PREDICTIVE SPEAKER ADAPTATION IN SPEECH
RECOGNITION

Stephen Cox, School of Information Systems,
University of East Anglia, Norwich NR4 7TJ, UK.
Tel: +44 603 592582
e-mail:sjc@sys.uea.ac.uk

Address for correspondence from August 1st-December 15th 1994:

c/o Dr Richard Rose,
Speech Research Dept.,
AT+T Bell Labs.,

600 Mountain Hill Avenue
Murray Hill
N.J.

U.S.A.



ABSTRACT

A major problem with most speaker adaptation schemes is that they rely on the speaker
providing at least one example of each acoustic unit (word, phone, triphone etc.) in the
vocabulary in order to adapt the appropriate model. Rapid adaptation is difficult to achieve
and some sounds may never be adapted because they are never heard. In this paper, a
technique of adapting all the speech models to a new speaker’s voice when he has given
an incomplete set of the vocabulary is presented. The technique is based upon using the
training-set to obtain estimates of correlations between sounds. Given some sounds from a
new speaker at recognition time, these correlations are used to obtain estimates of unheard
sounds which are used to adapt the speech models. The technique was applied to a database
of 104 speakers speaking the English alphabet. When speakers spoke half of the vocabulary

for enrollment prior to recognition, the technique gave a 78% decrease in error.
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1 Introduction

One of the central problems in the design of automatic speech recognition (ASR) systems
is how to model the variation in the acoustical signal representing a given speech unit. If
the system is to be used by a single speaker, this variation is usually relatively small from
utterance to utterance, and provided a sufficient amount of data can be collected from the
speaker to ‘train’ the system, high accuracy can be achieved. Such a system is usually
referred to as a ‘speaker-dependent’ system.

However, in many practical situations, a speech recognition system must be capable of
functioning with good accuracy on any voice (a ‘speaker-independent’ system). These sys-
tems must contend with the variation in acoustical signals from speaker to speaker (caused
by such effects as different vocal tract sizes and shapes, different accents, speaking styles
etc.) which is much greater than the variation within a single speaker. For both speaker-
dependent (SD) and speaker-independent (SI) systems, the approach most commonly used
to model variation is to collect a large number of examples of the speech units compris-
ing the recognition vocabulary and use these within a statistical framework to estimate
parameters of models of the speech units. Because the speaker-independent models are de-
rived from a large number of speakers, they have higher variance and hence higher overlap
between different speech units than adequately trained speaker-dependent models. Hence
given enough utterances from a speaker to generate adequately trained models, we would
expect to obtain better performance on his voice using these models than using ST models.
However, if there is no data available from the speaker, we are forced to use SI models (or
SD models derived from a different speaker, a possibility we do no consider here).

In between these two extremes, perhaps as more data becomes available from a speaker
in an on-line SI system, it seems natural to attempt to ‘tune in’ the SI models to work
better on the new speaker’s voice, i.e. to move the speaker-independent system towards a
speaker-dependent system, a technique which has become known as ‘speaker adaptation’.
The way in which adaptation of the speech models is accomplished depends on the nature
of the speech models and the recognition system. A popular and successful method for
ASR is to use continuous density hidden Markov models (CDHMMs) and in such a system,
adaptation can be formulated as a Bayesian learning procedure [11]. Using this method,
the SI model parameters are regarded as the a priori information which is modified by
the new speaker’s data to obtain an a posteriori estimate of the model parameters. By
adapting the means and variances of the HMM state probability density functions, it has

been demonstrated [11] that a speaker adaptive system always obtained better performance
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than a fully-trained speaker-dependent system.

2 Predictive adaptation

A disadvantage of the scheme proposed in [11] and similar schemes (e.g. [2], [10]) is that the
new speaker must provide at least one example of each speech unit for full adaptation of the
vocabulary. If examples of some of the units are not available, these units are not adapted.
This may not be problematical if the vocabulary is fairly small but for large vocabulary
systems, it means that the time taken for full adaptation will be long. One system requires
the new speaker to enrol by reading a specified text of about 100 sentences, a task which
takes typically about 20 minutes [1]. Another system which does not specify the adaptation
text requires about 10 000 words before complete adaptation is achieved [9].

By contrast, if a model for production of different sounds from a speaker is used, data
supplied by the speaker can be used to drive the model to predict previously unheard sounds.
The accuracy of such predictions will depend on the degree to which the model matches
reality and on the number of free parameters required to be estimated in the model.

There are some grounds for believing that humans use some such procedure. Under
normal environmental conditions, we usually understand effortlessly accents that we are
accustomed to, regardless of the physiology and (to a large extent) speaking style of the
speaker. This suggests that ‘normalisation’ to a speaker’s acoustic signals is practically
instantaneous if they follow the accent pattern that we expect. However, when we hear
speech with an unfamilar accent, we are conscious of having to give the speaker extra
attention to understand what he is saying and our ability to understand drops rapidly if
the environment is noisy. If the accent is particularly severe, it may take a long period of
exposure to it before we have complete and instantaneous understanding of the speech.

The fact that anyone can give some sort of impression of a well-known accent, or that
we sometimes remark that someone speaks with a ‘strange accent’ implies that we have
conscious ‘models’ of accents. It does not seem unreasonable to suggest that we have well-
developed unconscious models of accents and speaker types and that hearing some speech
from a new speaker triggers the appropriate model (i.e. set of expectations about the
acoustical signal) to aid us in decoding their speech. The model may be refined as we

receive more data from the speaker and ‘tune-in’ to his speech.
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3 Linear predictive models

In this section, we consider two particularly simple predictive models which were reported
in [5] and [6].

3.1 A ‘bias’ model

Suppose that an example of a sound-class ¢; can be represented by a single D-dimensional
vector and that an estimate of the mean vector of ¢; over speakers is p;. The realisation of

this sound class from a speaker is modelled as a vector s;, where
Si=pi+0 (1)

The vector § may be thought of as a ‘bias’ term and is characteristic of the speaker, or
more correctly the speaker plus acoustic channel. For the purposes of predicting unheard
sounds, all sound classes from the speaker are modelled as the mean value of the class plus
the same offset vector § i.e. we consider the summed effects of the speaker plus acoustic
channel to be equivalent to a translation of the mean vector in the feature-space, and the

translation is characteristic of the speaker and invariant. If the speaker gives N utterances,

X1,X2, ..., XN whose classifications are c(1), Cy(2), - - - ; Ck(v), the maximum-likelihood value
of & under this model is N
1
§== D (xi — pyiy) (2)
i=1

3.2 A linear transformation model

A more sophisticated model was also studied in which the speaker’s realisation of a sound-

class was modelled as a linear transformation of the mean:

where A is a D x D matrix. With no restrictions on the values of A, it would be necessary
to estimate D? + D parameters to train this model. Since the technique is designed to work

on small amounts of data, this is not viable for even modest values of D. Hence A was
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restricted to be a tri-diagonal matrix with constant coefficients i.e.

B
a B v
a B v O
A =
0] a B v
a f

The values of a, 8 and ~y were estimated by least-squares fitting.

Both models had a phonetic motivation. The chosen feature representation in the
work reported in [5] and [6] was a logged magnitude spectrum, so that if the speaker’s
‘transformation’ of the mean is visualised as a linear filtering operation, this is implemented
as an addition in this domain, as in equation 1. The effect of the tri-diagonal matrix
transformation in equation 3 is to shift acoustic patterns up and down the spectrum, and
it is known that realisations of a sound across speakers can be at least partially explained
by upward or downward shifts of the spectrum [3].

However, recognition performance improvements obtained using these models were dis-
appointing. Using a database of 104 speakers, each speaking three utterances of the alpha-
bet, the greatest improvement in error-rate obtained was 32% (14.9% unadapted to 10.1%
after adaptation). A study which used a very similar technique [14] also noted a small
increase in performance. It was later discovered that a similar reduction in error-rate could
be obtained by using a more sophisticated front-end which incorporated time-derivative
information, and after this had been introduced, the adaptation techniques gave little im-
provement. It was concluded that although these models have the advantage of simplicity
and conciseness, their core assumption that a given speaker’s speech can be modelled as
a single invariant transformation applied to the ‘prototype’ speech models is not powerful

enough to account for the complexity of the actual shifts in the feature-space.

4 A correlation-based model

The simplest and commonest type of variation between accents is in the way in which dif-
ferent vowels are pronounced. If there is a difference in two accents between the realisation
of a certain vowel, there must be parallel and symmetrical realisational differences between
neighbouring phonemes, or otherwise phonemes would not remain distinct. A similar rea-
soning would hold for differences due to other factors such as vocal-tract shape or acoustic

channel.
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This observation suggests that the techniques described in section 3 could be extended
to use sets of neighbouring sound-units with a different bias term or transformation for
each set. As more sets are defined, the model’s predictive power lessens, since a given input
sound can predict only the sounds within its own set, but the prediction accuracy within
a given set increases. In the limit, the number of sets equals the number of sounds and an
input sound is used only for predicting its own class i.e. the model ceases to be predictive of
unheard classes. Both conditions are present in the study by Zhao [15], in which the model
of section 3.1 was extended by using both an invariant bias term ¢ and a sound-dependent
term ¢;.

Rather than speculate about the number and membership of such sets, we have preferred
to abandon the assumption that a sound from a speaker can be generated by a linear
transformation of the appropriate prototype sound. Instead, we simplify the complexities
of the speech signal by imagining that a sound from a speaker can be represented by a value
on a certain axis, and that other sounds made by the same speaker can be represented by
positions on orthogonal axes. In this representation, a speaker is a point in a V' dimensional
space, where V is the number of sounds in the vocabulary. Note that this space is quite
different from the ‘feature-space’ used to initially represent the sounds from their waveforms.
When several speakers are represented in this ‘speaker-space’, our assumption is that the
resulting distribution of datapoints has some kind of structure and that knowledge of this
structure is useful for prediction purposes. For instance, if the locations of the sounds whose
classifications are ¢y, co, . .., cn are known for a speaker, they can be used together with the
knowledge of the overall structure to predict the positions of the remaining (V — N) classes
for this speaker.

The simplest model we can assume for this structure is a linear one. Suppose that
the acoustic realisation of the 7’th sound-class in the vocabulary by the j’th speaker in the
training-set can be represented by a scalar :cz ,=1,2,...,V. In practice, :vf may be the
value for sound 7 in one dimension of the feature-space representation and we assume that
the analysis is repeated for each feature-space component. We assume a multiple linear

regression model for class n in terms of the other classes as follows:

v
gt = o+ > Bral el k#n (4)
k=1
where the 3’s are the regression coefficients and e}, is an error term.
The model of equation 4 would be useful only if we knew the values for all classes

except class n for this speaker. In practice, we would like to be able to predict the value
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for class n from a small set of classes—in the limit from a single class. In the latter case, it

is appropriate to use simple linear regression between classes n and m:
o}, = Po + Brah, + € (5)

Equations 4 and 5 represent extremes—we can choose to model a sound-class as a linear
regression on any set of different sound-classes. However, multiple linear regression is less
useful than simple linear regression in this application because we do not know a priori
what sounds from the new speaker will be available to us at recognition time. Hence we
would need to build a set of regression models which modelled each class in terms of all
the possible combinations of all the other classes, which is clearly out of the question. By
restricting ourselves to simple linear regression, we need form only V(V — 1)/2 regression
models to enable us to predict any class in the vocabulary from any other class. However,
these simple models will generally be less powerful than multiple linear regression models.
This was shown in [4] where the technique underwent a preliminary investigation on a
database of 11 isolated vowel sounds from each of 30 speakers, and the task was to predict
6 unheard vowels from 5 given vowels.

The procedure for speaker adaptation using the simple linear regression models is as
follows: using the training-set speakers’ data, estimate and store the values of 5y and 31 for
all pairwise linear regression models. Then at recognition time, any unheard sound of class
n can be predicted using any given labelled sound of class m by using the regression model
which links these two classes. The prediction can then be used to adapt the ST model.

The success of this technique depends critically on how well the data fit a linear model,
which can be measured by the correlation (or multiple correlation) coefficient between the
data. The importance of this correlation is emphasized in section 7 where it is shown that

it controls the amount of adaptation.

5 The data and speech models

The advantage of doing experiments using the isolated vowel data described in the previous
section [4] was that each example of a vowel sound was represented as a single vector
which dispensed with the need for time alignment procedures. Using this artificial data,
the technique produced a 40% decrease in the error-rate and stimulated the experiments
reported here. These were carried out on a database of isolated utterances provided by
British Telecom [13]. Recognition of isolated utterances was used because it is the simplest

practical speech recognition problem and the techniques developed for its application can
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be extended to more sophisticated systems.

The database consisted of 3 utterances of the alphabet from each of 104 speakers
recorded in a soundproof room with a high-quality microphone at a bandwidth of ap-
proximately 8 kHz. Each utterance was manually endpointed and processed into frames
of duration 16 ms, each frame consisting of a 17-d vector (frame) containing 8 MFCCs, 8
differential coefficients and a differential log-energy coefficient. The training-set (52 speak-
ers) was used to construct a 10 state continuous density hidden Markov model (HMM) of
each alphabetic class, the state PDFs being unimodal Gaussian with a diagonal covariance
matrix. The topology of the HMM was a simple one in which state ¢ was connected only
to itself and state (i + 1).

Each test-speaker’s data was divided into two sets. The ‘enrollment classes’ were the
utterances of a set of classes which were to be used for adaptation purposes during the
experiments and which were regarded as labelled; the ‘test classes’ were the utterances of
the other classes in the vocabulary and were regarded as unlabelled. The identities of the

‘enrollment’ and ‘test’ classes were as follows:

Enrollment classes: ‘A’,D’‘E’,‘F" ‘G, ‘T",'K’,'M",‘O",'P",*Q",‘R’, "X’
Test CI&SSGSI CB”(C7,CH”EJ’;L"GN7,CS7,‘T7’GU7,CV”6W7’EY7,GZ7

The division between enrollment and test class sets was made in such a way as to keep the
data as phonetically balanced between the two sets as possible. For instance, the ‘E’-set
(‘B’, ‘C’, ‘D, ‘B, ‘G, ‘P, “T7, V), the ‘A’-set (‘A’, ‘J’, ‘K’, ‘H’) and the set beginning
with the vowel /e/ (‘F’, ‘L7, ‘M, ‘N’, ‘S, ‘X’) were evenly divided between the two sets.

6 Building the correlation models
6.1 Dealing with sequences of vectors

Until now, we have assumed that examples of classes can be represented as single vectors
and have not addressed the problem of how to apply the adaptation technique within a real
ASR system in which utterances are represented by sequences of vectors.

Firstly, we train speaker-independent HMMs for each class in the vocabulary. We then
use the HMM of class ¢ and the Viterbi algorithm to ‘segment’ the training-set utterances
of class 7. By segmentation, we mean that each vector in the sequence of vectors describing
an utterance is mapped to a single state in its associated HMM. For the purposes of the

adaptation, we imagine the HMM states playing the role of the sound-classes. The vectors
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associated with each state are then the ‘examples’ of these pseudo-classes. The simple

topology of the HMMs ensures that some data is available for each state.

6.2 Model building

Once again, to simplify analysis, it was assumed that the vector dimensions were indepen-

dent and could be considered separately. Denote:

S;; = j'th HMM state of the i’th class
i=1,2,...,V V' = no of classes (26)
j=1,2,...,H H = no of states in an HMM (10)

After segmentation of the training-set speakers’ data, denote:

avf ;(I) = I'th value from speaker k associated with S; ;

k=1,2,...,8 Sy = no of speakers in training-set (52)

1=1,2,...,Nf, NF; = no of vectors associated with state S; ;
For each speaker k, a mean value a’cf, ; and associated standard deviation sﬁ ; are estimated
for each state of each HMM as follows:
Nk, NF.
& L SRk ko 1 =k (D) — gk )2
Ty = w5 2 wi(l) sig = | v —7 2 @k () — 7))
Nij i NG -1

Note that if we were building a speaker-dependent HMM from these utterances, a’cf i and sf, j
would be estimates of the mean and standard deviation for state j of the HMM representing
class ¢ obtained using ‘Viterbi’ rather than ‘Baum-Welch’ style training.

Since we are to predict the test class states from the enrollment class states, denote the
means of the m’th state of test class n as ¥, (rather than Z,,,). The linear regression

models are constructed as follows:

For each vector dimension do
For each state j of each enrollment class ¢ do
For each state n of each test class m do
Form a scattergram using the Sy, pairs of datapoints {jf o gjﬁym}
which have associated standard deviations, {s¥ 1 sk}
Compute the best-fit line vy, », = a; jnmTi; + bijnm through
the scattergram and store the regression coefficients

3 jn,m» i jnm and correlation coefficient 75 j
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6.3 Straight line fitting

In ‘standard’ linear regression, it is assumed that the IV values of the independent variable
x; are known exactly and that each value of the dependent variable y; has an associated
uncertainty o;. The values of a and b in the straight-line fit y = ax + b are the values which

minimise the chi-square value

N yi — b —ax; 2
X2 = Z (07) (6)
i=1 ?

and there are closed form solutions for a and b.
However, the data used to construct the correlation models described here has variance

in both the z and y directions (z; ; and yp ,, respectively), which makes the estimation of

2

a and b more difficult. Suppose each z; has a variance o}

, and each y; a variance 012”-. The
chi-square value to be minimised is then
N b 2
2 Yi — 0 —axy
X = 2 2 > (7)
A closed-form solution for b still exists but ¢ must be found by a numerical method. In

this work, we used a purpose-written routine to find a and b described in [12]. We also

experimented with two other techniques in the straight-line fitting:

1. discarding the variance information by setting o2, = aii =1.0

2. minimising the absolute deviations of the data-points from the line

The differences in recognition performance obtained when using models prepared using
these three methods were very small, but fitting using the variances in both directions was

marginally better and was used for the results described in the later sections.

6.4 Analysis of correlations

Section 6.2 described how a set of data associated with a given test class state was correlated
with data associated with each of the 130 enrollment class states. It is of interest to examine
which states exhibit good correlation across ‘test’ and ‘enrollment’ classes. For each state
n of each test class m, the enrollment state S; ,,, which had the highest absolute value of
correlation when averaged over all vector dimensions was found i.e.:

St = argmaxfi,j,m,n

0]

D
B 1
where: 7 jmn = D E |7 gm,n ()]
k=1
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and 7 jm.n (k) is the sample correlation coefficient in vector dimension k between enrollment

class i, state 7 and test class m, state n. The identities of S

T,

and the corresponding
averaged absolute correlation values for two of the test classes (‘H’ and ‘J’) are given in
Table 1.

(Table 1 here)

An analysis of the correlations between states of models of test class and enrollment
class words reveals some interesting phonetic correspondences. Table 1 shows that the first
two states of the model representing ‘J’ are most highly correlated with the first two states
of the model representing ‘G’. Both words begin with the phoneme /dz/ and these initial
states would correspond to the position of that phoneme in the HMMs representing each
word. The third state of ‘J’ is correlated best with state 2 of ‘D’, corresponding to the
phoneme /d/ which is very close to /dz/. States 4-10 are correlated with states 4-10 of the
classes ‘A’ and ‘K’ and all three words share the same final vowel, /e/. In the model for
‘H’, the first three states have best correlation to early states of the model representing ‘A’,
which shares the same initial vowel-sound as ‘H’ (/e/). States 4 and 5 are best correlated
to states 3 and 4 of ‘X’ which is probably the point in both models at which the transition
from the vowel to the stop is being made. The final phoneme in ‘H’ (/tf/) does not occur
in the enrollment classes and the closest to it is probably the phoneme /dz/ which occurs at
the beginning of ‘G’ and which may explain the correlation of states 6-9 of ‘H’ with states
1 and 2 of ‘G’. The final state of ‘H’ correlates with the final state of ‘X’ which is again
phonetically plausible as both words end with unvoiced affricates.

At first sight, the averaged correlation values seem too low to be very useful for predic-
tion purposes. However, it was found that correlation between the first 8 components of the
vectors (the MFCCs) was always higher than correlation between the last 9 components (the
differential coefficients) and so the latter correlations significantly lower the average. The
corollary is that it is more difficult to make good predictions of the differential coefficients
than of the MFCCs. However, the differential coefficients contribute less to recognition than

the MFCCs and hence their accurate estimation is less important.
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7 Prediction using the correlation models

At recognition time, we assume that a new speaker gives labelled examples of a subset N
of the enrollment classes. Suppose the classes given are ¢(1),¢(2),...,c¢(N) (there may be
more than one example of each class). To make this data available for prediction purposes

we first:
1. Segment each example using the appropriate HMM

2. In each vector dimension, estimate the sample mean z; ; of the values assigned to each
state as described in section 6.2 , for i = ¢(1),¢(2),...,¢(N) and 5 =1,2,..., H.

We now wish to make a prediction of the values of ¥, ,, and Si,m where n ranges over the test
classes. For present purposes, we have confined ourselves to estimating ¥, . Estimation
of s%’m is a much more difficult task and it seems an open question as to whether sensible
estimates of s%,m could be obtained without some examples of each test class. Derivations
of maximum-likelihood (ML) and maximum a posteriori (MAP) estimates of , ,, are given

in the next two sections.

7.1 Maximum likelihood estimate of the speaker-dependent mean

There are M = N x H values of Z; ; and using the stored coefficients a; jm.n and b; jm n,
each can be used to give a prediction of all V/2 x H = 130 values of g, . Clearly, the
usefulness of any prediction of ¥y, ,, depends on the correlation between Z; ; and ¥, ,. Let
us assume that we are attempting to predict a particular ¥, s, using M values of z; ;. To
simplify notation, we drop the (class, state) subscripts and rename the target value gy, ., as

vand Z;j as u; (¢ =1,2,...,M). Hence the :’th prediction of v is ¥; where
U; =au; + b (8)

and where a = a; j n,m, b = b; jnm.

It can be shown that the variance o2 of 9; is:

(u’i - :u’gl)2 (9)

1
01-2:05(1—7"2) 1+E+ 3
T

where o2 and 05 are respectively the overall variance of the Z’s and ¥’s in the relevant
scattergram, r is the sample correlation coefficient, n is the number of examples in the
scattergram (in this case n = Sy = 52) and p§,; is the mean of the z’s. In equation 9,

the term 1/n increases the variance for small sample sizes and the term (u; — p%;)%/no?
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increases the variance as the independent variable moves further from the overall mean ug;.

However, for n sufficiently high, these two terms can be ignored and approximately:
o? = a;(l —r?) (10)

If it is assumed that each ¥; has been drawn from a normal distribution with mean v and

variance o] = og(1 —r?), we may write Pr(v|d;) as

1 (’51 —’U)2
1_[\/50z [ 9 01_2 ] (11)

Differentiating Pr(v|0;) w.r.t. v and setting to zero gives the maximum likelihood estimate

of v as s, where

e (2) /(&) - (Beta) [(Gatm) o

The 1/(1 — r2) weighting of predictions means that predictions made from scattergrams
where |r| is high get higher weight than predictions from scattergrams where |r| is low. At
first sight, it would seem incorrect to give any weighting to a prediction of v when r; = 0.
However, when r; = 0, the regression-line is a horizontal line through the mean of the y-
points and so the prediction is p%; i.e. the speaker-independent mean. In fact if r; = 0 V4
is substituted into equation 12, 9y, = u%l. The fact that 077, — M%I as |r;| — 0 means
the adaptation ‘fails-safe’ in the sense that if the correlation is poor, the prediction reverts

to the SI mean.

7.2 Maximum a posteriori estimate of the speaker-dependent mean

For a maximum a posteriori (MAP) estimate of v, we wish to take into account the prior
distribution of the speaker-dependent means and to maximise Pr(v|9;,A) where X is the
parameter set of the prior distribution of the speaker-dependent means. Using Bayes’

theorem, we write
Pr(o]n, A) Pr(X) Pr(v|A) Pr(d;|v, A)
T ; =
i Pr(\[d;) Pr(d;)

Terms which do not depend on v can be combined into a constant a. Also, we assume that

(13)

we can write Pr(9;|v, A\) = Pr(9;|v) Pr(9;|A) Hence equation 13 becomes:

Pr(v|9;, \) = aPr(9;|v) Pr(v;|\) (14)
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(since Pr(;|A) does not depend on v). If we assume that the prior distribution of speaker-

dependent means is normal with mean pgr and variance o%; we can write:

exp l L (”“;72”)2] (15)

i

1( U—MSI

1
——ex
V2w osy pl 2 o% ] 1_[\/27TaZ

Differentiating Pr(v|9;, A) w.r.t v and setting to zero gives the MAP estimate of v, Op74p as

. | msr % 0 1 % 1 (16)
OMAP = | 5+ ) — t )]

SI i=1 ) =)

Pr(v|o;,\) = «

Note that if all the #;’s had the same variance o and E{%;} = o, it can be shown that

equation 16 becomes

5+ - (17)

which is a well-known MAP estimate for a mean with prior density N (usr,0%;) and a set

2

of M examples with sample mean o and variance o* (see, for instance [8]).

8 Experimental Procedure and Results

The data and models used in the experiments have already been described in section 5.

When testing a speaker, a subset of the enrollment classes were selected (see section
8.2) and all three of the speaker’s utterances from each of these classes were used for
adaptation. The HMMs of all test classes were then adapted, as were the HMMs for the
enrollment classes for which data was available. However, only the utterances of the test
classes from the new speaker were then tested. The reason for this is that testing on
utterances which have already been used to adapt the models leads to biased results. Since
only three utterances of each class were available from a speaker, the number of utterances
available for enrollment would have been unacceptably small if some of them had been held
back for testing purposes. Adaptation of a test class consisted of replacing the SI mean of
the HMM state with either 0377 or 0p74p; adaptation of an enrollment class consisted of
replacing the SI mean of the HMM state j of class ¢ with z; ;. It was found that adapting
the enrollment class means made very little difference to the error-rate when testing only
the test classes.

An error-rate of 17.0% was recorded for the unadapted system when testing on the test
classes only. Note that the number of utterances in the test set is (52 speakers x 13 classes
x 3 utterances) = 2028. In practice, some utterances were missing and the number actually
used was 1984.
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8.1 Effect of varying number of states used in prediction

With all 13 enrollment classes used, giving a total of 130 states available for prediction of
each test class state value, the effect on (a) recognition accuracy and (b) prediction error of
using only the ‘best’ P states to make the prediction was measured. By the ‘best’ P states,
we mean that for each test class state predicted, the enrollment class states were ranked
by absolute value of correlation coefficient averaged over the vector dimensions (see section
6.4), and the top ranking P states used to make the prediction. Fig 1 gives prediction
and recognition error-rates vs. P when the MAP estimate was used. ‘Prediction error-
rate’ was measured as (Actual-value — Predicted value)? | Actual-value®. Prediction and
recognition performance track quite closely (as might be expected) and peak when only
5-6 of the 130 available states are used. An examination of the identities of the best 5
enrollment class states contributing to prediction showed that a typical pattern is for two
of them to be neighbouring states drawn from the same enrollment class, and the others to
be states representing phonetically similar events from different classes. This means that
the predicted value is synthesised from scattergrams of the test class state with several
different enrollment class states, and the relative independence of each estimate leads to a
good estimate of the predicted value. If more than about 5 states are used for prediction,
the lower ranking states contribute noise to the estimate and performance worsens slightly.

Fig 2 compares prediction performance for the ML and MAP estimates. As expected,
the MAP estimate is superior when only a few states are used for prediction but when more

than about 6 states are used, the two estimates are very close and give very similar results.

8.2 Effect of varying number of enrollment classes available

The effect on recognition error-rate of increasing the number of enrollment classes available
from a speaker is shown in Fig 3. When the number of classes available is 1,2,...,13
the number of states available for prediction is 10, 20,...,130 and the result of section 8.1
showed that error-rate varied with P, where P was the number of ‘best’ states used for
prediction. In Fig 3, the recognition error-rates were found by selecting an optimum value
for P which was in the range 5-10. It was noticeable that P was larger when fewer classes
were available. The implication is that when several enrollment classes are available, there
is a good chance that one of them will be an excellent predictor for a particular test class
and hence only a few states are required to make a good prediction. However, if there are
only a limited number of enrollment classes available, the states of which all have mediocre

correlation to the test class states, the best prediction is obtained by using a fairly large
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number of such states.

For the result shown in Fig 3, the enrollment classes were made available in the following

order:
‘EUA X T QLD VK, MU PLUF LG O’ 'R’ e.g. when the abscissa in Fig 3 is 4, the
classes used for enrollment were ‘E’,‘A’.‘X’ and ‘I’. The rationale for the order given above
was to make the classes most useful for adaptation purposes available early on. The greatest
source of error in the test classes is the four ‘E’-set words (‘B’,‘C’,“T” and ‘V’) and providing
‘E’ as the first enrollment class enables these to be rapidly adapted. ‘A’ is then given to
aid adaptation of the classes ‘J” and ‘H’, etc. A striking result from Fig 3 is that the error-
rate has dropped by over 50% when only the first two enrollment classes have been given.
Full adaptation has been reached when the first 10 classes have been presented, when the
error-rate is 3.4%.

Also included on Fig 3 is an estimate of human performance on the same data. This
figure (1.2%) was obtained from listening-tests on 25 subjects without any adaptation to
the voice of each speaker in the database. For further details of this work, see [7].

The effect of presenting the enrollment classes in a different order is shown in Fig 4
where the result for the MAP estimate of Fig 3 is compared with the result when the
order of presentation of the enrollment classes is reversed. Recognition performance for
the reverse ordering is much worse until four enrollment classes have been presented, when
it becomes almost indistinguishable from the original ordering. Experiments with other
orderings confirmed that performance after any four enrollment classes have been provided
is similar at an error-rate of roughly 6%.

Fig 5 plots the number of errors before adaptation against the number of errors after
adaptation for each of the 52 speakers in the test set (using the MAP estimate and P = 5).
In Fig 5a, the only enrollment class given was ‘E’, and although the average error-rate has
dropped from 17% to 12.8%, the presence of several points above the equal error line shows
that some speakers perform worse after adaptation. However, when the three enrollment
classes ‘EAX’ are given (Fig 5b), only one speaker is worse after adaptation and several
speakers are now error-free. When all 13 enrollment classes are available, no speaker makes

more errors after adaptation than before and 19 speakers are error-free.

9 Summary

Model-based speaker adaptation systems are capable of adapting a speech recognition sys-

tem very rapidly to a new speaker’s voice by predicting sounds as yet unheard from the
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speaker. A previously-investigated model-based speaker adaptation method based upon
linear transformation has been reviewed and found to be insufficiently powerful. An alter-
native method proposed and investigated in the paper is to build linear regression models
between sounds and use these models for predictive purposes at recognition time. A tech-
nique for applying this scheme within the framework of continuous density hidden Markov
models (CDHMMs) is described and ML and MAP estimates derived for the predicted val-
ues. When applied to a database of 104 speakers each speaking utterances of the alphabet,
the method reduced the error-rate from 17.0% to 3.4% after full adaptation. The method
has very modest on-line computational requirements.

The results obtained in this study are very encouraging and further work on applying

the technique to large vocabulary speech recognition is in progress.
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Class ‘J’ state S* —r— || Class ‘H’ state S* —r—
1 ‘G’, state 1 | 0.67 1 ‘A’ state 1 | 0.52
2 ‘G, state 2 | 0.65 2 ‘A’ state 4 | 0.65
3 ‘D’, state 2 | 0.43 3 ‘A’ state 6 | 0.56
4 ‘A’ state 4 | 0.48 4 ‘X, state 3 | 0.43
5 ‘A’ state 4 | 0.56 5 ‘X, state 4 | 0.29
6 ‘K’, state 5 | 0.64 6 ‘G’, state 1 | 0.34
7 ‘K’, state 7 | 0.67 7 ‘G’, state 1 | 0.48
8 ‘K’, state 8 | 0.61 8 ‘G’, state 2 | 0.37
9 ‘K’, state 9 | 0.74 9 ‘G, state 2 | 0.34
10 ‘K’, state 10 | 0.65 10 ‘X', state 10 | 0.36

18

Table 1: The enrollment class state S* best correlated with the states of the test classes

‘J” and ‘H’.



