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Abstract

The image trees described in this paper hierarchically organize image seg-

ments according to scale, with the coarsest scale, the scale of the image itself,

as the root of the tree and the finest scales as the leaves. The segmentation

algorithm used to form the tree nodes is the sieve, a nonlinear morphological

scale-space operator. The trees are a transform so it is possible to reconstruct

the associated image without loss.

Scale trees may have more nodes than are needed but the trees may be

simplified using a standard statistical test to reduce the number of nodes

without affecting the reconstructed image significantly.

These simplified trees may be used to generate regions for a stereo al-

gorithm that reduces the errors in the resulting disparity map particularly

within sharp-edged regions with low texture – conditions where conventional

methods often fail.



1 Introduction

Reconstructing three-dimensional structures from two or more images is an

established problem in Computer Vision [1–3] of which an important sub-

problem is matching two views of a single point in the scene. This corre-

spondence problem has as its output, disparity, the offset required to align

the projections of the two points. Given a disparity map and camera param-

eters the depth and hence three-dimensional strcuture of the scene can be

inferred [4].

In the sparse stereo approach, features that are projectively invariant,

such as corners, are identified in each image. Provided care is taken with the

numerical analysis [5], it is possible to solve for the position of the corners

and the camera parameters simultaneously. Often, however, a depth estimate

at every pixel is required. Such dense depth estimates can be obtained by

interpolating between the sparse matches or, alternatively, by estimating a

disparity at every pixel. This is the dense stereo approach. Conventionally

such dense maps are produced using calibrated or roughly calibrated cameras

since knowledge of camera geometries can be used to reduce the disparity

search.

It is the problem of finding dense disparity estimates from calibrated

images that is considered here. One possibility is to model the disparity field

and attempt to fit this to the data using, for example, Gibbs sampling or

approximations ( [6] for example). Such methods may take some time to

converge so that usual alternative is what has been characterised as the area

approach [3]. In which

1. Two images of a scene are obtained and calibrated to extract the epipo-
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lar lines [7]. (This step is not essential but it is commonplace since

knowing the epipolar line reduces the search space considerably).

2. Regions in the first image are compared, via some similarity measure,

with a number of candidate regions lying along the epipolar line in the

second image.

3. The offset of the best match is called the disparity

A number of possibilities have been proposed for the similarity measure in-

cluding SSD (Sum of Squared Differences), SAD (Sum of Absolute Differ-

ences), MAD (Mean of Absolute Differences) [8], cross correlation and min

correlation [9]. If f1(v) is the intensity of the vth pixel in the first image and

f2(w) the intensity of the wth pixel in the second image, then the similarity

of two pixels may be measured by the correlation coefficient [10]:

e(v, w) =
var [Xv −Xw]√
var [Xv] var [Xw]

(1)

where Xv,w are random variables sampled from the distributions of f1(v) and

f2(w) and v, w ∈ V where V is the set of pixel labels. In practice there is

usually only one sample of f1(v) and f2(w) so ergodicity is invoked and data

are taken from windows, W1 and W2 (W1,W2 ⊂ V ) which are fixed regions

centred around v and w. Further, if the position vector of each pixel is, in

the first image, x1(v), v ∈ V and x2(w), w ∈ V , in the second image, then,

provided W1 and W2 have identical shape, it is possible to have a set of v

and w such that

x1(v) = x2(w) = x2(v) + d (2)
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where d is some offset between the windows. In which case the variance, (1),

may be computed as

e(d) =

∑
i∈W1

(
f̃1(i)− f̃2(j)

)2
∣∣∣∣
x(i)+d=x(j)[(∑

i∈W1
f̃ 2

1 (i)
) (∑

i∈W2
f̃ 2

2 (i)
)]1/2

(3)

where f̃1,2(i) are the intensities in regions 1 and 2 after the sample mean

intensity computed in that region has been removed and N is the number of

pixels in W1 and W2.

The offset dmin = argmin(e(d)) is the best match for that region and is

called the disparity. The disparity is assigned to all or part of the region in

the corresponding disparity image.

For (3) to be interpretable as a correlation the assumption of ergodic-

ity must hold and so the windows must not span image regions drawn from

different distributions. In practice this assumption is false and at the bound-

aries of regions there is a mixing of distributions which manifests itself as a

disparity image with ill-defined edges. These are minimised by using small

windows but there is a cost: small windows do not allow much averaging.

The literature presents several solutions to this problem including altering

the scale of the window [11] and its shape [12] to minimise the fit error. This

paper introduces a new method for choosing these windows and compares

it to existing correlation-based approaches. It defines windows through an

interpretation of flat-zones (level connected-sets) in the image. At each scale

a test is made of the hypothesis that the flat zone covers a region of constant

disparity.
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1.1 Scale trees

Tree data structures are widely used in computer science and facilitate com-

mon operations such as searching and ordering of data. They have been

applied to computer vision as a way to order extracted features from an

image, as in [13,14] and also as part of the segmentation process [15].

A scale tree is formed by hierarchically ordering segments by scale. A non-

linear graph-morphology operator, the sieve, generates the segments which

will be represented by nodes in the tree. The sieve operates by recursively

removing local maxima and minima of a certain scale in an image starting

at small scales [16–18]. Because the algorithm removes maxima and minima

simultaneously the algorithm is fairly robust to noise and can be shown to

satisfy the axioms of scale-space [19].

The algorithm has its basis in graph morphology [16, 20] in which G =

(V,E) is a graph with a set of vertices, V and set of edges, E. In the image

shown on the left of Figure 1 for example, the pixels are labelled arbitrarily as

V = {1, 2, · · · 16} and adjacency has been defined in a four-connected sense

so that E = {{1, 2}, {1, 5}, {6, 6} · · ·} but the notation is flexible and also

handles n-dimensional images with any connectivity. The image intensities

may be represented as f(v), v ∈ V . For scales, s ≥ 1, let Cs(G) denote the

set of connected subsets of G with s elements. Then, with x ∈ V ,

Cs(G, x) = {ξ ∈ Cs(G) | x ∈ ξ}. (4)

denotes the set of connected sets of s pixels that contain pixel x as in Figure 1

which shows examples of all connected sets with two elements that contain a

particular pixel (C2(G, 6) in this case) and some of C3(G, 6) (for clarity some

subsets are not shown).
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Equation (4) allows a compact definition of an opening, ψs, and closing,

γs, of scale s, consistent with the proposed notation for graphs and connected

sets [21–23]. The morphological operators, ψs, γs,Ms,Ns : ZV → ZV , may

be defined for each integer, s ≥ 1, as

ψsf(x) = max
ξ∈Cs(G,x)

min
u∈ξ

f(u), (5)

γsf(x) = min
ξ∈Cs(G,x)

max
u∈ξ

f(u), (6)

and

Ms = γsψs, Ns = ψsγs. (7)

Thus Ms is an opening followed by a closing, both of size s and in any finite

dimensional space.

The M - and N -sieves of a function, f ∈ ZV are defined in [16] as se-

quences (fs)
∞
s=1 with the M - and N -sieves being:

f1 = M1f = f, and fs+1 = Ms+1fs (8)

f1 = N1f = f, and fs+1 = Ns+1fs (9)

for integers, s ≥ 1. These M - and N -sieves are alternating sequential fil-

ters [21–23] but not all alternating sequential filters have the properties of

sieves – note that sieves do not use structuring elements but merge connected

sets instead.

The output image has extrema (max and min) that are connected sets

with s or more pixels. Thus the algorithm has the effect of locating inten-

sity extrema and “slicing-off” local peaks and local troughs to produce flat

zones [23] of s or more pixels. Since all the pixels within each extremal con-

nected set have the same intensity, a simple graph reduction at each stage can
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lead to a fast algorithm [22]. (The complexity can be shown to be between

O(N) andO(N logN) whereN is the number of pixels). At subsequent scales

larger extrema are removed so the processor formally satisfies the scale-space

causality requirements [19,24] and, with linear and anisotropic diffusion and

erosions/dilation with elliptic parabaloids, forms part of the scale-space class

of processors [25].

The differences between successive outputs

ds = fs − fs−1 (10)

are called granule functions and non-zero connected regions within ds are

called granules denoted by ds
j where j = 1 . . . NG(s) indexes the number of

granules, NG(s), at scale s. As scale s increases, NG(s) decreases, since the

granules are larger. At the final scale there is only one granule that is the

size of the image.

A scale tree, T = (N,A) may be built using the output of a sieve (ds)
S
s=1

and is also a graph with a set of vertices, or nodes, N , and edges, A. The

tree has the following properties:

1. If the image contains S pixels then the root of the tree, R(T ) maps to

dS
1 which is the whole image.

2. If a ∈ A with a = (np, nc) then nc is a child of np and dsc
nc
⊂ dsp

np
.

In other words because the sieve is removing local extrema, granules at some

scale sc are always contained within granules at some greater scale, sp, unless

sc = S in which case it is the root. The tree encodes the containment of

granules, and hence putative objects, within the image (the image topology).

It is possible to define a vector function g(n), n ∈ N where the elements of
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g(n) might be the greylevel value, granule amplitude, dominant colour and so

on, so the tree is a useful data structure for holding hierarchical features. Here

the tree will be used to store grey-level amplitude (which is more convenient

than granule amplitude [26]).

The sieve is a good choice for tree segmentation because it does not in-

troduce artifacts into the image [19], the original image can be recovered by

adding up all the nodes of the tree [27], and the tree structure is relatively

invariant to viewpoint changes [28]. The scale tree bears a close relation-

ship to the objects in an image [29], and has been used for filtering [30],

segmentation and motion detection [27].

An example of a scale tree is given on the left of Figure 2. The root

node represents the whole image (region A) and B represents the face which

contains the mouth and eyes. We have A ⊂ B ⊂ {C,D,E} which is not

always convenient – for example there is no explicit representation for the

image background without the face – so one may define the complement tree

where new nodes are formed as the complement of the union of the children

of a particular node [26]. In practice it is not necessary to store these new

nodes – it is enough to know how to generate them from the sparser sieve

tree.

2 Simplifying to channels

Because the sieve decomposes images by connected grey-level flat-zones within

the image, it is well matched to sharp-edged objects which are commonplace

in general imagery. This makes it complementary to linear decompositions

such as Gaussian filters [15, 24, 31, 32] and wavelets [33], where large scale
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objects have blurred edges. The sieve is less well matched to blurred images,

as Figure 3 shows. A blurred object has a tree of many nodes, each having

a single parent and child, with each differing from its immediate relatives by

only a few pixels. For easy manipulation it would be convenient if these nodes

could be collapsed into one node. One way is to quantise the decomposed

image over scale. In Figure 3A, blurring has converted a simple two level

image into the extended tree shown in Figure 3B. Figure 3C shows the result

of quantising the tree into channels [28] which are formed by summing gran-

ule functions over a range of scales1. The advantage of quantising in scale

is that the tree becomes smaller and more manageable for post-processing

operations such as disparity estimation.

3 Using channels for stereo matching

Here an approach is proposed in which the sieve tree is used to produce

windows for a correlation based stereo approach. The method has some

similarity with [34] in which a greyscale segmentation derived from a region

growing method is fused with a disparity map with the objective of preserving

sharp-edges in the disparity map but here the segments are drawn from

channel granules. Of course large scale channels will produce granules that

may be too large but we can select between channels by computing the per-

pixel match error and choosing the channel with the lowest error granule.

Firstly, the method is examined using synthetic random texture stereo-

grams [12,28,35]. The stereograms were two grey-scale 60 by 60 pixel images

1In this example the channels were chosen using an automatic method described later

but, for this image, the results are identical to choosing by hand.
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containing a background with zero disparity and a square 10 by 10 pixel

foreground region with a disparity of 12. The foreground image has a mean

intensity of 120 and the background a mean intensity of 60. Figure 4 shows

a typical stereo pair with Gaussian texture and noise. Both regions had a

Gaussian random texture superimposed with the standard deviation given in

Table 1. Further, each image has either additive Gaussian noise of a specified

standard deviation or impulsive replacement noise of random amplitude in

the range [0,255] with a specified density. In all cases the resulting images

were clipped in the range [0,255].

The mean and standard deviation of the absolute error of the disparity

maps created using the new method and three alternatives are shown in

Figure 5. The alternatives are a conventional fixed 3 × 3 window method,

the sliding window (SMW) method [12] and a Kanade and Okutomi adaptive

shape method [11]. The implementations of the fixed square window SSD

and SMW are our own but the adaptive window SSD implementation was

made available by the authors. In all cases the disparity search range was

restricted to (0,20) pixels. Each point shows ensemble statistics taken over

60 runs using the parameters in Table 1. Some notable features are:

1. The new method usually performs better than the standard SSD tech-

nique when the image is corrupted by impulsive noise. This is because

the granule method favours the largest window possible consistent with

the smallest SSD error. As a result the large error caused by an impulse

is minimised.

2. At high levels of Gaussian noise the granule method performs worse

than the standard SSD method. This is because at high levels of noise
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the granule-based windows become distorted (they have a “feathery”

appearance) and the error due to this effect exceeds that due to the

imposition of a square window.

3. In regions of low texture to noise ratios the granule method performs

better than SSD regardless of noise type.

When the size of the foreground object is known it is easy to choose the

channels (here they were chosen to cover scale octaves: 2n−1 + 1 to 2n, n =

3, 4, 5, . . .) but in general it is unlikely that the correct scale for one part of

the image is the correct scale elsewhere. What is needed is an algorithm for

choosing the appropriate scale from the local image or tree structure. The

following sections address this problem.

4 Simplifying the tree without fixed scale quan-

tisation

The method adopted here is to test the homogeneity of the statistics of the

node under consideration with those of its children and to merge those that

do not differ significantly. Specifically it is assumed that either all regions are

drawn from the same unimodal Gaussian distribution or they are are drawn

from separate distributions.

Under these assumptions it is fairly easy to derive a restricted likelihood

test (as in [36] and [37]) in which one hypothesis, homogeneity, is a special

case of the other. The log of the likelihood, λ, of regions 1 and 2, is well

known to be:

log λ2 = N12 log σ2
12 −N1 log σ2

1 −N2 log σ2
2 (11)
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where (N1, σ
2
1), (N2, σ

2
2) and (N12, σ

2
12) are the areas and variances of region

1, region 2 and the combined regions respectively.

Of course for a grey level segmentation, it is incorrect to model pixels

from level-sets as Gaussian variates– the very fact that they are level sets

implies a variance of zero or, more realistically, q2/12, where q is the grey-

level quantization step. However, for larger scales where the test regions may

contain many children, the Gaussian approximation is more satisfactory. The

merge parameter is not the likelihood but the confidence of the likelihood

which for this simple case is

c = 1− 1/λ (12)

where c is in (0, 1). The test is easily extended to multivariate features such

as colour in which case the confidence has to be computed numerically from

a χ2 distribution [36].

Figure 3D shows the result of analysing Figure 3A in this way and Fig-

ure 3C shows the resultant image. Even though the Gaussian assumption

is clearly violated the resultant image is an acceptable compromise between

complexity and fidelity. Figure 6A shows a digital image of a real scene to-

gether with its tree (B) and simplified versions (C and D). The algorithm

merges all zones that have a confidence below a threshold to give images

that have been simplified without loosing too much important detail. The

choice of confidence level is not critical – it is a parameter that allows the

complexity of the tree to controlled in a principled way.
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5 Using the simplified tree for stereo match-

ing

The scale tree disparity estimation algorithm examines nodes in pre-order,

starting with the root node. For each node, the disparity estimate is com-

puted by translating the region represented by that node along the epipolar

line and calculating the position and error of the best match. This disparity

is then assigned to the node. If the error of this node is lower than that of

its parent then the disparity of this node is accepted in the support region

for this node.

If the scale tree used is pruned by the likelihood test, the homogeneity

assumption has already been tested for these nodes, their parents and chil-

dren, hence the pruned scale tree should then have fewer errors than both the

fixed window methods and the unsimplified tree method. The pruned scale

tree also has the advantage of faster computation, as there are significantly

fewer nodes than in the original scale tree.

A summary of the algorithm is as follows:

1. Decompose the image into a scale tree using the complement tree rep-

resentation as illustrated in Figure 2.

2. Traverse the tree in postorder applying the confidence measure, (11)

and (12), to each graph edge connecting a node and its parent. Test

that region supported by the node and that image region supported by

the node’s parent. If the confidence measure falls below some threshold,

here we use c = 0.95, the edge is removed by merging child and parent.

3. Progress preorder through the tree and for each node:
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(a) Generate a window from that node (all nodes in a scale tree define

windows because nodes are removed connected flat-zones).

(b) Search along the epipolar line for the best disparity given by the

lowest SSD variance for that node, (3).

(c) If the per-pixel local variance of that node is less than that of its

parent, reassign the local disparity of that region in the disparity

map to the new disparity.

There is a subtlety in item 3c. Very often small-area child nodes will have

several good matches due to chance. This is manifest by the child having a

disparity that is unfeasibly different from its parent. A sensible alternative

to 3(c) is to search for the local minimum in the child’s variance that is

closest to the parent’s estimated disparity. This new value is returned as the

disparity (the local disparity).

6 Results

A real calibrated image, [38], and its resulting disparity maps are shown in

Figure 7. The map resulting from using the simplified scale tree (bottom

right) has fewer errors, particularly in the background, where the repeating

texture of the dots tends to confuse SSD algorithms. There is only sparse

ground truth disparity for these images but at these points the error associ-

ated with the new method is zero. The new method produces sharp–edged

disparity regions and works well in regions of low texture. The effect of the

tree simplification is to remove spurious matches from statistically insignifi-

cant nodes.
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The Multiview image database from the University of Tsukuba [39] pro-

vides real stereo images with dense groundtruth data. The top row of Figure 8

shows the left and right image pairs and the resulting groundtruth disparity.

Occluded pixels are labelled with disparity zero. The bottom row shows the

estimated disparity maps for the multiscale method using square windows of

65, 33, 17, 9, 5 and 3 pixels; the result for the 17 pixel window alone and

the tree-based disparity estimate using a minimum window size of 16 pixels.

Table 2 measures the effectiveness through the fraction of non-occluded pix-

els for which the disparity error was greater than one pixel. The tree-based

method is fairly insensitive to the choice of minimum scale where as the fixed

scale window has minimum error at scale 17. The multiscale square window

method appears to produce moderately low error. Comparing Figure 8 and

Table 2 it is evident that low disparity error does not always correspond to

reasonable disparity maps. The tree based method would appear to give an

acceptably low error that appears to fairly insensitive to the choice of mini-

mum granule size. A further attraction is that the minimum granule window

size can be chosen much larger than for a convolution because windows de-

rived from the sieve do not have fixed shape and so adapt to fit structures

in the image.

7 Discussion

Figure 9 shows the sieve tree method operating on a number of real test

images. Some observations are:

• The method works best in low-texture regions (C) but can be surpris-

ingly effective on natural scenes such as the arroyo image (B).
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• A significant failure mode is that objects that contain apertures onto

textureless backgrounds, such as the leaves in the tree image, (D), are

decomposed as solid regions. We note that such regions cause problems

for many alternative methods.

• The disparity maps are sharp-edged as in (A) and (D) unlike other

window-based methods which produce blurred disparity maps.

• The method works best where matching segments are approximately

the same shape. For example in fronto-parallel scenes like (A).

The sieve tree used here is one of potentially many obtainable from mor-

phological connected set operations that maintain scale-space causality. As

a decomposition, the sieve and related trees are efficient since they require

only a single pass over the image plus a search for each region’s neighbours.

The simplification stage requires a single pass over the tree. The matching

method is entirely conventional so a window of size P pixels requires P mul-

tiples at every search position but, unlike square windows we do not know

the window scale in advance which makes optimising the algorithm challeng-

ing – it is difficult, for example, to propagate coarse scale variances to fine

ones. Since child windows are are matched to the closest local minimum to

the parent there is potentially some indeterminacy in the computation due

the local truncation of the disparity search.

In this implementation the tree is used only in the first image and the

matching is performed from image 1 to 2. Reversing the match by computing

a tree from image 2 and matching from image 2 to 1 is a well known and

obvious extension. A more interesting refinement would be to account for

the projective effects between the images [40]. By extracting the projectively

15



invariant features of tree nodes it should be possible to compute the three-

dimensional structure of images by matching together the trees generated by

such images. Some work has already started on matching scale trees [41] but

it needs to be extended to handle large trees.
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Figure 1: Example image (left) and the set of all connected subsets of 2

pixels containing pixel 6 in a four-connected sense, C2(G, 6) (centre), and

some example elements of C3(G, 6) (right).

.
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Figure 2: Left panel shows a simple scale tree with A ⊂ B ⊂ {C,D,E}.

On the right, the complement tree with additional nodes G = A
⋂
B̄, F =

B
⋂
E

⋃
C

⋃
D.
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A B

C D

Figure 3: A simple blurred square (A) and its resulting scale tree (B). (C)

Shows the square after collapsing nodes that are indistinguishable and (D)

the associated scale tree.
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Gaussian texture

σt = 0 σt = 1 σt = 10

σg 0 0 0

Gaussian 0.1 0.1 0.1

noise 1 1 1

10 10 10

pr 0 0 0

Impulse 0.001 0.001 0.001

noise 0.01 0.01 0.01

0.1 0.1 0.1

Table 1: Standard deviation, σg, of added Gaussian noise and probability of

replacement, pr, for impulsive replacement noise.

Figure 4: Typical modified random dot stereograms that can be used for the

quantitative evaluation of dense stereo systems as in [12,28]
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Gaussian noise Impulsive noise

Figure 5: Mean absolute error and standard deviation of absolute error for

60 runs with parameters in Table 1. Top row shows the results for σg = 0 (no

texture). The middle row has moderate texture, σg = 1.0 and the bottom

row has high texture, σg = 10. The curves show the conventional square

window (black curve A), the Kanade Okutomi method (blue curve B), the

SMW method (green curve C) and the new method (red curve D)
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Figure 6: A test image of a person (A) and its associated 3123-node tree (B).

The simplified tree (D) has 1100 nodes but its associated image (C) is little

changed.

.
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Figure 7: Model castle stereo picture from CMU test set [38] (top left).

Square multiscale SSD disparity estimate using images prefiltered with a

Laplacian of Gaussian filter(top right), tree-based estimate using all nodes

in the tree (bottom left), and tree-based estimate after simplification (bottom

right). For disparity estimates the search was limited to [15,30] pixels. All

disparity maps are the result of choosing the estimate with the lowest variance

over all scales.

.
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Figure 8: Results for Tsukuba groundtruth data [39]. Top, from left to right,

left and right images and (right) groundtruth disparity. Bottom from left to

right: multiscale window result; best result for a fixed scale window (window

size of 17 pixels); tree result (minimum granule area of 16)
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Fixed-scale Scale 3 5 9 17 33 65

square window Error 0.27 0.14 0.09 0.10 0.11 0.16

Multiscale Scale 3–64

square window Error 0.12

Tree Scale 16 32 64 128 256 1024

Error 0.11 0.11 0.11 0.11 0.12 0.19

Table 2: Fraction of pixels with an absolute disparity estimation error of

more than 1 pixel. The multiscale method is here, at each pixel, selecting a

disparity estimate from the fixed scales. The tree method scale refers to the

minimum allowable size of the window.
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