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ABSTRACT

Modern neural and adaptive systems often have complicated
error performance surfaces with many local extrema. Vi-
sualising and understanding these surfaces is critical to ef-
fective tuning of these systems but almost all visualisation
methods are confined to two dimensions. Here we show
how to use a morphological scale-space transform to con-
vert these multi-dimensional complex error surfaces into
two-dimensional trees where the leaf nodes are local min-
ima and other nodes represent decision points such as saddle
points and points of inflection.

1. INTRODUCTION

Visualisation is the process of converting numbers into pic-
tures [1]. The aim is to help understand the underlying phy-
isical phenomenon. Visualising error surfaces [2] is vital
for an effective understanding of many modern signal pro-
cessing algorithms but is difficult because the error surfaces
are often complicated, complex, and defined in more than
two dimensions. Attempts to display these surfaces [1] have
included plotting two-dimensional functions [3]; contour
plots [4, 5]; or density plots, volume rendering, hedgehog
plots and tracking critical points [1]. Proposals for reduc-
ing the dimensionality of the surface usually amount to pro-
jecting the surface into two dimensions — popular strategies
are to fix all but two weights or to project into a subspace
containing the global optimum of the error performance sur-
face. Unfortunately, as the dimensionality of the underlying
adaptive system increases, the number of potential projec-
tion planes (defined by a pair of orthogonal axes) increases
exponentially. In short, none of these techniques is very ef-
fective for education or algorithm design: the plots are hard
to reproduce effectively and they represent projections that
may not preserve the topology of the surface.

Since the primary interest is the location and character-
isation of maxima or minima (extrema) of an error perfor-
mance surface we propose to adapt an extrema processing
technique from scale-space mathematical morphology. The
algorithm used here is one from a class known as sieves [6,
7] which is related to, but not the same as, alternating se-
quential filters [8, 9, 10] and greyscale watersheds [11]. The
output of a sieve is a tree with leaves that represent local ex-

trema and a structure that depends on the topology of the
error surface.

2. BACKGROUND

For convenience assume that the error surface J(x1,x2,...)
is sampled onto some possibly infinite rectangular grid?. If
each grid co-ordinate is indexed with a unique integerv e V
where V is a subset of the integers Z, then the cost func-
tion may be written as J(v),v € V. Grid co-ordinates that
are neighbours may be denoted such by a pair of integers
{m,n} = e € E. Thus the error surface samples may be de-
fined onagraph G = (V, E) consisting of a set of vertices, V,
which are the sample indices and a set of edges E, which are
the adjacencies. This notation [8] allows the representation
of an N-dimensional image with any specified connectivity.
Figure 1 shows an example: a three-dimensional set of 12
samples. If a neighbour is defined as sharing a common side
(samples are six-connected) thenV = {1,...,12}
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Figure 1. Illustrating a three-dimensional matrix of error
samples in whichV = {1,...,12},and E ={ {1,7}, {1,2},
{1,4},{2,8},...}}

For scales, s > 1, let C5(G) denote the set of connected
subsets of G with s elements. Then with x e V

Cs(G,x) = {E € Cs(G) | x € £} )

denotes the set of connected sets of s pixels that contain
pixel x. In Figure 1 for example, C2(G,5) = { {4,5}, {2,5},
{5,6}, {5,11} }. Equation (1) means that for a point of
interest x € V (usually a maximum or minimum), C(G,X)
lists all possible r-pixel neighbourhoods of x.

Lgpatial sampling is not an essential assumption since the technique can
be generalised to continuous functions but, in practice, most error surfaces
end up sampled.



Equation (1) allows a compact definition of an opening,
Ws, and closing, ys, of size s, consistent with the proposed
notation for graphs and connected sets [8, 6, 7]. The mor-
phological operators, Ys,ys,Ms,Ns : Z¥ — ZV, may be de-
fined foreach s > 1, as

W) =, ) @

WO = o, e @
and

Ms = yss, Ns = Wsys. (4)

Thus M is an opening followed by a closing, both of size
s and in any finite dimensional space. The sieves of a func-
tion, J € ZV are defined in [6] as sequences (Js)e 1 With:

Ji = PuJ=J, andJss1 =Psi1Js )

for integers, s > 1, where P is one of y,y, M or N . Note
that, unlike many morphological systems, sieves do not use
structuring elements but merge connected sets instead. The
algorithm has the effect of locating local extrema in the error
surface and “slicing-off” these local peaks and local troughs
to produce flat zones [10] of s or more samples. Since all
the error samples within each extremal connected set have
the same value, a simple graph reduction at each stage can
lead to a fast algorithm [9]. At subsequent scales, larger
extrema are removed, so the processor formally satisfies the
scale-space causality requirements [12, 13]. The differences
between successive outputs

dS = \]5 - Js_]_ (6)

are called granule functions and non-zero regions within d®
are called granules denoted by d? where j=1,... N(s) in-
dexes the number of granules, N(s), at scale s. As scale s
increases, N(s) decreases, since the granules are larger. At
the final scale a tree, T = (N, A) may be built using the out-
put of a sieve (ds)§:1 which is also a graph with vertices, or
nodes N, and edges A. The tree has the following properties:

1. If the sampled error surface has S samples then the
root of the tree, R (T)) maps to d$ which is the whole
surface.

2. Ifa € Awith a= (np,nc) then n¢ is a child of np and
dsc  dnp.

In other words, because the sieve is removing local extrema,
granules at some scale s; are always contained within gran-
ules at some greater scale, sp, unless sc = S in which case
it is the root. The tree encodes the containment of gran-
ules, equipotential zones, within the error surface. M- and
N-sieves encode the positions of maxima and minima si-
multaneously which for image processing is useful since it

is often postulated that local maxima and minima are ob-
jects [12], but for error surface visualisation one tends to
be interested in either the minima or maxima in which case
either the opening or closing sieve is appropriate.

3. TREE-BASED VISUALISATION

Although the mathematics of these sieves is intricate [6], it
is not complicated to explain these processors through an
example. Figure 2 (top) shows an example of a well known
benchmark error surface (the Himmelblau function [14, 15])

E(X1,%X2) = (x%+x2—11)2+(x1+x§—7)2 (7)

that has four minima. Such surfaces are not uncommon in
signal processing (see [16] for an example of a neural net-
work with four maxima) but as in Figure 2 they may not
be easy to visualise. Here, for example, one of the minima
has disappeared behind another. The lower part of Figure 2
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Figure 2: The Himmelblau function visualised (top) as a
conventional surface plotted against x; and x, and (bottom)
as a closing scale tree with the image plotted atz =0

shows the same function visualised as a closing tree with a



greyscale representation of the function on the z = 0 axis.
The tree is shown as dots representing the granules con-
nected with lines showing containment. Each dot is plotted
with x, y co-ordinates equal to the centroid of its correspond-
ing granule. The z-axis has been used to plot scale.

The root of the tree contains all samples of the error sur-
face since it represents the interior of a contour J(v) < co.
Successive operations of the sieve give granules that are
connected regions corresponding to the interiors of equipo-
tential contours drawn around local minima. In an analogy
with watersheds one can imagine the tree being built root-
first by the error surface filled with water draining through
the local minima. The tree bifurcates where the single sheet
of water becomes two separate pools with a watershed be-
tween them. The process terminates when all the water has
drained through the local minima. We emphasize that the
technique described here is more general than watersheds
because it can be defined in any finite dimensional space
and can process maxima, minima or extrema.

Figure 2 shows that the tree captures many aspects of
the surface. There are four local minima which is not clear
from the top of Figure 2 and that the left-hand minima has a
larger domain of attraction than the other three. Comparing
this to Figure 3 which shows a complex benchmark function

f(z):‘z?’—l‘z, where z = x1 + jx2 (8)

that has symmetric minima shows that if the three basins of
attraction have identical geometry the tree will split three
ways.

Furthermore the tree is a data structure, so it is simple to
store information about an optimiser at the nodes and vice
versa — the optimiser’s trajectory can be described as a tra-
jectory through V.

4. DISCUSSION

The scale trees described here are a useful tool for visualis-
ing error performance surfaces. Their leaves represent local
minima and their branch structure indicates the topology of
the surface.

A slight complication arises if the error surface is noisy,
as in Figure 4 (centre). Such surfaces are commonplace in
real signal processing evaluations and the overall effect is
to introduce small-scale perturbations in the surface. The
underlying structure of the resulting tree is still visible but
a pragmatic approach is suggested by a series of experi-
ments [17] that show that the sieve is almost as effective
at noise removal as a matched filter. Here an M-sieve to
scale 10 has been applied to remove noise. The result is
shown on the right of Figure 4. Much of the complicated
detail has been removed, leaving the important structure. A
more subtle approach, similar to wavelet denoising, is to re-
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Figure 3: F(z) = |2° - 1|2 visualised (top) as a conventional
surface and (bottom) as an closing scale tree.

move child nodes that are not significantly different from
their parents are removed.

5. SUMMARY

A novel method for visualising error performance surfaces
of adaptive algorithms has been provided. It uses a tree
structure that comes from the sieve representation of images
of error performance surfaces. Each node represents a lo-
cal equipotential contour and hence many configurations of
the underlying system, but the output of the sieve is unique
given a particular image and this output and the image form
an invertible transform.

This approach therefore gives the character, position,
and basin of attraction of minima in the error performance
surface via an algorithm that has low order complexity. Al-
though, for simplicity we study here only the 2D benchmark
problems studied the by authors, the technique is defined for
any finite-dimensional surface so this study paves the way
for analysis of multidimensional and complex error perfor-



Figure 4: A quadratic error surface and its tree (left); a noisy quadratic error surface (centre) and the tree after removing all
local extrema of area 10 or less (right)

mance surfaces which at present have to be analysed by pro-
jections onto supporting planes.
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