used to resolve ambiguity, the presence of homophenous
words adds only a small error to performance.

This result implies that the deterioration in perfor-
mance when visemes rather than phonemes are used is due
to deficiencies in modelling of visual features rather than
language issues. This is not surprising when one considers
that audio ASR accuracy is increased if contextual mod-
elling is performed by the use of triphones and quinphones.
In practice, many phonemes have one or more allophones,
different sounds that are perceived as the same phoneme,
and coarticulation, which depends on context, alters the
realisation of phonemes. So we should not be surprised if
the same is true of visemes, especially as co-articulation
is even more pronounced in visual speech. Because dif-
ferent phonemes occur in different contexts, by modelling
phonemes in visual speech, one is, in effect, modelling dif-
ferent contexts of a viseme.

The issue of units for audio-visual speech recognition
has been investigated by others e.g. (19; 33), most no-
tably by Hazen (22). Although he did not consider the ef-
fect of homophenous words, he also came to the conclusion
that a viseme representation was not beneficial for recog-
nition (in fact he used tri-visemes). The work described
here was performed on data from a single speaker and so
the conclusion that visemes are sub-optimal units should
be treated with caution. However, recent work by Has-
sanat (21) showed that visemes were sub-optimal recogni-
tion units for each of 27 male and female speakers and Yu
(61) also made a similar finding using different data from
two different speakers.

5. A Weighted Finite State Transducers Model

A finite-state automaton (FSA) is a mathematical model
of a sequence of events. An FSA is defined by a finite set
of states which are connected using transitions. Weighted
finite-state transducers (WFSTs) are similar to FSAs, ex-
cept that every transition also has an associated trans-
duction between an input and an output symbol. Addi-
tionally, the transitions have weights associated with them
that can be used to favour certain paths though the au-
tomaton over others. Figure 5 shows a very simple 3-state
WEFST. States are depicted by circles and transitions by
arrowed lines. Starting states are defined by a bold out-
line surrounding the state (state 0 in Figure 5) and final
states are defined by double-line borders around the state
(state 3 in Figure 5). This transducer has the sole func-
tion of converting the input string abc to the output string
zyz, and simultaneously producing an associated weight-
ing of 1.2 4 3.2+ 3.3 = 7.7. The composition operation
provides the ability to combine multiple transducers us-
ing the binary relationship between the input and output
symbol domains. If the transduction x — y is performed
by transducer T} and the transduction y — z is performed
by transducer 75, then Tj o T5 (i.e. the transducer built
from the composition of 77 and T5) models the transitive
transduction x — z. If several transducers are composed
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Figure 5: A example of a weighted finite-state transducer that trans-
lates the string ‘abc’ to ‘xyz’.

one after the other in this way, the resulting system is
known as a transducer cascade, and this has been found
to be very useful in both speech and language processing
(55; 27; 42; 38). A comprehensive introduction to WFSTs
would go on to describe the operations of Union, Epsilon
Removal, Closure, Determinization and Minimization as
applied to WFSTs. Space does not allow us to do this
here, so we refer the interested reader to articles by Mohri
and Riley which give detailed descriptions of the under-
lying theory of WFSTs and their application to speech
recognition problems (39; 38; 40).

Figure 6 gives an overview of the architecture of our
WEFST-based system. On the left-hand side, an N-best
list of phoneme sequences is output from a visual phoneme

recogniser controlled by a phoneme bigram language model.

One or more of these sequences are fed to a cascade of
four WFSTs, marked ‘P*’, ‘C’, ‘L’ and ‘G’ in the diagram,
whose function we describe below. The construction of
the ‘C’ transducer is also shown on this diagram: note
that it is built from a dataset that is independent of the
sets used to train or test the phoneme recogniser. The out-
put text is produced by an algorithm that finds the ‘best’
path through the transducer cascade, where ‘best’ means
the path that produces the minimum summed transducer
weights.

5.1. The Input Transducer (P*)

The input transducer has the function of converting
output from the phoneme recogniser into the form of a
transducer so that it can subsequently be composed with
the rest of the transducer cascade. This transducer can
represent the 1-best decoding of the phoneme recogniser,
the N-best-decodings, or a phoneme lattice. In the case
of the 1-best decoding, the transducer is a finite-state au-
tomaton with no transduction i.e. the output sequence
is identical to the input sequence. For N-best-decodings,
we build a WFST for each of the N decodings and then
form the union of these WFSTs. The resulting transducer
is determinized and minimized to enhance performance.
However, this approach (which we term N-Best-1 for fu-
ture reference) restricts us to processing a single one of
the N-best decodings at any time, and it seems plausible
that a closer approximation to the correct phoneme se-
quence could be found by taking a route through several
of the N-best decodings. Suppose the longest decoding
Dy, consists of N words. We use dynamic programming
to align each decoding D1, D3, ..., Dy, to Dy, so that our
decodings can now be represented by an N x Ny matrix.
In columns (time slots) of this matrix where all the de-
codings agree with each other, the same decoded phoneme
label occurs in every row. Where decodings do not agree,
there are multiple phoneme labels present in a column.
It is straightforward to construct a WFST that is capa-
ble of traversing all possible paths through this matrix.
A typical example of the resulting transducer is shown in
Figure 7. This technique produces more compact WFST's
than the first technique which enables faster computation,
although the increase in out-degree (the number of arcs ex-
iting from a state) has the opposite effect. This way of ex-
pressing hypotheses has been termed a confusion-network
(or ‘sausage’) (60) and was first proposed in a different
context in (36). We term it N-Best-2.
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Figure 6: Our proposed WFST lip-reading system

m:m/-1.23 ih:ih/-1.238

ax:ax/-3.445 Q sh:sh/-5.6 ame
eh:eh/-1.432

ah:ah/-0.82

Figure 7: An example P* transducer. This transducer models the N-best output from the phoneme recogniser in response to the visual
features for the word ‘Machine’.



5.2. The Confusion Transducer (C)

This transducer models the observed pattern of er-
rors (substitutions, deletions and insertions) made by the
phone recogniser. Its function is to input a set of error-
ful phoneme strings from the phone recogniser, and, using
the observed error patterns, process these into a rich set
of output strings that can then be processed into word
sequences by the lexicon and language model transduc-
ers. The transducer is built by forming a confusion-matrix
from the phone recogniser output and then converting
this matrix into a transducer. The confusion-matrix is
in turn built by aligning (using dynamic programming)
the output of the phoneme recogniser to the ground-truth
phoneme string and processing each pair of aligned sym-
bols in turn. An example aligned phoneme string and the
resulting confusion-matrix are illustrated in Figure 8. Note

Sub. Ins. Del.
Ground-Truth: | d | ih £ r |ax| n
Recognised: t|(ih f|v |« n

Response
d f n t r \ ax 1ih| DEL
dlo o o 1 0o 0 0 00
£/0 1 0 0 0 0 0 00O
p B0 0 1 0 0o 0 0 0|0
a t|lo o o 1 0 0 O0 00O
g r|/0 0 0 O 1 0 0 00O
]
v|io o o 0o 0 O 0 0O
ax [0 0 0 O 0 O 0 0 |1
ih|o o 0o o0 o0 0 0 110
INS|[O 0 0 0 0 1 0 0

Figure 8: An example alignment between the ground-truth and
recognised sequences using dynamic programming for the phonetic
transcription of the word different (top) and the resulting confusion-
matrix (bottom).

that the values shown in this confusion-matrix are counts,
and these can easily be converted to probabilities Pr(p,|p;)
(the probability that phoneme p; is recognised when the
ground truth is phoneme p;) by normalising across a row.

The WEFST shown in Figure 9 illustrates a key concept
in our system, namely how a WFST can correct a phoneme
string that contains errors. The transducer shown is a
very specific one that corrects the string ‘t ih f vrn t’ to
‘d ih fr ax n t’ (‘different’). The weights shown in this
case are illustrative only. Where no errors were made, the
transducer’s input and output symbols are the same i.e.
‘t/t’, ‘n/n’, ‘v/r’, ‘£/f7, ‘ih/ih’. The deleted phoneme ‘ax’
is re-inserted by means of the transduction ‘~/ax’ and the
inserted phoneme ‘v’ is deleted by the transduction ‘v/-.

Figure 9: A cyclic confusion weighted finite-state transducer to cor-
rect the hypothesised sequence produced by the recogniser in Figure
8. The deletion of the phoneme az in the hypothesised sequence is

t modelled in the confusion transducer using the epsilon symbol (-)
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to reverse the error and insert a phoneme into the hypothesised se-
quence. This epsilon symbol is reserved to allow ‘free’ transitions
between states and is used to model both insertions and deletions.

The phoneme ‘t’ appears twice in the input. On the first
occasion, it is correct, but on the second, it is an error and
should be corrected to ‘d’. Hence there are two entries with
‘t’ as the first phoneme, one that maps it to ‘t” and another
that maps it to ‘d’. The entries have different weights,
and these weights are actually the negative log probabil-
ity values in the confusion-matrix: hence the higher the
probability value, the lower the weight. In this case, the
lower weight associated with the transduction ‘t/t” makes
it more likely that this transduction will be preferred in a
situation where ‘t” and ‘d’ are both possible responses to
an input ‘t’. In practice, we know neither what the input
sequence will be nor what the ground-truth should be, so
the confusion WFST has an arc for every single non-zero
entry in the confusion-matrix and hence produces a very
large number of possible strings in response to an input
sequence.

5.2.1. Estimation of the Probabilities in the Confusion Trans-

ducer

Experimentally, we have found that for the transduc-
ers to function well at correcting the strings, we need to
distribute some of the probability mass from the diagonal
of the confusion-matrix to off-diagonal elements. We term
the simplest method of doing this base smoothing (41).
Here, each off-diagonal element in a row receives the same
proportion of the diagonal element from that row:

ifij
if i = j.

SG.5) {C(i,j) +1C(i, ) )

C(i,5)(1 = (N =1)n)



In equation 3, C(i, ) is the original confusion matrix i.e.
the estimated probability that phoneme p; was misrecog-
nised as phoneme p;, S is a smoothed version of C, N
is the number of phonemes, and n (> 0) is a constant
that controls what proportion of the diagonal of C' is re-
distributed along the row. n must clearly be sufficiently
small that 0 < S(4,75) < 1.

A variant on base smoothing is Ezponential Smoothing
(41) in which

eC (i,)

- Zk eaC(i,k)’

where « is a constant that controls the degree of smoothing
applied. When « =0, S(i,j) = 1/N V 4,j i.e. the proba-
bility mass of row 4 is equally distributed over the columns
of the row. As a — oo, the probability mass concentrates
in the largest element of the row (which is generally the
element on the diagonal).

One problem encountered when building these matri-
ces is the very large number of deletions in the output of
the phoneme recogniser when visual features are input to
it. These deletions can lead to spurious alignments be-
tween the ground-truth phoneme sequences and the de-
coded sequence, which in turn lead to poorly-estimated
confusion-matrices. Consider the example shown in Fig-
ure 10, which compares the purely symbolic alignment
of the ground-truth phoneme sequence (top) with a tim-
ing diagram that shows where the phonemes start and
end in the speech (bottom). The alignment of /ea/ and
/sil/ is evidently correct, but the deletion of the phonemes
/b/ and /th/ has led to the alignment of /ih/ with /aa/.
These two events are a long way apart in time, and hence
/ih/ and /aa/ are unlikely to be a genuine ‘confusion-
pair’—it is more likely that they are an artefact of the
alignment process. To alleviate this problem, we only
accepted confusion-pairs if both members of the pair oc-
curred within a certain time of each other in the speech
stream. We noted that some phonemes were more prone
to mis-alignment than others, and so made the thresh-
old for acceptance of a confusion-pair different for each
phoneme. This threshold was estimated by performing a
symbolic alignment using the training-data whilst simul-
taneously recording the difference between the start-times
of the ground-truth and recognised phonemes. For each
ground-truth phoneme class p;, the mean difference, u;,
and the standard deviation, o;, of this difference was then
estimated. A confusion-pair was only accepted for inclu-
sion in the confusion-matrix if the difference between the
start-times of each phoneme lay with the range u; + So;,
where § was a positive constant. The effect of 5 on the
number of accepted pairs is shown in Figure 11. Figure
11 shows that using a threshold window whose width is
430 reduces the number of observed confusion pairs from
85000 to 76200 (11.8%) compared with using no window.

5(i,7) (4)
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Figure 11: Analysis of the number of confusion patterns that are
accepted as a function of the timing window. Error bars are not
shown here because they are too small.

5.2.2. Bigram Confusion Transducer

It is beneficial in language modelling to employ higher-
order N-gram modelling if sufficient data are available to
train such models, and we expected that the extra con-
textual information introduced by modelling confusions
between pairs of symbols would aid recognition perfor-
mance. Conventional N-gram language models employ a
back-off procedure to revert to the unigram model when
a previously unseen word bigram is encountered at test
time. In the same way, we maintain the unigram confu-
sion matrix described in Section 5.2.1 as a back-off model.
The bigram confusion matrix is populated using the same
alignment procedure as described in Section 5.2.1 but with
a window covering two phonemes instead of one. For un-
seen bigrams, the confusion model allows for back-off to
the unigram confusion probability. An example of a bi-
gram confusion model is shown in Figure 12. This model
has been constructed using a vocabulary of three symbols:
a, b, and ¢. Arc weights are defined using the negative
logarithm of the entries in the bigram and unigram prob-
ability matrices. Owing to the strong influence of the un-
igram confusion matrix, a back-off weight 5 is applied to
each unigram probability (where 0 < 8 < 1), and the bi-
gram probabilities are weighted by (1 — 8). Experiments
were conducted using a 8 value with a 0.1 increment from
0.1 to 0.9 with best accuracy achieved when g = 0.7. The
extension of the confusion model came at little compu-
tational cost. Only 6785 unique bigram confusions were
observed during training and they increase the size of the
transducer by only about 35%.

Finally, the lexicon transducer (L) is an inverse pronun-
ciation dictionary i.e. it maps sequences of phonemes to
whole words. The language model transducer (G) imple-
ments a word bigram language model with backoff to un-
igram. These transducers are standard and are described
in detail in e.g. (39).



Ground-Truth: sil b aa th ch ea sil

Recognised: sil ih ch ea sil

Ground-Truth | ] ] ] ] ] ] ]
sil b aa th ch ea sil

Recognised L1 | | | J
sil ih ch ea sil

Figure 10: Top: the purely symbolic alignment between the ground-truth phoneme sequence and the output of the phoneme recogniser.
Bottom: the relative timing of the two phoneme strings. The timing diagram shows that the alignment of /ea/ and /sil/ is correct. However,
the deletion of the phonemes /b/ and /th/ has led to the alignment of /ih/ with /aa/, but these events are a long way apart in time and this

is unlikely to be a genuine confusion-pair.

-:c / -log(BPr(-:c))

-:b / -log(BPr(-:b))
-:a/ -log(BPr(-:a))
c:-/ -log(BPr(c:-))
b:-/ -log(BPr(b:-))
a:- / -log(BPr(a:-))
c:b / -log(BPr(c:b))
c:a/ -log(BPr(c:a))
b:c / -log(BPr(b:c))
b:a / -log(BPr(b:a))
a:c/ -log(BPr(a:c))
a:b / -log(BPr(a:b))
c:c / -log(BPr(c:c))
b:b / -log(BPr(b:b))

Figure 12: An illustration of a bigram confusion model with backoff weights. The vocabulary consists of three symbols: a, b, and ¢. The
unigram backoff arcs (above the state marked ‘0’) are derived from the unigram confusion matrix, which contains fifteen entries. Four possible
bigram arcs have been added. A backoff weight, 8, is applied to the unigram probabilities and a weight (1 — 8) is applied to the bigram

probabilities.

6. Results on the ISO-211 Dataset

For the baseline ‘standard’ system, the 1256 words were
split into six folds. Words were randomised between folds
such that no word appeared in the same fold more than
once. The six folds were then split into a training set
consisting of five folds and a testing set consisting of the
remaining fold. Cross-fold validation was performed with
each fold used in turn for testing. For the WFST approach,
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the additional confusion model also requries training us-
ing a further held-out segment of the data. Therefore, the
dataset was divided into three segments: a model training
set (four folds), a fold used to train the confusion model
and a validation fold to produce results. Table 4 sum-
marises the results of our approach on the isolated word
database. Results for two baseline systems are shown here.
These are:



1. Baseline 1: A ‘standard” HMM system. This used

five-state monophone HMMs of each of the 44 phonemes

(plus Silence), with eleven component Gaussian mix-
ture models (GMMs) associated with each state and
with a bigram phoneme language model. The pa-
rameters five states and eleven components were de-
termined after an exhaustive search over the param-
eter space.

2. Baseline 2: A system that took the 1-best phoneme
output from the phoneme recogniser and found the
lowest alignment cost (using dynamic programming)
to the phoneme transcriptions of each of the vocab-
ulary words.

Table 4 gives a comparison of the results of the ex-
periments on isolated word recognition. Baseline 1 (re-
sult A), a standard HMM approach, achieved nearly 60%
word accuracy. The system of Baseline 2 is essentially
unconstrained phoneme recognition, and its low perfor-
mance shows that the visual phoneme recognition rate is
low. Compare this result with system C, which uses a con-
fusion WFEST followed by a lexicon WEFST. The confusion
WEFST was not estimated from data, but built by taking
an identity matrix and redistributing a small amount of
the diagonal element of a row equally to all other elements
on the row. This creates a confusion-matrix that gives a
high weight to mapping an input phoneme symbol to it-
self, but allows mapping to any other symbol, albeit with
a low weight. The result, 35.36%, is considerably bet-
ter than Baseline 2, and interestingly, considerably better
than system D, in which the confusion-matrix was formed
by purely symbolic alignment of the phoneme recogniser
output and the ground-truth phoneme strings. In fact sys-
tem D is almost no better than Baseline 2, which shows
how poor the symbolic alignment process is. But when
the confusion-matrix is formed from data with a timing
constraint (system E), performance increases to over 46%.
Using N-best decodings rather than just the top decod-
ing is not beneficial if they are combined using N-best-1
(system F, ie. we are effectively allowed to process all
N decodings in parallel but not combine them). However,
using N-best-2 (system G), in which decodings can be com-
bined, leads to a further increase in performance to 49.7%.
We found that base smoothing was always better than ex-
ponential smoothing: e.g. for system G, the difference is
49.70% versus 42.68%. Finally, using a bigram confusion-
matrix adds another 3% to accuracy. However, the best
result using WFSTs is still 7% worse than the standard
approach. It seemed that the sparsity of data available to
estimate the confusion-matrix entries was a problem when
using the ISO-211 dataset: it was useful in developing the
WEFST techniques initially, but was too small to enable the
full potential of the technique to be realised. In the next
section, we report results on the RM-3000 dataset.
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7. Results on the RM-3000 Dataset

In these experiments, the data were divided into ten
folds, six of which were used for training the models, two
for training the confusion-model, and two for testing. The
folds were rotated to give cross-validation results.

The problem of deletions of phonemes in visual speech
(mentioned in Section 5.2.1) becomes more acute when
continuous speech rather than isolated words is recognised.
If the phoneme recogniser is run to maximise phoneme ac-
curacy (defined as (N —D — S —1)/N, where N is the to-
tal number of symbols in the ground-truth strings, D the
number of deletions, S the number of substitutions and [
the number of insertions), deletions account for over one
quarter of the errors, and sequences of up to six deleted
phonemes are sometimes seen: it seems very unlikely that
any system could correct such a large gap in the output.
By altering the ‘insertion penalty’ of the decoder, deletions
can be traded to some extent for insertions, and these are
easier for our system to correct. However, the overall accu-
racy figure goes down when the insertion penalty is altered
to a non-optimal setting. We ran our WFST system on
the RM-3000 data with the phoneme recogniser optimised
to reduce deletions at the expense of extra insertions. The
results were disappointing: a word accuracy of just 12.8%
compared with an accuracy of 66.3% for a conventional
HMM system that used monophone models with GMMs.

7.1. Enhancing the performance of a conventional word
decoder

Our essential approach in this work consists of phoneme
recognition, followed by generation of a set of string hy-
potheses using the confusion transducer, followed by de-
coding using a network of legal words whose sequences are
constrained by a language model. It seemed likely at this
point that this approach might not be as successful as the
conventional approach of allowing only legal words to be
decoded from the outset by using a network of words, be-
cause the raw visual phoneme recognition accuracy was
too low.

However, our conventional word decoder provided fairly
accurate sets of word hypotheses from visual speech, and
it seemed to us that these could be enriched by the pho-
netic confusion transducer by first converting them into
phoneme hypotheses. The enriched phoneme hypotheses
can then be converted back to word hypotheses using the
lexicon and language model transducers. The advantage
of this approach is that hypotheses that may not have
been considered or have been rejected early on by the con-
ventional word decoder can be re-instated by the phonetic
confusion transducer on the basis of possible phonetic con-
fusions.

Figure 13 shows the architecture of our proposed sys-
tem. The confusion transducer here is built by aligning
phoneme strings that are transcriptions of the recognised
word strings to phoneme strings formed by writing the
ground-truth word strings as phoneme strings. In fact, we



Svstem % Word Accuracy
¥ (Std. Deviation)
A | ‘Standard’ HMM System (Baseline 1) 59.9 (4.19)
B | Phone decoding followed by string-matching (Baseline 2) 20.1 (1.43)
WEFSTs with a near-identity confusion matrix to avoid —oo
C log probabilities on off-diagonal elements: a small proba- 35.4 (2.27)
bility mass is added to every element. Uses top decoding ' '
only.
WEFSTs with confusion-matrix formed from purely symbolic
D . . . . 21.4 (3.30)
alignment using top decoding only and base smoothing
WEFSTs with confusion-matrix formed using timing infor-
E . . . . 46.1 (1.03)
mation, using top decoding only and base smoothing
WEFSTs with confusion-matrix formed using timing in-
F | formation combined using algorithm N-besi-1 and base 36.0 (0.88)
smoothing.
G | As above, but combined using algorithm N-best-2. 49.7 (1.60)
H WEFSTs using a bigram confusion matrix with timing, with 52.9 (3.31)
the backoff weight () set to 0.7

Table 4: Isolated word recognition accuracy results obtained on the ISO-211 dataset.

= e e e e e e - e - e - e - ——— - —

Standard Approach
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Word

v

Visual | Feature _ | Triphone Phoneme Visual Phoneme

Speech " | Extraction g Recogniser D Triphone HMMs
r-r—=—"-""-""-"=-"=-"=-">»>-"=-""-—""-"="-""-"="-"=-"="""""="="71
| Word output Confusion Model Dictionary |
| (© (D) |
' N/ |
I . |

Word-to-phoneme p WFST
| .. > > .. —» Word output l

chtlonary Phoneme Output WFST COI’HpOSlthH

l |
| .. : |
| Proposed Additional Confusion Model '

Figure 13: The architecture of a system that enriches phoneme hypotheses. The word hypotheses obtained from a conventional word decoder
are converted to a set of phoneme strings which are input to our transdcuer cascade to be converted back to word hypotheses.

force-align the ground truth word strings to the appropri-
ate model sequences in order to get timing information
for both the aligned phoneme strings so that we can use
timing restrictions to select confusion pairs as described

in Section 5.2.1. The RM-3000 dataset was split into ten
folds, each containing 300 sentences. From these folds,
three sets were formed: a training set (consisting of eight
folds) which was used to train the triphone word recog-
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Conventional HMM Addition of WFSTs
Triphone Word
Decoder
No. of Correct Words 20,500 20,477
No. of Deleted Words 2,308 2,363
No. of Substituted Words 3,306 3,274
No. of Inserted Words 763 596
Total No. of Words 26,114 26,710
Word Accuracy (%) 75.58 76.14

Table 5: Comparison of the word recognition statistics between the standard approach triphone system and the WFST confusion modelling

system using the triphone decodings.

niser, a testing set (one of the two remaining folds) which
was used to train the confusion model, and a validation
set (the final fold) which was used as test data. Cross-fold
validation was performed with each validation set used as
unseen test data. A comparison of the performance of this
system with the conventional word decoder is given in Ta-
ble 5. Table 5 shows that the proposed system achieves
a small gain in accuracy (0.58% absolute) over the con-
ventional system. McNemars test (17) shows that the dif-
ference between the two systems is statistically significant
with p < 0.001. Interestingly, most of this gain seems to
have come from reducing the number of inserted words.

8. Discussion

This paper has (a) discussed the issue of the choice of
units for automatic lip-reading (ALR) and (b) proposed
novel systems based around the use of a phonetic confusion
model to enhance the recognition accuracy of ALR.

Our experiments with units showed firstly that the in-
troduction of homophenous words into the lexicon (caused
by mapping from phonemes to a smaller set of visemes) led
to a decrease in accuracy of ALR. However, this decrease
was small compared with the loss in accuracy incurred by
using visemes rather than phonemes, and so we conclude
that the use of visemes is not beneficial for ALR. We say
‘unlikely’ because we investigated only one viseme map-
ping, but it seems clear that provided enough data is avail-
able, modelling the context of visual speech is beneficial.
This confirms the result that Hazen found for audio-visual
speech recognition units (22).

We then proposed a new architecture for ALR that
was based on the idea that visual speech has similarities
with dysarthric speech, in that its phonemic repertoire is
limited because some acoustic features are invisible. The
technique learns the probabilities of phoneme confusions
and incorporates them into its estimation of word hypothe-
ses. This is all done within the framework of a cascade of
weighted finite-state transducers (WFSTs), which makes
it fast and efficient. We demonstrated that this architec-
ture operated successfully on a small dataset of isolated
words. However, its performance was slightly lower than
a conventional system, which we attributed to the lack
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of data available to estimate the confusions reliably. We
therefore recorded a large database of continuously spo-
ken audio-visual speech consisting of 3000 sentences from
the Resource Management (RM) dataset, spoken by a sin-
gle male speaker. Continuous speech exposed the poor
quality of visual phonetic recognition, and we found that
our system worked best by enhancing the output from a
conventional word decoder, where it achieved a modest im-
provement in word accuracy. We achieved a single-speaker
word accuracy of over 76% on this 1000-word task.

Although the improvement in accuracy obtained thus
far is small, these are our first results using this architec-
ture for lip-reading and we believe that it holds promise.
Firstly, an obvious way of increasing accuracy is to com-
bine results from the word decoder and the confusion sys-
tem in a ROVER-like (15) confidence-measure based sys-
tem —an analysis of our results showed that accuracy
would rise by nearly 10% if the correct decision was chosen
when the two systems disagreed. Secondly, there are still
aspects of our post word-decoder system that need to be
explored, such as higher-order confusion models, the rela-
tive weightings of the phonetic confusion and the language
model probabilities and the use of techniques such as con-
ditional random fields (which are good at utilising context)
for prediction of substituted/inserted/deleted phones. Fi-
nally, we need to confirm that the system is effective in
a speaker-independent environment and this will depend
on whether confusion-matrices are similar across different
speakers.
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