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Abstract

There are several methods for forming a scale-space and they may be
classified as being based on diffusion or morphology. However it is rare
for the methods to be compared. Here we outline a method for such
a comparison based on robustness and give results for linear diffusion,
the most widely studied method, and a sieve (a new morphological
method). We find that the standard diffusion-based systems are not
as insensitive to noise and occlusion as one might wish.

1 Introduction

Systems that preserve scale-space causality are usually associated with Gaussian
filters [1, 2] and diffusion [3] in which the image forms the initial conditions for a
discretisation of the continuous diffusion equation,

∇ · (c∇f) =
∂f

∂s
. (1)

If the conduction coefficent, c, is a constant this becomes the linear diffusion
equation, c∇2f = fs which may be implemented by convolving the image with
the Green’s function of the diffusion equation: a Gaussian filter. Of course, care
is needed when discretising (1) but, if it is done correctly [4], a scale-space with
discrete space and continuous scale may be formed1 with separable filters (γ = 0
in [4]) as,

f (s)(x, y) =
∞∑

m=−∞
T (m; s)

∞∑
n=−∞

T (n; s)f(x−m, y − n), (2)

f(x, y) is the pixel value at position (x, y) and f (s)(x, y) is the pixel value after
smoothing to scale s. T (n; s) is the discrete approximation to the Gaussian kernel
T (n; s) = e−sIn(s) and In(s) is the modified Bessel function of the first kind.

Such scale-space systems have several problems:

1. The edges of sharp-edged objects become blurred at large scales. This leads
to poor localisation and a necessity to track edges back through scale-space.

1Or with a discrete scale parameter if preferred.
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2. They introduce extrema, albeit in rather pathological cases.

3. They are not scale calibrated. An image filtered to scale s contains features
at many scales.

4. Multiple convolutions may require significant amounts of computation using
real arithmetic.

Problem 1 may be reduced by reverting to (1) and allowing the conduction
coefficient, c, to be a function of ‖∇f‖ thus c = g (‖∇f‖). If this function is
carefully chosen (several have been suggested) then the effect is to allow diffusion
in low contrast regions but not at sharp-edges. Unfortunately anisotropic diffusion
requires even more computation than linear diffusion and problem 3 is exacerbated
– sharp-edged small scale objects persist to large scales.

Problem 2 is illustrated in Figure 1. On the left is a three-dimensional intensity
plot of an image. A disc and a square connected by thin isthmus form its main
feature. After diffusion filtering (centre) the single maximum associated with
the two discs and isthmus has now become two maxima. This example, due to
Pizer [5], is well known and led to a new definition of scale-space causality namely
the “non-enhancement of existing regional extrema” principle which is satisfied by
diffusion systems. The right-hand plot in Figure 1 shows the result of applying an
M -sieve. The smaller area disc is removed and the large area feature is unaffected.
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Figure 1: Original image (left), Gaussian filtered image (centre), sieved image
(right)

Figure 1 also illustrates problem 3. In the Gaussian processor the intensity
of the output at scale s is proportional to the scale and intensity of the original
feature. So to recover the parameters of the original signal implies either deconvo-
lution or scale-space tracking. Both of these are difficult tasks and, as far as image
interpretation goes, having peaks representing extrema from objects of a variety
of scales is inconvenient. It is possible to design morphological filters that produce
at scale s only objects of size s.

2 Morphological processors

Mathematical morphology is the analysis of signals, particularly images, by shape
and has been developed by Serra [6–8] from work by Matheron [9] but it also derives
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from work of others (Blum [10] for example). It is widely used in commercial image
processing packages.

Of particular importance are Alternating Sequential Filters with greyscale
structuring elements that match features [7, 11]. They are said to be a powerful
analogue of linear matched filters and there are strategies for designing optimal fil-
ters with flat, rigid, two dimensional flat structuring elements [12]. More recently,
alternating sequential filters, that do not impose a rigid geometry on objects, and
connected sets have been described [13–17].

A separate stream of development has been that of rank filters, including me-
dian, root median, recursive median and, more generally, stack filters. Such filters
have been developed primarily to remove random noise from signals and images,
although there are suggestions for using them for tasks such as shape recogni-
tion [18]. There is a close relationship between rank filters and morphological
filters [19]. Rank (median) filters are usually self-dual and robustly reject random
noise. A recent development has been the sieve and its variants [20–25] which use
the connected set operators found in Alternating Sequential Filters with ordering
operators associated with rank filtering.

3 Sieves and their properties

The basis of the sieve is the representation of an image as a graph [26, 27] G =
(V, E). The set of edges E describes the adjacency of the pixels (which are the
vertices V ). For a one-dimensional image the graph is just a list [28] but for
a multidimensional image the graph defines the neighbourhood of a particular
pixel. For example, in Figure 2 which shows a four-connected two-dimensional
image the graph would be G = (V, E) with V = {1, 2, 3, . . . , 16} and G =
{{1, 2}, {2, 3}, {3, 4}, {1, 5}, . . .}. In Figure 2 the numbers are labels not inten-
sities.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2: An image represented as a graph.

The algorithm proceeds by defining a region, Cr(G, x) over the graph that
encloses the pixel (vertex) x,

Cr(G, x) = {ξ ∈ Cr(G)|x ∈ ξ} (3)

where Cr(G) is the set of connected subsets of G with r elements. Thus Cr(G, x) is
the set of connected subsets of r elements that contain x. In Figure 2, for example,
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C2(G, 6) = {{5, 6}, {2, 6}, {6, 10}, {6, 7}}. For each integer r ≥ 1 the operators ψr,
γr,Mr, N r : ZV → ZV are defined as

ψsf(x) = max
ξ∈Cs(G,x)

min
u∈ξ

f(u), γsf(x) = min
ξ∈Cs(G,x)

max
u∈ξ

f(u), (4)

Mr is a greyscale opening followed by a closing defined over a region of size r and
N r is a greyscale closing followed by an opening over the same region. Mr = γrψr,
N r = ψrγr.

The types of sieve known as M - or N -sieve are formed by repeated operation of
the M or N operators. They are also known as connected alternating sequential
filters. An M -sieve of f is the sequence (f (s))∞s=1 given by

f (1) =M1f, f (s+1) =Ms+1f (s), s ≥ 1 (5)

The N -sieve is defined similarly. The output of an area sieve is usually taken to
be the set of granule functions

d(s) = f (s) − f (s+1) for each integer s ≥ 1 (6)

These form the scale selection surface and non-zero connected regions within gran-
ule functions are called granules. Each granule has sharp edges and, at a particular
scale, all granules have the same area. In this sense the sieve is scale calibrated, a
characteristic illustrated in Figure 1, that addresses Problem 3 in Section 1.
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Figure 3: Operation of the area sieve. Original image (left column). Filtered to
scale 33 (top centre). Filtered to scale 121 (top right). Granules are shown in
bottom centre and right.

An example of the operation of the area sieve is shown in Figure 3. The
figures in the first column show the original 100 by 100 pixel image and its three
dimensional intensity plot. The image has one maxima of area 33 pixels on the
left-hand side and another of area 121 pixels in the centre. The middle column
of Figure 3 shows the result of applying an M -sieve to scale 33 (filtering to scales
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smaller than 33 pixels produces no change). In the filter output, shown on the top
row, the 33 pixel extremum has been removed from the image and is shown as a
granule in the granularity domain below. Filtering to increasing scales produces
no change up to scale 121 (right column), when the centre extremum is removed.
Again this is shown as a granule below. At scale 900 (not shown) the new extremum
in the centre of the image is removed leaving a zero intensity image.

The M operation depicted in Figure 3 is the same as the removal of maxima
followed by the removal of minima. In an N -sieve these operations are reversed.
With this in mind it is possible to define an m-sieve in which the extrema are
processed in the order in which they occur as the graph is parsed. In one-dimension
such an algorithm is equivalent to the recursive median operator. The m-sieve
has properties similar to M - and N -sieves and so not all sieves are alternating
sequential filters and not all alternating sequential filters are sieves.

It might appear that the sieving operation could be computationally expensive.
In practice, however, the algorithms referred to here, in which the image graph
is rewritten as flat-zones are merged, produce scale-spaces quicker than linear
diffusion. Typically a 512 by 512 image is processed in seconds [21, 29]. This
addresses Problem 4 in Section 1.

Sieves applied in two-dimensions preserve scale-space causality and this has
been proved formally (Theorem 6.36 in [21]) together with a number of other
properties of area sieves (Theorem 6.49 in [21]). This addresses Problem 2 in
Section 1.

The properties described so far would appear to be desirable. However, it is
well known that morphological operators such as erosion and dilation are sensitive
to noise, more complicated morphological filters are less so, and Gaussian filters,
having the form of matched filters, are fairly insensitive to noise. Whether sieves,
and other filters in their class, have practical application depends on whether they
reject image corruptions robustly.

4 Robustness

Noise interacts with CCD images and photographs in a complicated manner [30,
31]. Furthermore the underlying noiseless image distribution is also extremely
complicated. For this reason it is usual to study the performance of filters using
rather stylised models of images and noise. Here we shall consider the underlying
image to be a disc or a square which we shall assume is corrupted with either
Gaussian noise (a model of noise in the imaging system) or impulsive noise (a
model for specular reflection or pixel drop-out).

Figure 4 shows examples of the target images. The target image is a disc or
square of amplitude 144 in the centre of a 100 by 100 pixel image with background
112. To this, is added either uncorrelated Gaussian noise (µ = 0, σ = 24), or
alternatively, pixels are replaced with a random value in the range (0, 256) with a
noise density of 0.2. The resulting image is clipped into the range (0,255).

The performance of sieves is compared to Gaussian processors in which the
scale-space was generated using separable filters where the image at scale s is
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Figure 4: Examples of noise-corrupted images: Gaussian noise (top) and Impulsive
noise (bottom)

computed as in (2). The scale-selection surface ( [4] p. 323)

d = s2
(
f (s)
xx + f (s)

yy

)2

(7)

is used to locate the scale-space estimate of the target parameters. For the sieve
the scale-selection surface is formed from the granule functions. In the absence of
noise both scale-selection surfaces will have a peak corresponding to the target.

An iterative search is conducted over all scales to find this maximum. The
linear scale-space processor is scale-calibrated by normalising s so that the peak in
(7) corresponds to the true area of the disc. Improved precision position estimates
are obtained through least-squares interpolation around the scale-selection surface
peak. Since the area sieve operates by “slicing off” peaks and troughs, the extrema
may be large and flat so the centroid of these is taken as the position estimate.

cc diff m M N O
Gaussian σx 0.212 0.643 0.280 0.241 0.261 2.882

noise σy 0.198 0.629 0.243 0.244 0.251 1.141
σs 30.30 32.4 55.0 58.9 48.7 105.75

Impulsive σx 0.273 0.925 0.0425 0.0464 0.0400 0.076
noise σy 0.330 0.790 0.0416 0.0382 0.0448 0.712

σs 35.85 59.9 3.91 3.90 4.30 8.894

Table 1: Standard deviations of 150 estimates of the position (x, y) and scale, s of
a disc in Gaussian and impulsive noise for normalised cross-correlation (cc), linear
diffusion (diff), m- M - N - and O-sieve.

Table 1 shows that, in Gaussian noise, the diffusion system, M -, N -, and m-
sieves approach the performance of the benchmark normalised cross-correlation
system in which a series of increasing scale target templates are used. Opening-
or O-sieves, in which one repeatedly applies increasing scale greyscale openings,
have worse performance (it is known that openings are sensitive to noise). The
result of multiscale closing is not shown since the closing operator cannot resolve a
positive disc under these conditions2. Studies with the equivalent one-dimensional

2The closing removes minima, leaving maxima intact. Since, in this simple experiment, we
search for maxima, this is a problem.
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filters [32] showed that the linear diffusion system is more sensitive to Gaussian
noise than the sieve. In two-dimensions this is not the case, probably because the
diffusion filter matches the shape of the target. For square or rectangular targets
the diffusion system does not perform so well.

Table 1 also shows the results of the impulsive noise tests. The m-, M -, N -
and O-sieves can produce better scale and position estimates than those from the
diffusion system. This is an important property since in real vision systems im-
pulses, glint and occlusion are commonplace. Again, the asymmetry of multiscale
closings means that the experiment would have to be specially tuned to handle
positive targets.

Intensity of disc
130 144 150 160 170

D S D S D S D S D S
G σx 1.05 1.19 0.64 0.28 0.42 0.21 0.35 0.13 0.29 0.09

σy 0.86 3.65 0.63 0.24 0.42 0.19 0.35 0.11 0.27 0.10
σs 69.0 144.4 32.4 55.0 31.3 40.1 23.8 25.7 17.4 16.9

I σx 0.99 0.05 0.92 0.04 0.44 0.05 0.40 0.04 0.34 0.04
σy 1.02 0.05 0.79 0.04 0.47 0.05 0.37 0.04 0.34 0.04
σs 67.7 4.22 57.9 3.91 30.3 4.31 26.5 4.56 21.6 4.13

Table 2: Standard deviations of estimates in Gaussian (G) and impulsive (I) noise
for target discs of varying amplitude for linear diffusion (D) and m–sieve (S)

The performance of sieves in replacement noise is not surprising since it is
known that, in one dimension,M and N filters behave similarly to median filters
which have good performance in impulsive noise. The sieve retains its performance
in Gaussian noise because the cascaded operation described in (5) means that, like
wavelets, the output at large scales has a large support.

Table 2 shows the results of altering the signal to noise ratio of the images by
varying the target disc intensity. In Gaussian noise, for small intensity targets,
the diffusion processor is superior to the m-sieve. As the intensity of the disc
increases the performance of the sieve improves, approaching that of the diffusion
processor. For discs corrupted with impulsive noise the amplitude of the target
has no affect on the sieve. The noise is localised to one scale and is easily removed
and although the performance of the diffusion processor improves with increasing
disc amplitude, the sieve remains superior.

Why is the performance of image processors in noise important? Studies of
imaging noise in general purpose CCD images and photographs show that the
noise model is complicated with a Gaussian pdf in which the parameters of the
pdf depend on the image intensity but that, for most images, the noise level is
low. We believe it is the impulsive noise model that is the most interesting since it
forms the basis for a study of occlusion – an important reality that is considered
now.

Synthetic test images, for example on the left of Figure 5, are generated by
placing discs of differing area onto a background of amplitude 32. Each 100 by
100 pixel image contains five discs. The target is the only constant image feature.
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It has an area of 901 pixels and an amplitude of 47. The four occluding discs,
areas 49, 253, 481 and 709 pixels, are selected at random (with replacement).
They are placed at random, have random intensity (uniform range 0 to 255) and
randomly occlude one another. The right-hand side of Figure 5 shows an example
real cluttered image with five cardboard discs.
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Figure 5: Occlusion image. On the left a synthetic image and on the right a real
image.

Were the five objects not to have occluded one another, the sieve would pro-
duce five granules at the true positions of the objects in scale and space. With
occlusion the estimates are degraded. One may judge the degradation by gener-
ating test images and plotting granule positions as a function of scale. Results for
100 real cluttered images are shown on the left-hand side of Figure 6. In Figure 6
the estimates are plotted as circles and their projections on the position and scale
planes are plotted as grey dots. For the sieve results the grey dots show a clus-
tering. There are bands corresponding to the scales of the occluding objects and
there is a cluster at the centre corresponding to the target.

Repeating this experiment using a diffusion system is more complicated. Ex-
trema must be tracked through scale-space and insignificant extrema due to finite
precision effects need to be distinguished from genuine ones. Objects are denoted
by maxima along the scale-space tracks.

The right-hand side of Figure 6 shows the result of performing this scale-space
tracking on the 100 real images and plotting the maxima on three-dimensional
plot as before.
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Figure 6: Scale-space estimates for real occluded images. Sieve results on the left,
diffusion results on the right.
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The results from the diffusion system are very confused. There is a cluster of
points at large scale, corresponding to the target disc. However, at smaller scales
very little structure is apparent. Similar experiments using synthetic images show
the relative performance of the two systems to be the same.3

5 Concluding remarks

This is a stylised problem which could be solved easily using a processor that has
more prior information. For example, if it is assumed that the shape of the target
image is known. That is not the point. What is required is a primary vision
system that obeys Marr’s “principle of least commitment” [33] but preserves as
much structure as possible. It appears that the sieve preserves structure and does
so more robustly than the diffusion system.

As contenders for primary vision systems, sieves have some advantages. They
use some of the recent results from mathematical morphology to form a processor
that satisfies many of the desirable scale-space axioms and robustly separates noise
and occlusion according to scale.
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