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Summary
A biomechanical model of foetal head moulding is presented in this disser-

tation. The model allows us to evaluate foetal head moulding in a continuous
and quantitative fashion rather than the discrete and qualitative assessments
which are commonly used in the obstetric and paediatric communities.

Foetal head moulding is a phenomenon which may contribute to satisfac-
tory progress during delivery, as it allows the foetal head to accommodate to
the geometry of the passage. In contrast, excessive head moulding may result
in cranial birth injuries and thus affect the infant shortly or even long after
birth.

Several researchers in the past have designed computer software to simu-
late human childbirth for diagnostic purposes but did not cover the concept of
foetal head moulding in depth. A realistic model of the latter though, would
significantly improve the diagnostic value of such a simulation.

Only one group of researchers in the past investigated the biomechanics of
foetal head moulding from an engineering point of view, but limited themselves
to a static, linear model of the parietal bones.

This research presents a static, non-linear model of the deformation of a
complete foetal skull, subjected to pressures exerted by the uterine cervix, dur-
ing the first stage of labour.

The design of the model involves four major steps: the establishment of the
geometry of a foetal skull, the generation of a valid, compatible, finite element
mesh, the specification of a physical model and the analysis of the deformation
of the foetal skull model. Results of the analysis are validated with clinical
experiments on the quantitative assessment of foetal head moulding.

The complex and compound geometry of the foetal skull involves the bones
of the cranial vault, which may be considered as thin shells, the membranous
fontanelles and sutures, and the relatively solid skull base. The assumption
of non-linear, hyperelastic behaviour of the fontanelles and sutures results in
realistic overall stiffness of the foetal skull. However, at higher degrees of defor-
mation, convergence problems may occur, mainly because of excessive rotations
of the fontanelle and suture elements.

Three models, which differ in terms of speed of processing, stiffness and
accuracy, are suggested to solve this problem. The first model assumes linear
geometric behaviour of the deforming skull. The analysis for such a model is
fast but results in overstiff behaviour when compared to realistic situations.
The second model assumes non-linear geometry and utilises polynomial extrap-
olation of the displacements if convergence halts at a fraction of the applied
load. Despite a significant improvement in terms of the degree of deformation,
the extrapolated values may prove unreliable. Finally, the third model assumes
non-linear geometry and involves removal, stiffening and refinement of the ele-
ments which show excessive rotations. Despite the higher demands in terms of
processing and user interaction, this model agrees very well with clinical exper-
imental results and displays shapes after moulding which have been reported in
previous studies and which are generally known in the obstetric and paediatric
communities.
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Chapter 1

Introduction

1.1 Engineering and Obstetrics

During the last four decades, major improvements in obstetrical care have led
to a significant decrease of foetal and infant mortality and morbidity. The fac-
tors which contributed to this improvement originate from multi-disciplinary
research and improvements in the fields of pathology, pharmacology, genetics,
clinical obstetrics and biomedical engineering. The term ‘biomedical engineer-
ing’ is nowadays accepted for any field of engineering related and applied to
biology and medicine. It is especially the field of electrical engineering and
in particular, electronics and signal processing, which have made major con-
tributions to obstetrics and medicine in general. Machinery for diagnostic ul-
trasound, magnetic resonance imaging (MRI) and foetal heart rate monitoring
are only a few examples of the wide variety of applications. In contrast with
electrical engineering, mechanical engineering has only been popular for a lim-
ited range of medical applications, mainly in the field of orthopaedic surgery.
It is especially from this field that the term ‘biomechanics’, used to describe
the application of theoretical mechanical engineering to biology and medicine,
originates. In obstetrics, mechanical concepts are undeniably of major impor-
tance and despite being used for many years, for example the use of mechanical
tools such as the forceps and the vacuum extractor for operative delivery, they
are usually based on mechanisms of labour rather than mechanics of labour.
Bell [10] considers mechanisms of labour to be primarily concerned with foetal
movements of which the majority occurs in the second stage of labour. Knowl-
edge of these mechanisms is important if the clinician is to recognise abnormal
foetal positions and therefore needs to extricate the foetus from the birth canal
when necessary. The mechanics of labour is however a much wider concept,
involving both the first and second stages of labour and focusing on theoretical

1
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mechanical concepts rather than practical issues which are aimed at the deliv-
ery of the baby. The following issues are considered to be mechanical concepts
of labour:

• Mechanical properties of bony components such as the foetal head and
the maternal pelvis.

• Mechanical properties of soft tissue, e.g. the uterus, the cervix, the vagina.

• Interaction of the foetal head with maternal soft tissue and bony pelvis.

Although research involving these concepts has been done for more than a
century, very few practical applications have evolved. The ultimate practical
application would be to combine all the useful information of past and present
research into one single package resulting in some kind of general mechanical
model of human parturition. This model could be used to simulate birth, weeks
before the actual event. The simulation would be capable of indicating possible
complications such as cephalo-pelvic disproportion and would thus allow the ob-
stetrician to plan an elective Caesarian section rather than risking an emergency
Caesarian section at the time of delivery. Attempts to create such a tool have
been made before and are covered in the next section, followed by a discussion
on research related to the mechanical concepts of labour. Finally, based on the
findings and the assessment of this research, the objective of this work and the
strategy to meet it, is described.
Section 1.2 gives an overview of related work done so far and is subdivided into:

• A section on birth simulations: three papers from three different research
groups are reviewed and discussed.

• A section describing work on the mechanical concepts of labour. Papers
from two distinct researchers are reviewed and their importance to my
research is pointed out.

• A section on clinical-obstetrical experiments which describe qualitative
assessments of foetal head moulding and its effect on the condition of the
newborn.

Readers who are not familiar with the medical/obstetrical terminology may
consult the glossary of medical terms in Appendix D.
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1.2 Literature review

1.2.1 Research related to childbirth simulation

The combined application of computer science and engineering to simulate the
human childbirth process is not a novelty. Since the early 90’s several individ-
uals and project teams have been working on this topic. The following sections
give a brief overview of their work.

1.2.1.1 Three-dimensional modeling of human organs and its appli-

cation to diagnosis and surgical planning

In 1993, Bernhard Geiger submitted his Ph.D. thesis [34] on three-dimensional
modelling of human organs, based on the concept of the Delaunay triangulation.
After outlining the theory in the early chapters, the triangulation model is
illustrated in a simulation of a birth process, involving a foetal head sliding
through a female pelvis:

• The pelvis is obtained from MRI images of a non-pregnant woman.

• The foetal head is obtained from MRI images of an adult male. It is
reshaped and scaled to fit the size and shape of an average foetal head.

• The physical model, i.e. the mechanical model is based on a technique,
known in robotics as compliant motion.

• During the simulation, the head model is brought into an initial position
above the pelvic model. From there it is moved step by step downwards.
If at any stage, the head-polyhedron penetrates the pelvic polyhedron, the
resulting force1 and moment about the centre of gravity are calculated.
The head is then rotated and translated to minimise this force. If the
force cannot be reduced to zero, then the head will not be able to pass
without deformation.

Comments on Geiger’s work Despite the interesting findings of the move-
ment pattern which the head follows during simulation, there are limitations of
this research for clinical applications:

The head is a scaled and reshaped model of an adult head. There is no clear
explanation upon which these operations are based. Despite the fact that
the shape of the head is of crucial importance in a birth simulation, no

1Note that forces are just volumes of interpenetration rather than physical forces.
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particular attention has been given to it in Geiger’s work.
The foetal head is considered to be an object consisting of a single material
of which the material properties have not been taken into consideration.
In his simulation, this is not strictly necessary since the physical model is
not based on the physical strength of a material. Nonetheless, in reality,
the outer part of the foetal head is a composition of several biological
materials, i.e. skin, bone and membranous soft tissue.

The physical model involves volumes of interpenetration of the two poly-
hedrons in contact as surrogate contact forces. Moments are considered
about the centre of gravity. The interaction between the head and the
pelvis during delivery is a quasi-static mechanical contact process. Con-
tact mechanics is an area which has evolved fast during the last decades
but is tedious because of the complex mathematical concepts. The model
specified by Geiger, though simple, is thus far from realistic. Although
it is correct to assume that deeper penetrations will correspond to larger
contact pressures, deformation is not considered in the model. It is ob-
vious that the kinematics of the moving object, i.e. the head, will be
considerably different when deformation is involved. States, during the
sliding contact of the two objects, which are invalid for the simple model,
could still be valid for a complex model which includes deformation.
Moments, calculated about the centre of gravity of the head are poor ap-
proximations since the centre of gravity is not the centre of rotation. The
cervical spine, of which the atlanto-occipital point is the true centre of
rotation, should be modelled, irrespective of increasing the complexity.

The trajectory Geiger claims that the trajectory of the foetal head, in his
model, corresponds to the trajectory as described in the literature, for
all tests. Considering the lack of constraints in his model by neglecting
the spine, contact friction and deformation of both the head and pelvis, it
seems more likely that many trajectories, of which only a few are realistic,
were found.

Conclusion The childbirth simulation of Geiger has interesting concepts de-
spite its simplicity. The idea that the path followed by the head (and basically
the entire foetus), for an occiput-anterior vertex presentation, is determined by
the minimisation of forces and moments to which the head is subjected is a
plausible theory. In Section 1.2.2, more theories based on experiments, some of
which were developed as early as the beginning of the century, will be outlined.
The poor model of the head and subsequent neglect of its deformation is a
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major shortcoming. As a practical application, to be used in a clinical environ-
ment, the model is therefore insufficient, not only because of inaccuracies but
also because practical issues such as speed of rendering and minimal human
intervention have not been considered.
Finally, it is obvious that the simulation was added to the thesis rather to illus-
trate the utility of the reconstruction model, than to build an accurate, realistic
model of human parturition.

1.2.1.2 The prevention of human birth trauma: computer aided sim-

ulation of delivery by means of Magnetic Resonance Imaging and

Finite Element Analysis

In this paper, Wischnik et al. [107] describe a birth simulation as part of a
three-year project in Mannheim-Germany (1992-94).

Overview MR images (T1), of the pelvic area and foetal head of a 29 year
old primipara, suspected of cephalo-pelvic disproportion, were taken two weeks
before expected delivery. Each pixel of an image consists of 12 bits (4096 grey-
levels) which are converted into 256 colours to improve the identification of
the geometry. The marching cubes algorithm [64] is used to reconstruct the
geometry. The physical model is based on the finite element (FE) method,
motivated by the difficulties which could occur when trying to model states
of stress and deformation by a non-linear partial differential equation (PDE).
Material constants are obtained from [38, 77, 105, 108].
Software:

• custom-built software for MRI processing,

• I-DEAS FE and mesh generation software,

• ABAQUS FE software.

Hardware:
A CRAY-XMP computer (64-bit processor). Calculations were performed in
double precision (128 bit or 16 byte floating point arithmetic).

Results Different models were tested, one of which included soft tissue. In
this configuration the head was considered to show plastic behaviour. As the
elastic moduli of bone and soft tissue are significantly different, major differ-
ences in values of stress and deformation were found between representations
which did and did not involve soft tissue. Large pressures of up to 710 kPa
were found in the area of the hypophysis.
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Discussion and comments by Wischnik et al.

• A major improvement towards studies such as those described in [38] and
[77] is the involvement of dynamic rather than static evaluations of forces,
stresses and deformations.

• To point out the significance of the simulation, Wischnik et al. refer to
a study of Ludwig et al. [65] on 150 unselected mature newborns which
shows that intracranial haemorrhage occurred in 38% of spontaneously
delivered babies, 35% of vaginal-operatively delivered babies and only
18% for babies delivered by Caesarian section.

• Stresses up to 820 kPa were found in the lower areas of the pelvis. This
may explain the occurrence of several postnatal maternal complications.

Comments on Wischnik’s paper

• In contrast to Geiger’s approach, this project team has not spent a lot of
time to accurately model the geometry of the different body parts involved
in the process. The first step, the segmentation of the MRI data, involves
conversion of 4096 grey levels to 256 colours to ease the process of manual
segmentation. It is unclear how this crucial step is performed, which is
important since the factor of information reduction is 16, which could be
too high for reliable discrimination of different tissues in the model.

• The consideration of soft tissue is not clearly explained in the paper. As
we will show later, the influence of soft tissue is crucial to realistic models
of the head (and birth canal) and should therefore be evaluated carefully.

• Values of pressures are sporadically mentioned throughout the paper and
seem to be reasonably high compared with, for instance, values found in
crash-test simulations [78].

Despite the consideration of soft tissue, the involvement of virtually all the
biological components of human childbirth and a physical model based on real
material properties, the detail of the paper lacks an accurate description of the
methodology, necessary to solve a range of complicated issues related to the
simulation.

1.2.1.3 CAD modeling of the birth process

This work is based on a research project at the University of Massachusetts.
Liu et al. [61] talk about the critical factors of successful labour or the three P’s:
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1. Passage: size and shape of the pelvis.

2. Passenger: size and shape of the foetal head, presentation and position of
the foetus and moldability of the head.

3. Power: the force of uterine contractions and possible external help.

The main criticism of Liu et al. towards Geiger’s work [34]:

• Only one pelvis-head pair was tested (even though the head was scaled
to different sizes).

• No consideration was given to the inner structure of the head, nor the
effects of soft tissue in the birth canal.

• In the simulation, the foetal head will always pass through the pelvis even
when a severe disproportion occurs.

Liu’s objectives

1. To treat the foetus as a kinematic chain instead of an isolated head.

2. To minimise possible birth injuries by all means and not just simply pre-
dict Caesarian sections but also selectively assisted vaginal delivery.

3. To use atlases, partial scans and a plastic model to reconstruct the head
whilst waiting on a data set to become available.

4. To model the neck joint by a spherical joint with limited range of motion.

5. The kinematic model should involve:

• a geometric phase determining optimal paths and positions of the
foetal head sliding through the birth canal, whilst estimating forces
using an approximate function based on volume intersection with the
depth of interpenetration as an important indicator,

• a physical phase determining the precise forces on the foetus, using
FE analysis, at those positions where high pressures are expected,
and based on the approximate calculations in the geometric phase.

6. The method of evaluation should be based on:

(a) Comparison of scanned objects with models created from the scans:
the Visible Human Project (See Section 2.4.4) will allow the authors
to comprehensively check the accuracy of the birth canal model.
In general, the anatomical CAD models and the simulation process
should be validated using existing data.
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(b) Comparison with results in the literature, e.g. measurements of forces
applied to the foetal head.

Comments on the work of Liu et al. Many interesting concepts are men-
tioned here:

• The consideration of the foetus as a whole rather than the head/skull
only.

• The use of Geiger’s model as a first approximation which is then refined
using a realistic physical model based on FE analysis.

• The validation of the geometry and stress/deformation calculations based
on the literature.

The main concern about this work is again the ‘ease’ by which difficult problems
and their solutions are brought forward. An accurate model of the head only is
already a complicated problem, as will be shown during the course of my work.
Thus, needless to say that the consideration of an entire foetus with accurate
models of the spine, joints and limbs is far from trivial.
To summarise, good ideas and concepts are mentioned in this paper but many of
them are too ambitious when considering the complexity of problematic issues
such as soft tissue modelling, foetal head moulding and contact mechanics.
Furthermore, it is unclear from the paper what the authors actually did achieve.

1.2.2 Research related to mechanical concepts of labour

1.2.2.1 Biomechanics of human parturition: A fundamental approach

to the mechanics of the first stage of labour

This work was submitted by Frank Bell to obtain the degree of Doctor in
Philosophy at the University of Strathclyde - Glasgow [10]. The thesis of Bell
is vast and is mostly a literature review of research related to the mechanics
of labour before 1972 and based on this research, a further development of
mechanical concepts by the author. Bell’s work is focussed on the first stage
of labour, i.e. the stage until full dilatation of the cervix is achieved. In this
section, an overview of important general concepts as covered in Bell’s work,
which are relevant to my research, is presented2.

2Some of the literature which Bell refers to has not been consulted. It is referred to in this

section by citing the author followed by the year of the reference, between parentheses.
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Mechanisms and mechanics of labour In the introductory section, Bell
gives a brief overview of previous research and criticises the bias of clinical
researchers towards the mechanisms rather than the mechanics of labour:

• Mechanisms of labour are primarily concerned with foetal movements
of which the majority occurs in the second stage of labour, after full
dilatation of the cervix. The mechanisms during this stage are important
to the obstetrician to recognise abnormal foetal positions upon which
he/she can act by operatively removing the foetus when necessary.

• Since the first stage of labour involves about 90% of the entire dura-
tion of labour, the foetal movements during this stage, though small, are
nonetheless important in relation to the mechanics of the uterus and the
kinematics of cervical dilatation. It is this part which has been neglected
in most of the earlier clinical research, despite the fact that the first stage
of labour is important to the understanding of clinical concepts such as
prolonged labour.

Qualitative concepts of the mechanisms of labour Theories about the
mode of transmission of the uterine activity to the foetus and the cause of the
flexion of the head:

1. Some physicians believed that the uterine activity was transmitted from
the uterus to the birth canal by direct contact between the uterine wall
and the foetal body. The force was thus transmitted along the foetal
spine. The region where the foetal head is connected to the spine acted as
a fulcrum. As the back of the foetal head (i.e. the occipital protuberance)
is closer to this fulcrum than the forehead, the reactive forces of the birth
canal act effectively on this lever with unequal arms, resulting in flexion
of the head.

2. Other physicians believed that the uterine activity was transmitted evenly
over the foetal body by the hydrostatic pressure created in the intra-
uterine amniotic fluid during contraction. If this was the case then the
atlanto-occipital joint would no longer act as a fulcrum. They proposed
that the point of application of the reactive force on the back of the
head was lower than the point of the reactive force on the forehead, thus
creating a flexing torque.

It should be noted that these theories are equally important as an explanation
of how the expulsion force is transmitted, irrespective of explaining the flexion
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of the head.
Another important concept, involving the kinematics of the second stage, is
the pattern of the trajectory which the foetus follows, starting from cephalic
presentation at the beginning of the first stage. We discussed already one
possible explanation by Geiger [34], based on the minimisation of the contact
pressure (or a simplified measure based on interpenetration) between the foetal
head and the maternal pelvis.
Experiments as early as 1893 provide alternative explanations:

1. One of the first theories was that the shape of the bony pelvis influences
rotations of the foetal head. This was extended with the suggestion that
the muscular lining of the pelvis (and specifically, the upper edge of the
obturator internus) forms oblique planes which guides the head in a rota-
tional manner. These concepts were abandoned since they did not explain
for instance why a small head rotates in a large pelvis.

2. Experiments by Dubois (1900) and Edgar (1893) showed the importance
of the soft tissues of the pelvis. Dubois propelled a dead foetus through the
birth canal of a woman, who died immediately after labour, and observed
rotation of the foetal head. The experiment was repeated three times and
each time the head rotated. The fourth time, the head failed to rotate!
The experiment was repeated with a larger foetus for which the head
rotated in the first two attempts but it didn’t in subsequent attempts.
Edgar carried out similar experiments but instead of pushing the foetus
through the birth canal from above, he pulled it by means of a string
attached to the head. His results confirmed Dubois’s: initially, the head
rotated but after a few complete passages, the rotation ceased. These
experiments showed the importance of the passive elastic properties of
the pelvic floor.

3. Ostermann (1894) assumed that the flexibility of the foetus varies in dif-
ferent directions. This theory was confirmed in the early 1930’s, at least
with regard to the flexibility between the foetal head and trunk.
Sellheim’s description (1913) of this concept has attracted most attention:
he describes the whole concept of labour as being in principle strain and
accommodation whereby the foetus is flexed, twisted and deformed in an
intimate mechanical interplay with the birth canal. His arguments on the
varying flexibility of the foetus involved the effects of the tonus in the
musculature of the back and the tension in the ligaments of the neck.

4. Rydberg (1935) claimed that the rotation of the foetal head was also
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influenced by the asymmetrical shape of the head. His argument was
that since the head is kidney or bean shaped and the birth canal is a
bent tube, this would result in minimum distension (stretching) when the
curvatures of the head accommodate the curvatures of the birth canal
whilst other positions would be relatively unstable.

Bell’s comments on these theories:

• Very little has been added to these theories since the 1930’s.

• The importance of the asymmetric shape of the skull (Rydberg) is true
but so general as to be almost meaningless.

• Bell claims that simulations using models may not always be represen-
tative to the in-vivo process since the flexibility of the newborn changes
with time after birth and may be different in the uterus and during labour.
The experiments by Dubois and Edgar demonstrated that the rotational
movement is not solely dependent on a an in-vivo process but they did
not explain the causes of the movement in a quantitative fashion.

• In todays obstetrics, obstetricians might not be too concerned with the
causes of foetal movements because forceps delivery has been skillfully
developed, radiology allows confirmation of suspected abnormal presen-
tation and Caesarian section is an alternative to difficult vaginal birth and
carries less risk than it did in the past. The causes of foetal movements
thus seem to be more of academic interest than of practical concern.

Comments

• The experiments as performed by Dubois and Edgar are interesting but
unfortunately vague in terms of conclusions because of their qualitative
nature. The fact that both researchers, independently, found similar re-
sults adds to the credibility of their theory.

• The theory based on varying flexibility of the foetus is a possible expla-
nation but hard to prove.

• Bell’s comment on the danger of using models to derive conclusions of
an in-vivo process such as labour is something to take into account. For
instance, consider the properties of the foetal head which change very
shortly after birth. If it would be ethically justified to assess these prop-
erties from a stillborn baby just after delivery, limited time would be
available to derive relevant results.
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• The comment by Bell on the lack of interest from obstetricians in the
causes of foetal movement is based on ill-informed arguments. It is true
that the cause of the kinematics of the foetus is not of practical concern
because of possible operative alternatives but in no way is this a valid
reason not to try to find a realistic explanation. At the end, such an ex-
planation could contribute significantly to the process of decision making
a long time before delivery, which would lower the risk of critical decisions
such as emergency Caesarian section.

Uterine activity - labour forces - amniotic pressure A significant por-
tion of Bell’s literature review and further developments are about histological
studies which investigate the structure of the uterus and the physiological causes
of uterine contractions. Since the effect of the contractions rather than their
origin is important in my work, I will not elaborate on this topic.
A first attempt to assess forces in labour by Kristeller (1861), involved the inser-
tion of a spring measuring device in a pair of forceps. Subsequent investigations
involved the insertion of balloons into the uterus via the vagina. Initially these
were quite large (80 cc.) but it was very soon realised that the presence of these
large balloons influenced uterine behaviour and smaller balloons (2 cc.) were
used at the end of the century (1893). Some important considerations were:

• The need to simultaneously record intra-abdominal pressure and intra-
uterine pressure.

• The disturbing influence of the device.

• The relevance of the foetal membranes in estimating the forces of labour.

Uterine activity and coordination Alvarez and Caldeyro-Barcia (1948)
used a transabdominal technique whereby a cannula, connected to a pressure
recording device, was introduced into the amniotic fluid through the abdomi-
nal wall. Small pressure transducers were introduced into the mass of uterine
muscle at various sites via the abdominal wall. The recorded data presented ev-
idence to support the concept of fundal dominance, earlier found by Reynolds
(1948): contractions of the uterine fundus are stronger and last longer than
those of the mid-section and no contractions occur at the lower uterine seg-
ment. The term ‘pacemaker’ (McIntyre (1939)) was used to define a region of
the uterus from which excitation or contractile waves originate and spread over
the uterus. According to Caldeyro-Barcia and Poseiro (1966) there are two
common sites at which the pacemaker may exist adjacent to the uterine ends
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of the uterine tubes. Usually only one of the pacemakers predominates and
originates nearly all of the waves. If not, interference would result which would
lead to abnormal uterine coordination. From the pacemaker area, the normal
contraction spreads throughout the uterus at a speed of 2 cm/sec, invading the
whole organ within 15 sec. Once a given area of the uterus has been reached
by the contractile wave, the systolic phase of the contraction takes 30 to 60 sec.
to reach its maximum. In normal contractile waves, the activity of different
parts of the uterus is so well-coordinated that the peak of the contraction is
attained almost simultaneously in all parts, despite the fact that the wave has
reached them at different times. Consequently, the further the site from the
pacemaker, the shorter the duration of the systolic phase of the contraction.
The synchronous relaxation of all parts of the uterus allows the amniotic pres-
sure to fall to a minimum in between contractions, i.e. to the level of the normal
tonus.

Intra-uterine pressure (IUP) cycle Figure 1.1 shows an idealised intra-
uterine pressure cycle. To obtain the component of IUP due to uterine activity
solely, the intra-abdominal pressure must be simultaneously measured and sub-
tracted from the total IUP . The latter can be approximately derived if the
position of the pressure transducer is known.
The IUP curve shows the following characteristic parameters:

• The minimum pressure in the IUP cycle is called the tonus, resting pres-
sure or basal pressure, Pb.

• The maximum pressure or peak pressure, Pp.

• The difference between maximum and minimum pressure is called the
intensity, amplitude or peak-active pressure, Pap.

• The frequency of the cycle is usually quoted in contractions per hour or
contraction per ten minutes. The inverse of the frequency is called the
period or the interval.

• The duration of the contraction is called the contraction period, Tc.

• The duration of the interval in between contractions is called the interval
period, Ti .

• The duration of the interval in which the pressure is increasing is referred
to as the period of rise of pressure, Tr .
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Figure 1.1: An intra-uterine pressure (IUP) pattern.
Pp = peak pressure, Pap = active peak pressure or intensity, Pb = basal pressure or
tonus, Tc = contraction period, Ti = interval period, Tr = rise of pressure period.
Source: Lindgren 1966 [58].

Caldeyro-Barcia and Alvarez (1952) did not find the horizontal line in be-
tween contractions in their measurements, hence the interval period was zero
and contractions immediately followed one another. Note that the upstroke of
the pressure wave is often close to a vertical line whilst the downstroke is rather
of a hyperbolic shape. Turnbull (1957) [101] found three types of intra-uterine
pressure patterns (See Figure 1.2):

Type I: Contractions are regular in intensity, frequency and form.

Type II: Contraction pattern shows some irregularity in strength and fre-
quency or abnormal forms re-occur at intervals.

Type III: The pattern is completely irregular and most of the contractions
are of an abnormal type.

Turnbull found all three types to occur in normal labour: 60% of ‘nor-
mal’ cases studied, showed contractions of Type II, 30% showed contractions
of Type I and 10% showed contractions of Type III. Shulman and Romney
(1970) [91] confirmed these results by finding irregular rhythmicity of amniotic
pressure waves from 20 ‘normal’ labours. They expressed surprise at the varia-
tions which exist in intensity, frequency and duration of the uterine contractions
during apparently normal labours. Also, Caldeyro-Barcia (1959) reported wide
variations of uterine activity, expressed in Montevideo3 units, during normal
labours.

31 Montevideo unit or Munit is the product of 1 mmHg. of Pap and 1 conts/10 mins of

contraction frequency. For example a Pap of 60 mmHg. and a contraction frequency of 3

conts/10 mins yields a uterine activity level of 180 Munits.
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Turnbull [101].
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Intra-uterine pressure variations in labour The IUP pattern varies with:

• The parity of the patient: Turnbull (1957) [101] found that the intensity
of IUP was about 40% higher for primiparas than for multiparas:
primiparas: range 20-80 mmHg., mode 40-60 mmHg.
multiparas: range 15-60 mmHg., mode 20-40 mmHg.

• The position of the patient: according to Caldeyro-Barcia and Poseiro
(1966), the average frequency of contractions is higher when the mother
is lying on the back as opposed to upright position (0.7 conts/10 mins
on the average). The average intensity is then lower (7.6 mmHg. on the
average) which can be explained by the effect of the uterine weight and
the abdominal cavity constraints on the shape of the uterus.

• The state of the foetal membranes. Contradictory findings on the effect of
rupture of the membranes (ROM) on the IUP pattern: Lindgren (1959)
[53] found an increase of frequency of contractions, an increase of intensity
of the IUP and no change of the tonus. Krapohl et al. (1970) [44] only
found a significant decrease of the tonus.

• The degree of cervical dilatation (ranging from 0-10 cm.): findings by
Zambrana (1960) showed slight increase of the tonus (starting from 7 mmHg.
at dilation 0 up to 12 mmHg. at dilatation 10), higher increase of the inten-
sity (26 mmHg. up to 46 mmHg.), increase of the frequency of contractions
(2 conts/10 mins up to 5 conts/10 mins) and an increase of the uterine
activity (50 Munits at dilation 0 up to 230 Munits at dilatation 10).

• The influence of the foetus: the size and position of the foetal head and
the compressibility of the foetal body.

• The size and shape of the uterus.

Lightening and engagement During lightening, the level of the fundus in
the abdomen drops and during engagement, the foetal presenting part, which
is contained within the uterus, enters the pelvic inlet. Both lightening and
engagement are probably due in part to the increase in uterine weight and the
concomitant increase in the forces on the uterine supports and in part to the
changes in the connective tissue in the body. Whilst engagement of the head
is almost always described with reference to the pelvis, engagement into the
lower uterine pole is, mechanically, of much more interest in understanding the
process of labour.
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Cervical dilatation In labour, contractions of the uterine tissue act upon
the cervical tissue by direct traction along the uterine wall and by creation of
the radial pressure via the amniotic fluid, foetus and foetal membranes. During
labour, the foetal head is in direct contact with the lower uterine pole and the
tissue is distended around the foetal presenting part with a subsequent increase
in the diameter of the cervix. Pressures can be greater than the IUP and the
largest pressure occurs at the largest diameter of the foetal head and decreases
at lower levels below this diameter up to the external ostium. The assumption
that the cervix is elastic would mean that it would return to its original diameter
in between contractions which is not the case. If one assumes purely plastic
behaviour then there would be no transient recovery of the diameter in between
contractions. Therefore the assumption of visco-elastic behaviour of the cervix
during dilatation seems to be the most reasonable explanation.
Contradictory findings concerning the shape of the dilatation-time curve were
found. Friedman (1954) [30], found a sigmoid-shaped curve with a deceleration
phase near the end of the first stage whilst Hendricks et al. (1970) [39] found
an exponential-shaped curve with no deceleration phase at the end. In both
cases a final cervical dilatation of 10 cm. was found and was not stated as a
mean derivation. The caliper device used by Friedman to measure the dilatation
was attached across the cervix. The fact that this would interfere with normal
dilatation, might explain a possibly incorrect deceleration phase at the final
stage.

Rupture of the membranes The rupture of the foetal membranes (ROM)
may influence the mechanics of labour according to two apparent mechanisms:

1. Reduction of the intra-uterine volume by the loss of amniotic fluid will
tend to reduce the tensile forces in the uterine wall. As the radii of the
uterus tend to decrease, the resulting pressure may decrease or increase
depending on the uterine wall properties and the uterine radii.

2. The average contact pressure between the foetal head and the lower uter-
ine pole will increase. The subsequent redistribution of force on the foetal
head would tend to increase the moulding of the head and consequently
reduce the largest diameter.

1.2.2.2 The structure and bending properties of foetal cranial bone

In the early 80’s, Gregg McPherson and Timothy Kriewall investigated the
bending properties of foetal cranial bone [46, 70, 71] and used a finite element
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(FE) model of the parietal bone to investigate foetal head moulding [70, 72] (we
discuss this in the next section). It will become clear in the further course of
this work that their research is an important basis for the investigation of foetal
skull moulding. In this section we summarise the important concepts of their
work. Actual results are found in Chapters 5 and 6.

The structure of foetal cranial bone At birth, the skull of the infant
is not rigid but consists of separate, relatively rigid bones connected by flexi-
ble membranes known as sutures. The cranial bone is relatively homogeneous
through its thickness and varies from roughly 0.5-1.5 mm. [70]. This homo-
geneity across the thickness differs from adult cranial bone which consists of
three distinct layers, i.e. the inner and outer layer and the diploë (middle layer)
which consists of cancellous bone. A second difference between the structure
of the foetal/newborn and adult skull is the orientation of the grain structure
which has a definite orientation for the former [70].

The elastic modulus of foetal cranial bone [71] To experimentally de-
rive the elastic modulus, 86 specimens of foetal cranial bone obtained from
6 newborns, with an estimated gestational age ranging from 25 to 40 weeks
were tested in three-point bending. The possible influences of gestational age,
specimen location and bone fibre orientation on the elastic modulus were in-
vestigated too. In addition, 12 specimens from a 6 year-old calvarium were
tested for comparative purposes. The average thickness of the bones of the
cranial vault varied between 0.71 and 0.86 mm., with a standard deviation of
0.15 mm., for term foetuses. For the preparation of the specimens, the following
procedures were followed:

• After post-mortem examination, performed within 12-24 hours after death,
the cranial bones of the vault with attached septa and dura mater were
removed in one piece and placed in a container of cold buffered saline. The
material was preserved under refrigeration (temperature between -10◦C
and -20◦C) until the time of specimen preparation. The membranous
sutures holding the bones of the vault together were excised whilst the
inner and outer membranes covering the bone were carefully removed.
The bones were kept wet by periodic bathing in a separate saline-filled
container.

• The size of the specimens was based on the fact that the theory of flexure
is most accurate for long thin beams and therefore a length-thickness
ratio of 20 was suggested. Assuming a bone thickness of 1 mm. and
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the necessity of excess length to ensure easy support of the specimen, an
overall length of 25 mm. was chosen. The width of the specimens was
2 mm.

• The excised specimens of 2 × 25 mm. were cut in a manner to obtain
preferred fibre orientations, either parallel or perpendicular to the long
axis of the bending specimen because of the orthotropic nature of foetal
cranial bone.

• The effects of varying thickness and the curvature of the bone were as-
sessed. The effect of the initial curvature, assessed by the comparison of
bending responses of a straight beam using Euler-Bernouilli beam theory
and an initially curved beam using FE analysis, was proven to be small
enough to be ignored.
FE analysis was performed to evaluate the effects of varying thickness
across the length of the specimen (beam). The error between a model of
varying thickness and a model with (averaged) constant thickness in the
calculated deflection was 18%. This result indicated that it would not be
appropriate to ignore the variation in the thickness of the bone. There-
fore, the thickness for each specimen was measured at five equally-spaced
locations to the nearest 0.01 mm.

Preliminary investigations were performed:

• To evaluate the effect of multiple load-unload cycles on specimen response.
Fung [31] found differential response of biological tissue with multiple-
cycle loading. This implies that biological tissue needs to be exercised or
preconditioned through several loading cycles before repeatable material
response is obtained. McPherson and Kriewall found that after three
loading cycles, repeatability was established.

• To evaluate the effect of testing with the specimen immersed in warm
saline as opposed to testing in room air. After preconditioning the spec-
imens, McPherson and Kriewall found that the specimen’s stiffness for
tests in normal saline was slightly less than for tests in room air (4.4%),
but not statistically significant. Since testing in a warm saline bath poses
difficulties, all specimens were tested at ambient room conditions.

The bending test experiment involved:

1. centering the specimen on the bending supports with the convex surface
upwards,
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Table 1.1: Values of the elastic modulus in bending, Eb (MPa), of foetal cranial
bone as reported in [71]. The values in parentheses are standard deviations. n = the
number of specimens.

Gestational Elastic modulus in bending, Eb (MPa) Statistical
age group Parallel fibres Perpendicular fibres Significance

Preterm 1650 (1170) 145 (62) p < 0.001
n = 23 n = 11

Term 3880 (780) 951 (572) p < 0.001
n = 22 n = 16

Statistical
Significance p < 0.001 p < 0.001

2. cycling the specimen three times to a midspan deflection of 0.25 mm. at
a crosshead speed, for both loading and unloading, of 0.5 mm/min.,

3. loading the specimen to a midspan deflection of 1.5 mm. at a crosshead
speed of 0.5 mm/min. followed by unloading at the same speed,

4. removal of the specimen from the fixture and returning it to its storage
container.

The resulting calculations of the elastic modulus are based on a model divided
into four sections yielding the formula of deflection:

δ =
Pl3

768E
[
1
I1

+
1
I2

+
1
I3

+
1
I4

] (1.1)

where P is the midspan load, l is the span length, E is the elastic (Young’s)
modulus and Ii is the area moment of inertia for a section i.
Table 1.1 shows the mean values of the elastic modulus in bending, Eb, for
preterm foetuses (specimens of gestational age between 24 and 30 weeks) and
term foetuses (specimens of gestational age between 36 and 40 weeks) as re-
ported in [71]. All results are significantly different following a paired Student
t-test (p < 0.001).

Discussion by McPherson and Kriewall

• Because of the discretisation of the continuous variation in thickness of
the specimens by a beam model, consisting of four elements, some error
in the final result must exist.
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• The fibre pattern of foetal cranial bone is radially oriented within each
bone and the focus of the pattern lies at the centre of ossification. This
means that the fabrication of a specimen with finite width will never have
all fibres running either parallel or perpendicular to the long axis of the
specimen. Whilst every effort to minimise this variation was taken, the
variation does exist and has been ignored throughout the analysis.

Conclusions

1. The mean value of the elastic modulus is significantly different for preterm
bone as compared to term bone.

2. The mean value of elastic moduli for each of the previously mentioned
classes are significantly different for parallel and perpendicular fibre ori-
ented specimens.

3. The difference with fibre orientation was still significant for the 6 year-old
cranium but is not evident with adulthood. Wood [109] was able to show
no such difference existed for the adult skull, a finding which is supported
by the homogeneous grain structure of adult cranial bone as opposed to
the orthotropic structure of foetal cranial bone.

4. The significant differences in properties which exist between the preterm
and term bones could be one factor in the explanation as to why preterm
infants are more at risk for cerebral trauma than term infants.

1.2.2.3 The biomechanics of foetal head moulding

This work by McPherson and Kriewall [72], published in 1980 in the Journal of
Biomechanics, is possibly the only work which involves a quantitative analysis
of mechanical behaviour of the foetal skull.
McPherson and Kriewall created an idealised model of a foetal skull using or-
thogonal radiographs. Their study was focussed on the behaviour of the parietal
bones when subjected to the contact pressure of the cervix. The bone dimen-
sions and material properties were derived from previous research [71]. The
pressure distribution between head and cervix was based on the findings of
Lindgren [54] and improvements of this work by Bell [10].
The diametral strains for both term and preterm parietal bone were evaluated
using linear FE analysis, a justified approach according to the authors, because
of the small strains and stresses which their model predicted.
The resulting deformations were qualitatively similar to those seen in radio-
graphs of the foetal head, taken during labour.
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Preterm cranial bone showed deformations, 2-4 times larger than deformations
of term parietal bone for the same load distribution.
Numerical results of their work are given in Chapter 6.

1.2.3 Clinical research related to the physiological consequences

and the qualitative assessment of foetal head moulding

1.2.3.1 The physiological consequences of foetal head moulding

Foetal head moulding is an important phenomenon of human parturition, not
just from a purely mechanical point of view but also as a possible indicator of
obstructed labour, the latter which can influence the general condition of the
foetus during delivery and possibly even for the rest of its life.
The pre-occupation with the problem of obstructed, non-progressive or pro-
longed labour has haunted mankind throughout history. In Europe, from the
time of the renaissance onwards, obstetricians and midwives had nothing more
to offer than feto-destructive procedures [24]! The chance of survival of the
foetus increased significantly during the 18th. century when the forceps became
available. It soon became apparent that not just survival but also the quality
of life could be affected by the obstetrician’s acts. Today, the obstetrician is
well aware of the dangers of birth and its possible neurological consequences.
The harmful effects of prolonged labour during the second stage can be due to:

1. the interference with the foetal oxygenation (acidosis),

2. the mechanical effects on the foetal head (moulding, pathological mould-
ing).

The degree of acidosis results from bearing down by the mother during contrac-
tions, which possibly diminishes the placental blood flow, whilst the umbilical
cord may be locally compressed between foetal parts and soft tissue of the
birth canal. Also, the increase of mechanical pressure on the brain and its
blood vessels can cause acidosis. A prolonged expulsion can turn the moderate
respiratory acidosis in the foetus, that normally resolves rapidly after birth,
into a potentially dangerous metabolic acidosis [24].
Amiel-Tison et al. [4] point out that the pressure on the skull may affect the
cerebro-vascular circulation, hence causing hypoxaemia. The unequal resistance
of the bony skull towards contact pressures, as a result from expulsion and ab-
dominal forces, results in moulding of the head which calls for adaptation of
the internal structures such as the blood vessels. From a severe increase of head
compression and decrease of cerebral perfusion, brain edema may result, which
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subsequently yields a significant increase of the intra-cranial pressure (ICP).
Due to the combination of increased ICP and foetal hypoxia, bradycardia may
result.
In most of the literature, describing foetal head moulding and/or the mea-
surements of pressures between the head and maternal tissue, it is commonly
agreed that severe moulding of the foetal head can cause serious brain dam-
age. Lindgren [53] reports from a study on 23,836 children at the Sabbatsbergs
Hospital in the period 1949-1959, that 647 children died perinatally of which
112 (17.3%) showed rupture of the tentorium cerebri which might have been
caused by moulding of the foetal skull. The latter being a plausible cause of
cerebral haemorrhage as well. Rempen and Kraus [85] point out that strong
head compression is assumed to cause serious brain damage of the child mainly
because of two pathogenetic mechanisms:

1. the possible elevation of ICP which reduces the cerebral perfusion, leading
to ischemia, edema and haemorrhage,

2. moulding of the foetal skull resulting in cerebral trauma with rupture of
the blood vessels.

On the contrary, Svenningsen et al. [97] did not find any correlation between
foetal head compression pressure, FHCP , and the following measurements/tests
to assess the condition of the neonate:

• the umbilical cord pH, two minutes after birth,

• Apgar score at 1 and 5 minutes,

• neuro-behavioural testing within 24 hours and classified in four groups
ranging from normal neuro-behaviour to serious conditions such as ab-
normal reflexes, poor visual/auditory habituation and hyper-alertness,

• assessment of retinal haemorrhage within 24 hours and subdivided in four
classes of increasing degree of severity.

Svenningsen et al. found a significant correlation between the arterial pH and
the duration of expulsive contractions, a phenomenon to which acidosis is com-
monly associated. He therefore concluded that this condition may have to be
considered potentially more dangerous than the effects of relatively short pe-
riods of very high degrees of head compression. Also, the ‘objective’ measure-
ments carried out in his study failed to support the common theory that retinal
haemorrhage in the newborn may be used as a subtle indicator of the degree of
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cerebral compression during birth. Furthermore, no significant correlation be-
tween Apgar scores and FHCP was found, a finding supported by Moolgaoker
[74]. However, care has to be taken with the findings by Svenningsen et al.
[97]. The assessment based on Apgar score is known to be relatively unreliable
in statistical terms, as it is the result of five independent observations. Sven-
ningsen did not investigate severe cases of foetal head moulding: it is probably
true that cases of normal head moulding will not result in adverse effects but
this is not so for cases of pathological head moulding as a possible consequence
of cephalo-pelvic disproportion and/or vacuum extraction and forceps delivery.

1.2.3.2 Qualitative assessment of foetal head compression pressure

(FHCP)

Several researchers in the past have measured the pressures on the foetal head
[3, 5, 9, 33, 35, 52–54, 74, 85, 86, 97]. A significant variance amongst their find-
ings exists, of which a portion can be accredited to different samples of different
populations being examined. Also the location where the pressure is measured
differs amongst different researchers, e.g. the measurements of Rempen and
Kraus [86] are only taken during the second stage, whilst Lindgren’s measure-
ments are taken during the first stage before full dilatation. More attention to
this material will be given in Chapter 5.

1.2.3.3 An index for foetal head moulding

Kriewall et al. [47] and Sorbe and Dahlgren [94] studied the moulding of the
foetal head by measuring principal diameters shortly after birth and three days
later to allow for restitution. Their results, which are covered in depth in
Chapter 5, will prove to be of crucial importance to the validation of a FE
model of foetal head moulding.

1.3 Summary and Objective

Section 1.2.1 gave an overview of projects involved in the simulation of the birth
process from the onset of labour until the delivery of the foetus/newborn. Such
a simulation, when modelled accurately, could allow the obstetrician to assess
possible problems or risks and thus plan interventions to avoid last-minute deci-
sions. For instance, if the simulation could show that vaginal delivery is virtually
impossible because of geometrical incompatibility of the maternal birth canal
and the foetus, an elective Caesarian section could be planned, thus avoiding
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the risk of emergency Caesarian section. Although these projects have out-
lined important concepts, none of them have covered the phenomenon known
as foetal head moulding, a concept necessary to make the simulation realistic.
McPherson and Kriewall [46, 71, 72] did work on the assessment of the moulding
of the foetal skull but this has been limited to a linear analysis of the parietal
bones. Mechanical concepts they used were based on the work of Lindgren [53]
and Bell [10] which was discussed in Section 1.2.2.
The importance of foetal head moulding as an important risk factor to the gen-
eral well-being of the foetus or newborn was outlined in Section 1.2.3.
Based on the knowledge, gathered in the research as discussed in the previ-
ous sections, my research will focus on the development of a valid model of the
biomechanical behaviour of the foetal skull when it is subjected to labour forces
because:

1. It is an important concept for a successful and complete simulation of
human parturition.

2. It extends the linear model of the biomechanical behaviour of the parietal
bones, as suggested by Kriewall and McPherson, to a non-linear model of
the entire skull.

3. It provides a basic model to investigate post-natal pathological conditions
caused by excessive head moulding.

The first point illustrates the shortcoming in previous birth-simulation models
by overlooking the head moulding phenomenon. Without considering it, a me-
chanical model of the birth process cannot be realistic.
The second point illustrates the necessity of modelling the behaviour of the
entire skull, rather than individual bones. The anatomy of a foetal skull is
complex, thus non-linear analysis of the complete geometry is necessary.
Finally, a realistic model of a foetal skull is not only useful in terms of a me-
chanical childbirth simulation but can also be used for the research on trauma
and pathological conditions caused by excessive head moulding during delivery,
a problem especially of interest to the paediatric community.

1.4 Plan

To arrive at a realistic model of the deformation of a foetal skull when it is
subjected to labour forces, the following tasks need to be accomplished:

1. Accurate recovery of the shape of a foetal or newborn skull.
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2. The creation of an accurate, valid and compatible mesh model for FE
analysis.

3. Analysis of deformation using the FE method based on a realistic model
of loading conditions, boundary conditions and material properties.

The next six chapters of this work are designed around these three requirements
as follows:

Chapter 2 Shape modelling of the foetal skull.
The shape recovery and initial mesh generation of two skulls from two
different data sources is described in detail.

Chapter 3 Mesh generation and optimisation.
A triangulation algorithm with mesh interpolation and mesh refinement
properties and additional techniques for mesh optimisation are presented.

Chapter 4 Important concepts of finite element analysis (FEA).
General concepts of FEA which are crucial to its correct and successful
application, are covered. A simple example on the bending of a plate
illustrates some of these concepts.

Chapter 5 Analysis of deformation of the foetal skull: The Model.
A model is established which specifies load and boundary conditions and
material properties of foetal cranial bone, fontanelles and sutures. Fur-
thermore, a model for validation is outlined.

Chapter 6 Analysis of deformation of the foetal skull: The Experiments.
The first experiment involves the parietal bones only and aims to assess
the effects of mesh refinement and geometry. The second experiment
assesses the behaviour of the complete skull when subjected to pressures
of the cervix during the first stage of labour.

Chapter 7 Conclusion
Results, applications and further research are discussed.



Chapter 2

Shape modelling of the foetal

skull

2.1 Introduction

The objective of this work is to analyse the mechanical behaviour of a foetal or
newborn skull1, subjected to labour forces. The first important step towards a
successful analysis involves the accurate reconstruction of the shape of the foetal
skull. The foetal skull is a complex object, merely consisting of independent
bones, connected by sutures. This complex, compound anatomy is the major
determinant of the elastic behaviour of the skull. Before outlining the process
of shape recovery, we will discuss the anatomy of the foetal skull to give an
insight into its overall structure and structural components.

2.2 Anatomy of the foetal skull

The human skull consists of two parts: the neurocranium and the visce-

rocranium. The main function of the neurocranium is the protection of the
brain. It is further subdivided into a cartilaginous and membranous portion.
The cartilaginous neurocranium, also called chondrocranium, consists initially
of a cartilaginous base of the developing skull which forms by fusion of several
cartilages. Later endochondral ossification of the chondrocranium forms the
bones of the base of the skull. Intramembranous ossification occurs in the mes-
enchyme at the sides and top of the brain, forming the cranial vault (calvarium)
[37]. The viscerocranium is the main skeleton of the jaws. The bones of the
cranial vault of the foetal skull are held together by dense membranous tissue

1During the further course of this dissertation, we will use the term foetal skull rather than

newborn skull.
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called sutures. The large areas where the sutures meet are called fontanelles2.
Appendix B shows the anatomy of the foetal skull in detail.
Figure 2.1 shows the individual bones of the cranial vault.
Figure 2.2 shows a foetal skull subjected to an internal light source. The figure
shows that all the bones of the neurocranium and parts of the viscerocranium,
except for the maxilla and mandible, are very thin indeed. They are merely
shells, which are kept in shape by the intra-cranial pressure (ICP) and underly-
ing structures. The ossification centres and the (radially) orthotropic structure
of these bones are clearly illustrated in this picture.

2.3 Data acquisition

In finite element analysis (FEA), an accurate geometric model of the shape of
the object to be analysed, is of crucial importance. In most finite element (FE)
applications, the object is designed (e.g. CAD), hence its shape and dimensions
are known in the finest detail. In our case, we do not control the design of
the object of interest (OOI), hence we are dealing with a reverse engineering
problem. If we were to physically measure the shape and size of an existing
object, then the accuracy of the measurements would decrease with increasing
geometric complexity. When we are dealing with in vivo, internal biological
organs, physical measurements would become virtually impossible. In medical
applications, rather than physically measuring the organ, we create a 3D image
of it using a medical imaging technique.
The oldest technique to image the human body is X-ray based projective

radiography. An X-ray source projects a fan-beam through the object onto
a screen of X-ray film. The X-rays emerge more or less omnidirectionally from
the source and as they pass through the subject they are attenuated through
photo-electric and Compton scattering processes, both of which depend on the
spatially inhomogeneous distribution of bone and soft tissue within the subject’s
body. The X-rays then expose the film, which is developed to yield a non-linear
record of the X-ray exposure [7]. The major drawback of the X-ray images is
that it is merely a projection of a 3D object and determination of the full 3D
structure of the subject’s body is difficult and virtually impossible if only one
image is available.
A more advanced technique, also based on the attenuation of X-rays in biological
tissue, is computed tomography (CT). The X-ray source is collimated to a
thin-pencil beam that passes through the patient’s body and is detected by a

2In the later stages of this work, the importance of fontanelles to the mechanical behaviour

of the foetal skull will become apparent.
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Figure 2.1: The bones of the cranial vault as individual components: 1 = frontal
bones, 2 = parietal bones, 3 = occipital bone. Source: Life Before Birth by M.A.
England [26].
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Figure 2.2: Lighted foetal skull: the bones of the cranial vault appear to be relatively
thin. Observe the ossification centres and orthotropic structures. Source: Life Before
Birth by M.A. England [26].
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collimated detector aligned with the pencil beam [7]. The detector is not an
imaging detector like a piece of film so it yields only a single number for a fixed
position of the source-detector assembly. In older systems, to acquire a complete
dataset, the assembly is translated so that the aligned source-detector assembly
remains in the same orientation but moves laterally. After one translation
the source-detector assembly is rotated over typically 1 degree and another
translation is performed. The process is repeated until 180 degrees have been
covered. In modern CT systems, a fan beam of X- rays and a linear array of
detectors are used so many line integrals are measured simultaneously and no
translation is necessary. Since only a thin slice of the body part is irradiated,
only data of this slice will be acquired [7]. To obtain a set of slices over the
entire object, scans in different steps in the direction perpendicular to the plane
of the slice are taken, which yields a 3D dataset of voxels3. The height of the
voxel (often referred to as the z-axis slice dimension) is determined by the slice
width and the square base (x and y image dimensions) by the pixel size. The
pixel size is related to the display field of view (FOV) and the image matrix4:

Pixel size = FOV/matrix size

For example, for a 25 cm. display FOV or reconstruction circle and a 512×512
acquisition matrix, the pixel size is slightly less than 0.5 mm. On most scan-
ners, a range of slice widths can be selected between 1 and 10 mm. [51]. CT
images are ideal for the reconstruction of bony objects since the image exhibits
a unique grey-value for bone. Drawbacks of CT imaging are the relatively high
cost and the radiation hazard from X-rays. Exposure to excessive doses of
radiation may cause inhibition of cell division, damage to chromosomes, gene
mutation and in the worst case cell destruction [104].
Another tomographic technique is magnetic resonance imaging (MRI). Very
simply, MRI is an interaction between an external magnetic field, radiowaves
and hydrogen nuclei in the body which behave like little magnets. When the
subject’s body is placed in a magnetic field, it will be temporarily magnetised,
i.e. the hydrogen nuclei align with the magnetic field. At equilibrium, the net
magnetisation is parallel to the z-axis (along the subject’s longitudinal axis) of
the external magnetic field. This is called longitudinal magnetisation [95]. A ra-
diofrequency (RF) pulse tips the longitudinal magnetisation into the transverse
plane, creating transverse magnetisation. Longitudinal magnetisation recovers
partially between RF pulses, applied at intervals, TR, with time constant T1.
Precession of transverse magnetisation induces an electrical signal in the wire

3A voxel or 3D volume element is a right square prism.
4Also referred to as acquisition matrix [51].
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coil, which decays at time constant T2 [95]. The imaging volume is restricted
to a slice of a certain thickness by specific frequencies in the RF pulse and the
magnetic field gradient. More in depth coverage on the physics of MRI can
be found in [95], which also includes clinical applications and [93] for a more
mathematical, theoretical approach. Excellent resolution in MRI is obtained
with for example an acquisition matrix of 256 × 256, combined with a FOV
of 8 to 10 cm. Note that the increase of planar resolution causes a decrease
of signal volume, resulting in a lower signal-to-noise ratio (SNR). The major
disadvantage of MRI is the high cost. Health hazards include tissue heating
when exposed to excessive RF power, vertigo as a result of exposure to fields,
higher than 2 Tesla, and peripheral nerve stimulation when strong gradients
are changed too rapidly [95].
A relatively inexpensive and presumably harmless imaging technique is 3D ul-

trasound. Acquisition of image data is based on the same technique as 2D
ultrasound: a piezoelectric crystal is excited as to produce a short ultrasound
pulse and the resulting echoes are recorded. The intensity and timing of the
echoes gives information about the structures along the direction of the ultra-
sound beam. If the beam is swept through a plane, a 2D image can be created.
Because the echo intensities are converted into brightness for display, the 2D
image is called a B-scan [89]. In depth coverage of 3D ultrasound technology
can be found in [79, 89].
Another, relatively inexpensive technique is laser-scanning: a laser beam is
fanned out into a line and projected onto the object which rotates around its
axis. As a single line represents the local curvature of the surface when viewed
obliquely by a CCD camera, a matrix of points on the object surface can be
obtained. The technique is limited to surface reconstruction.
Stereo-based 3D reconstruction is a popular technique in computer vision
and robotics: a visible surface is reconstructed from images obtained with two
stereo-vision cameras. The approach has also been found useful in medical ap-
plications, for example during cranial surgery, to register the head of a patient
with 3D data reconstructed from MR images, two stereo cameras are used to
render the visible surface of the patient’s head [18]. A disadvantage is that the
technique can only be employed for visible surfaces (21

2D).

Discussion Keeping the objective in mind of recovering the shape of a foetal
skull, CT images are probably the best option because they exhibit a unique
grey-value for bone tissue. MR images do not possess this property, hence
the segmentation of foetal cranial bone would pose considerable problems. To
obtain a complete skull from 3D ultrasound would be a difficult task as well
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because of the size and complexity of the object, which would require several
acquisitions. Moreover, since the acquisition needs to be done in vivo, the
required registration to compensate for foetal movement would yield poor ac-
curacy. In Section 1.2.2.2 it was pointed out that the thickness of foetal cranial
bone was of the order of 0.5-1.5 mm. of magnitude. Accurate representation
of the geometry would thus require a resolution of at least 0.1 mm. Conven-
tional CT scanners have a typical intra-planar resolution of 0.5 mm. which is
insufficient to model the thickness with the required accuracy. However, the
availability of CT images of a foetal skull poses the major problem. For ethical,
financial and political reasons, CT images of a newborn or foetus are scarcely
available and if so, they are difficult to obtain.
Considering the many practical and especially ethical problems related to the
acquisition of foetal skull data from medical images, we decided to reconstruct
a shell-based surface model only. This decision is justified by the sole fact that
the bones of the cranial vault of the foetal skull are very thin, as was illustrated
in [71] and was clearly shown in Figure 2.2. Two surface models of a foetal
skull were thus developed, based on the following techniques:

1. Using atlas images of a foetal skull and a 3D adult skull, obtained from
CT images, specify corresponding landmarks and warp the shape of the
adult skull into the shape of a foetal skull using thin-plate spline (TPS)
interpolation.

2. Laser-scan a model, either a real skull or the exact replica of a real skull
and reconstruct the outer surface.

In the next two sections each technique is covered in depth. Finally, the chapter
is closed with a discussion of the results and a summary.

2.4 Foetal skull model I : 3D warping using thin-

plate splines

The alternative of reconstructing the shape of a human body-part from orthog-
onal images or pictures, is a cheap solution which only requires the availability
of a homologous object (HO). The HO is fully determined in 3D space and is
used to interpolate the missing structure of the object of interest (OOI). To do
this, we specify a set of landmarks in 3D space for both objects. These pairs of
data points allow us to derive a smooth interpolation function to recover the 3D
shape of the OOI. In other words, we warp the shape of the HO into a plausible
shape of the OOI. The thin-plate spline (TPS) is preferred as the basis of the
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warping function because it minimises the bending energy of a thin-shell object
[12]. The degree by which the shape of the warped OOI will agree with the
shape of the true OOI depends mainly on the number of interpolation points
used.
Biological objects have a limited set of landmarks, e.g. for the human skull,
Riolo et al. have determined this to be 45 [88]. In [50] we used 38 of these5 to
arrive at the 3D shape of a foetal skull, using a 3D adult skull from CT images,
obtained from the Visible Human Project (VHP), as the HO. It was observed
that this number was insufficient to fully recover the curvature from the cranial
vault. Therefore, in the future we will specify the curves between the landmarks
as well, which after discretisation, just yield an extra set of points.

2.4.1 Morphometrics, homology and homeomorphic surfaces

Morphometrics is the study of covariances of biological form [12]. The most
effective way to analyse forms of whole biological organs or organisms is to
record the geometric locations of landmark points. Landmark points are typi-
cally determined by a name, e.g. bridge of the nose, and a geometric location.
This is necessary to imply true homology [12]. In theoretical biology, homology
is known to be the correspondence between two body-parts of different crea-
tures, for example the correspondence between a human arm and a chicken
wing. However, for the case of warping one object to the other, the homology
between these two is not sufficient to assure a successful mapping. Another
property known as homeomorphism is required: two surfaces are homeomor-
phic if one can be converted to the other by continuous distortion, i.e. bending,
stretching and squashing, in other words, warping, but without points being
torn apart or glued together [28]. In the strictly theoretical sense, the outer
surface of a foetal skull and an adult skull are not homeomorphic because of
the presence of the fontanelles which can only be inversely created by tearing
the sutures of the adult skull apart.

2.4.2 Ray-casting from a set of planar CT images

To allow us to specify landmarks on the HO6, we can visualise it by ray-casting.
Ray-casting is a visualisation method which determines the visibility of surfaces
by tracing imaginary rays of light from the viewer’s eye to the objects in the
scene [29]. Ray-casting can be implemented in a variety of ways, which differ
in terms of complexity, quality of visualisation and speed of the algorithm.

5Some points cannot be located in 3D from the orthogonal images.
6Which is in our application a 3D adult skull, available as a set of transverse CT images.
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Since speed is not a crucial factor, a relatively simple ray-casting algorithm was
implemented which involves the following steps:

1. segmentation7 of voxel data to isolate the OOI,

2. creation of a Z-buffer (depth-buffer) to render an image of the object,
viewed from a particular angle,

3. ray-casting the Z-buffer using a shading model.

Tri-linear interpolation is used during the thresholding operation to obtain res-
olution at sub-voxel level and to resolve the difference between inter-planar
and intra-planar resolution. Phong’s illumination model for gray-scale images
is used to visualise the surface from the Z-buffer [29].
Surface normals are calculated from Z-buffer gradient estimation. The alter-
native approach is object-space gradient estimation, which estimates grey-level
gradients at voxel level and yields more realistic visualisation but requires ex-
tra storage for the grey-level differences of each point on the surface and extra
processing time to calculate them8.

2.4.3 Thin-plate splines as a model for warping

At the root of the thin-plate spline (TPS) analysis lies the function [11]:

f(x, y) = −U(r) = −r2log(r2) (2.1)

where
r =

√
x2 + y2 (2.2)

or the Euclidean distance from the point (x,y) to the origin.
Bookstein shows that the form of an infinite, previously flat, steel plate which is
bent and fixed at a point above or below the original surface, will be described
by Equation 2.1 whenever the displacements are sufficiently small. Subject to
more constraints, the form of the plate will be described by a linear combination
of terms: r2

i log(r2
i ) [12].

We extend the formulation to the 3D case. If we consider displacements of n

points in a regular 3D mesh to points in a deformed 3D mesh, the TPS function
can be specified as:

f(x, y, z) = a1 + a2x + a3y + a4z +
n∑

i=1

wiU(|pi − (x, y, z)|) (2.3)

7Because the grey-level range for bone in CT data is unique, simple thresholding within

this range is sufficient to segment the skull.
8The ‘less realistic’, sharper edges, typical for Z-buffer gradient estimation, are preferred

because they ease the process of landmark determination.
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The first part is an affine transformation representing the behaviour of f(x, y, z)
at infinity, whilst the second part is the weighted sum of root functions U(r) of
the spline. In matrix notation (without the affine part):

CR = Y (2.4)

Where C = the n× n matrix:



U(r1,1) ... U(r1,n)
... ... ...

U(rn,1) ... U(rn,n)


 (2.5)

where
ri,j = |p(xi, yi, zi)− p(xj , yj , zj)| (2.6)

or the Euclidean distance between two points pi and pj in the 3D space of the
original mesh9.
The n× 3 matrix of TPS parameters:

R =




w1x w1y w1z

... ... ...

wnx wny wnz


 (2.7)

and the matrix of coordinates of the n points in the displaced mesh:

Y =




x′1 y′1 z′1
... ... ...

x′n y′n z′n


 (2.8)

The spline parameters are then obtained from:

R = C−1Y (2.9)

The affine part can be added to the matrix C yielding the (n + 4) × (n + 4)
matrix:

L =

[
C A

AT 0

]
(2.10)

where the n× 4 matrix

A =




1 x1 y1 z1

... ... ... ...

1 xn yn zn


 (2.11)

The matrix 0 is a 4× 4 matrix of zeroes.
9Note that the elements on the main diagonal are 0.
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2.4.4 Ray-casting an adult skull from CT images obtained from

the Visible Human Project

The adult skull used as the HO for the foetal skull or OOI, is obtained from
the Visible Human Project (VHP). The VHP is an initiative from the Library
of Medicine in Bethesda, Maryland. A full set of CT images, MRI images and
photographs of cryo-sections are available from a male and a female volunteer,
who donated their bodies to medicine after their deaths. CT images of the
visible male were used to raycast the 3D adult skull. The original dataset was
tri-linearly interpolated at steps of 0.25 mm., within the plane and between
planes10. Figure 2.3 shows the result after ray-casting from four different view-
ing directions.

2.4.5 Specification of a point-distribution in 3D space from

principal landmarks of the skull

To specify a point distribution of the foetal skull in 3D space, we developed an
interface in a hybrid C, Tcl/Tk environment [80, 106], which allows us to register
images from two or more orthogonal viewing directions and to specify landmarks
and connecting curves. The approach is based on orthographic projection [87].
Figure 2.4 shows three atlas images of a foetal skull from orthogonal viewplanes
[69], organised in a manner to allow easy matching of points from one image to
the other. We distinguish three stages to arrive at a point distribution:

1. alignment of images according to a reference point,

2. registration of the images using 2D warping,

3. specification of landmarks and curves yielding a point distribution in 3D
space.

Alignment ensures that the images from different viewplanes have at least one
point in the same position.
Registration is only necessary when the images are proportionally different. If
the disproportion is linear it can be resolved by scaling. Non-linear dispropor-
tions can occur when the images are drawings with the relative positioning of
the landmarks being correct and consistent in the topological sense but not in
terms of exact position. For pictures, different camera properties and light-
ing artifacts may cause non-linear inconsistencies. To solve these problems we

10The inter-planar distance of the VHP CT dataset is 1 mm. and the pixel size or intra-

planar resolution is 0.527344 mm.
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(a) Anterior view (b) Posterior view

(c) Antero-Lateral view (d) Lateral view

Figure 2.3: Ray-casted images of the visible male’s skull.
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specify corresponding landmarks on a master image and a slave image and sub-
sequently warp the slave image to make it correspond to the master image.
The final step involves the specification of corresponding landmarks in 3D space.
In [50], a first warping experiment, strictly using landmark points, is described.
In the experiment, 38 landmarks were specified on both the HO and OOI. The
result was poor because the principal curves of the OOI were not preserved.
Therefore we adapted the interface to match curves as well as points. The seg-
mentation of curves from the images is based on an approach as described in
[63]: a rough polygon around the area of interest is drawn. A dynamic model
based on internal, external and damping forces will then automatically align
the polygon to a boundary curve in the image. The model is defined by:

Fi = wexFex,ri + winFin,i + Fdamp,i (2.12)

with
Fdamp,i = wdampvi (2.13)

where

i The index of a vertex of the polygon.
Fi The resulting force on vertex i of the polygon.
Fex,ri The radial component of the external force acting on a vertex i.
wex The external weighting factor.
Fin,i The internal force acting on a vertex i.
win The internal weighting factor.
Fdamp,i The damping force acting on a vertex i.
wdamp The damping weighting factor.
vi The velocity of a vertex i.

The external force, Fex, is obtained from the energy of the image. The energy
is a potential function of the image and can take several forms with an affinity
for darkness or brightness. Two different potential functions are considered, i.e.
either the original image or this image convolved with a Gaussian function with
standard deviation σ. On the lhs of the interaction panel shown in Figure 2.5
we observe the buttons to select the type of the potential function and sliders
to change the darkness and, in the case of Gaussian convolution, to set the size
of the convolution mask and standard deviation. The external force is taken as
the negative gradient of the energy:

Fex = −∇E (2.14)
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This definition implies that the external force pulls the contour in the direction
of lower energy.
The internal force, Fin, is included to obtain a smooth curve.
The damping force, Fdamp, regularises the oscillation caused by internal and
external forces working in opposite directions.
Figure 2.6 shows a polygon settled around the cranial vault-curve starting from
the nasion11 and ending approximately at the opisthion12 [12, 88]. The initial
polygon was roughly placed on the image (in Add mode) by clicking points. To
match the curve with a corresponding position in the other images a sliding
ruler is activated (Ruler button). The corresponding landmark (nasion) in the
example, can be spotted in the lower-left image, showing a frontal view of the
skull. Since the curves are piecewise linear, the final result is a set of points in
3D space.
A total of 15 curves, resulting in a total of 237 corresponding points, were
specified for both skulls.

2.4.6 Warping from homologous object (HO) to object of in-

terest (OOI)

After specification of corresponding landmarks on the adult skull and the foetal
skull respectively13, we can calculate the warping function as formulated in
Equation 2.3.
The warping function can be either:

1. a forward transformation, warping from HO space to OOI space,

2. a backward transformation, warping from OOI space to HO space.

Forward warping poses a problem when the coordinates of the warped object
(OOI) have to be mapped back to an integer grid for display. Since the coordi-
nates of the warped OOI are real, they have to be rounded if mapped back to an
integer grid which may result in the visualised object containing gaps. Back-
ward warping solves this problem because integer coordinates from the OOI
space are processed through a backward warping function yielding real coordi-
nates in the HO space, which are rounded. The grey-values of these rounded
coordinates are then allocated to the integer coordinates in the OOI space14.

11See Appendix C.
12Posterior-most point of the foramen magnum.
13An extra set of 26 anchor points was necessary to fix the corners and sides of the data

cube.
14Note that backward warping becomes ill-posed if two or more points are mapped to one

point or points with nearly the same location [6].
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Figure 2.4: The interface in 2D warping mode to register images from three orthogonal
viewplanes. The original images of the foetal skull are obtained from [69].
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Figure 2.5: The interaction panel to specify landmarks and curves (with energy image
of a lateral view of the adult skull).
GUI options include:
- Weighting factors for each of the forces, set, using the sliders on the right hand side
of the interaction panel.
The three top sliders have the following functions:
- The first slider sets the period to update the positions of the vertices of the active
contour.
- The second slider sets the length of a polygon element in pixels. The length is
automatically adapted during deformation of the polygon (activated with the Deform
button).
- The third slider sets the time increment.
Furthermore, there are buttons to Add and Delete a polygon and to Replace, Freeze
and Click a vertex of a polygon. The Ruler button displays a ruler for matching, whilst
matching across different images is activated in Match mode.
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Figure 2.6: The interface to specify landmarks and curves in 3D space: orthogonal
images of the ray-casted adult skull. The ruler provides easy matching of corresponding
landmarks across the images.
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Results The results in Figure 2.7 show lateral, top and frontal views of the
warped foetal skull. Note that the fontanelles are missing at this stage. We
mentioned in Section 2.4.1 that it is not possible to create the fontanelles in
the foetal skull using the warping approach because the fontanelles cannot be
created without tearing or cutting the HO. Since the outer surface of the skull
has the correct shape, we can locate the fontanelles on the 3D foetal skull by
mapping them on the surface. Before we perform this operation, we first create
an initial mesh.

2.4.7 Creation of an initial mesh

The ray-casted image of the foetal skull is only a 3D visualisation of the object.
If we want to study the mechanical behaviour of the foetal skull we will need
to create a mesh model.
An initial mesh was created using the Delaunay triangulation (DT) algorithm
for planar data as described in [34]. The reconstruction algorithm is imple-
mented in C and is part of the free software package called NUAGES.

Results Figure 2.8 and Figure 2.9 show a snapshot of the 3D mesh-model of
the foetal skull with and without the boundary edges and after mapping the
fontanelle structures onto the mesh. Figure 2.10 shows the posterior fontanelle.

2.4.8 Discussion

When looking at Figure 2.7b and d we observe an accurate shape of the bound-
ary curves when compared with the original images as displayed in Figure 2.4.
We wouldn’t expect anything else because these boundary curves have been
used to derive the spline function.
Figure 2.7c shows the anterior view. Although the boundary of the skull in the
image is correct, for known reasons, facial details are not because:

• The mandible and maxilla are obviously different between adult and foe-
tus because of the absence of teeth for the foetus15. Small imperfections
such as the teeth and the fontanelles illustrate the fact that the surfaces
of a foetal skull and an adult skull are not strictly homeomorphic.

• Since the adult skull and the foetal skull are not from one and the same
person, matching of ‘simple’ structures like the cranial vault is relatively
straightforward but more ‘complex’ structures such as the facial features

15Note that the mandible is of no real importance with regard to the moulding of the foetal

skull.
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(a) Right-Lateral view (b) Top view

(c) Anterior view (d) Left-Lateral view

Figure 2.7: Ray-casted images of the warped foetal skull.
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Figure 2.8: 3D view of the reconstructed foetal skull with mapped fontanelles (visu-
alisation in Geomview 1.6.1 [84]).

Figure 2.9: 3D view of the reconstructed foetal skull: triangular mesh (visualisation
in Geomview 1.6.1 [84]).
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Figure 2.10: 3D view of the reconstructed foetal skull: posterior fontanelle (visuali-
sation in Geomview 1.6.1 [84]).

will show discrepancies. The degree of resemblance depends on the num-
ber of points specified, however over-specification could result in tears or
overlaps in the surface.

We have illustrated the method to recover the shape of the OOI from a HO by
warping the latter into the former, onto the shape recovery of a foetal skull.
Obviously this method can be used for many other applications:

• The method allows us to visualise an object in 3D from conventional
radiograph (X-ray) images, provided the relative orientation of the im-
ages is known. In their study on foetal head moulding, McPherson and
Kriewall [72] used orthogonal radiographs to manually reconstruct the
parietal bone. Our method provides a better model because of the more
accurate TPS interpolation.

• When insufficient imaging data is available, i.e. the set of images is small,
relative to the size of the object, important parts of the object can be
missed out. Our approach can provide smooth interpolation with a real-
istic curvature in those areas where no data is available.

• A dataset from a malformed or damaged biological organ can be corrected
using the warping technique. A similar approach for cranio-plastic surgery
has been shown in [15].
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• For educational purposes, images from atlases and medical text- or spe-
cialist books, of which the relative orientation is known, can be visualised
in 3D provided a library of homologous objects is available. This library
of organs is currently available from several collaborators of the Visible
Human Project.

A more in depth coverage of the warping technique and the application to the
shape recovery of a foetal skull can be found in [48].

2.5 Foetal skull model II : laser scanning of a replica
model obtained from a natural specimen

The first foetal skull model, obtained by warping the outer shape of an adult
skull to the outer shape of a foetal skull using TPS interpolation is a good
approximation but the true anatomy at the bone/suture connections is highly
dependent on the atlas images. Therefore the model can show the following
inaccuracies:

• In a realistic model, the fontanelles and sutures are embedded, i.e. the
bones of the skull and in particular the parietal bones, have an inwards
curving tendency near sutures and fontanelles. Since the atlas images are
usually obtained from a real model of which the original fontanelles and
sutures are replaced by a glue-like substance to keep the loosely connected
bones together, the inwards curvature of the bones near the sutures has
vanished.

• For the same reason, the fontanelles and sutures are usually larger than
they used to be in their original state.

The laser-scan approach, which is outlined in this section, aims to improve these
shortcomings.
Figure 2.11 shows a picture of a replica model of a foetal skull. The model is
manufactured in poly-urethane and originally developed by ESP Ltd. It is a
true model of a natural specimen. The model shows clearly the non-smooth
transitions between bones and fontanelles/sutures. The inside of the model is
incorrect but since we made the assumption of the skull to be a shell-based
object, only the outer surface is of importance. This outer surface is accurate
considering the fact that the model is an exact mould of a natural specimen.
The first step is to digitise the skull model to obtain a computerised surface
model. We used the laser-scanning technique to solve this problem. The laser-
scanning technique provides a set of surface data points which are organised in
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Figure 2.11: Foetal skull model (manufactured by ESP Ltd.).

rows of vertical arrays. This provides us with a structured matrix of data points
of which triangulation of the scanned surface is a straightforward procedure.

2.5.1 The principle of laser-scanning

The laser-scanning system from the Department of Medical Physics and Bio-
engineering at University College London (UCL) was used to scan the foetal
skull model as shown in Figure 2.11. The laser-scanning system was developed
as early as 1978 with the objective of providing 3D prediction and simulation
for maxillo-facial surgery. This was at the time merely based on 2D methods
involving the dissection and rearrangement of facial and profile photographs.
Over the years the laser-scanning system was developed for acquiring 3D data of
the facial surface [59]. These days it is used for practically all parts of the body
and a range of applications in surgery, diagnostic radiology, prosthetics, clinical
growth studies, forensic science, archeology and psychology. Commercial inter-
ests have included sculpturing and advertising. It should be noted that diverse
types of 3D laser-scanners are available on the market of which many are of
the free-hand type, i.e. the object is scanned using a hand held device, which is
pointed at and moved across the object. The scanner at UCL is fixed and the
acquisition of data is based on triangulation [60]. It operates according to the
following principle: a beam of laser light is fanned out into a line and projected
onto the object surface. When the line is viewed obliquely by a CCD camera,
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it is curved, reflecting the shape of the surface at the intersection with the laser
beam. An arrangement of mirrors ensures the line is viewed from opposite di-
rections. The resulting image, which is displayed on a VDU, shows the double
mirrored surface curve. This approach is necessary to avoid the loss of signal
due to occlusion of parts of the facial surface by the prominence of the nose.
The video signals of the camera are pre-processed by a purpose built printed
circuit board which is fitted into a slot of a personal computer. For each video
frame, the board outputs a set of numbers which represent the midpoints of the
pulses on the video scan lines produced by the projected laser line. To obtain
a scan of the entire surface of the object, the latter is rotated on a platform.
Up to 256 profiles may be recorded per scan and the angles at which these are
recorded can be set. This ensures a maximum rate of acquisition over areas of
the anatomy where greatest detail is required such as the mid face. Resolution
may thus be matched to surface detail and curvature. The collected dataset
usually consists of between 20,000 and 60,000 3D coordinates of points lying on
the anatomical surface. Individual data points can be recorded with a precision
of less than 0.5 mm. The triangulation of the data points is straightforward
because they form an ordered grid or matrix of points on the object surface16.

2.5.2 Laser data of the foetal skull

One shortcoming of the laser-scanning system is that the top and bottom parts
of the object cannot be scanned. This is not hard to understand since the
principle is based on scanning the object in a cylindrical fashion, hence a surface
of revolution is obtained. Also, data points which are close to the top or bottom
can be inaccurate. Therefore multiple scans of the foetal skull are necessary to
obtain accurate data over the entire object. Figure 2.12 shows scans obtained
from different positions according to the placement of the object on the turn-
table. The following defects occur:

1. gaps, caused at the locations where datapoints are out of reach,

2. noise, due to interfering objects, e.g. on Figure 2.12a, noise at the left side
is from the supporting table, noise at the bottom is from the supporting
metal bar,

3. inaccurate data, typically near locations where data points cannot be
acquired,

16Contrary to our first model in which the creation of an initial mesh model was less trivial,

the mesh of the laser-scanned model can be made instantly available because a regular matrix

of points is wrapped around the object.
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4. false or incorrect connections: a big gap is bridged by long and narrow
triangles because no datapoints are available in between the connecting
points17,

5. incorrect patterns on the surface because of vibration of the object during
scanning,

6. unclosed gap between the first and last array of scanned points.

In total, four datasets, scanned from different positions of the object on the
turntable, were acquired.

To arrive at a single, complete and valid shape model of the foetal skull
using the acquired laser-scan data, the following operations are required:

1. Removal of noise for each dataset.

2. The selection of datasets to be used for the final model.

3. The registration of the selected datasets.

4. The selection of relevant parts of each dataset, to be used for the final
object.

5. The connection of these parts to obtain a valid and complete object.

The removal of noise is mainly aimed at reducing the size of the dataset. Since
the object was scanned at the best possible resolution, the datasets contain
around 60,000 faces of which a significant number are noise. For example,
the metal bar in Figure 2.12a comprises over 15,000 triangles. Custom-built
software, developed by the author and called the the interactive mesh-modelling
toolkit, immtk, can deal with noise removal in a straightforward way, using cut-
off planes and individual removal of triangles18.
Selection of the datasets is based on careful examination whilst keeping in
mind the following two guidelines:

• Keep the individual parts to a minimum but not at cost of accuracy.

• Only select accurate parts, i.e. parts of which the data is correct. It is dif-
ficult to quantify this concept but any moderately trained observer could
tell immediately which points on the reconstructed model are reliable and

17This yields a poor approximation of the original surface.
18The immtk software is developed in a hybrid Tcl/Tk, C environment. It provides tools

for mesh adaptation and optimisation, measurements of object dimensions and selection of

relevant parts for finite element analysis.
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(a) Scan of the skull supported by a metal bar and in face-forward position.

(b) Same scan as in (a) but viewed from the backside.
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(c) Scan of the free skull model in face-down position.

(d) Same scan as in (c), showing the detail of the
triangular mesh near the anterior fontanelle.

Figure 2.12: Raw models after laser-scanning a foetal skull model from different
positions on the turntable. 1 = gaps, 2 = noise, 3 = inaccurate data, 4 = false or
incorrect connections, 5 = incorrect patterns, 6 = unclosed gap (see text for further
explanation).
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which are not. Taken into account that the true object is available for
comparison makes this task easier.

Registration of the selected datasets. This is a well-known problem in
almost any of the fields of medical imaging and is tedious, especially when mov-
ing body parts are scanned. Since we are dealing with a fixed object and the
laser-scanned data acquisition system does not yield any significant non-linear
disturbances, a conventional approach such as landmark matching, followed by
least-squares parameter estimation for a coordinate transformation, is sufficient.
The approach is outlined in the next section.
The final steps include the selection of relevant parts using the immtk soft-
ware and the connection of the selected parts, based on the following
methodology:

1. Selection of datapoints and the boundary of the region to be connected.

2. Fitting of a TPS surface to interpolate the regions where no data points
are available, i.e. in between the edges of the parts, to be connected. This
requires a transformation of the original coordinate basis to the basis of
principal directions.

3. Triangulate the surface lying in between the region’s boundary.

This methodology is covered in depth in Chapter 3.

2.5.3 Registration of datasets

The concept of registering the datasets is based on matching landmarks.

Linear transformation and homogeneous coordinates Homogeneous
coordinates are a powerful concept to describe a set of linear transformations
[103]. Translation, rotation, scaling, perspective projection and any possible
combination can thus be represented in a single transformation matrix. With
homogeneous coordinates, 3D coordinates are extended with a fourth coordi-
nate of value α yielding the 4D vector:

x =
[

αx αy αz α
]

(2.15)

Thus the original 3D coordinates can be derived from the homogeneous co-
ordinates by dividing the first three components by the fourth. In general a
coordinate transformation can be represented as:

x′ = Ax (2.16)
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where x is a vector of original coordinates, x′ is a vector of transformed coor-
dinates and A is a general transformation matrix consisting of a concatenation
of simpler matrices that perform the elementary transformations of translation,
scaling, rotation and perspective projection.

Least squares solution The landmark sets of the two datasets (objects) to
be registered are supposed to coincide. However, the transformation, which
includes rotation, translation and scaling requires 12 parameters. Since the
number of landmarks can be anything >= 3, a least squares solution is required.
We wish to transform the landmarks of dataset 2 to approximately coincide
with the landmarks of dataset 1. The following set of equations represents the
solution:




x̂2,1 ŷ2,1 ẑ2,1 1
... ... ... 1
x̂2,i ŷ2,i ẑ2,i 1
... ... ... 1

x̂2,n ŷ2,n ẑ2,n 1




T

=




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







x2,1 ... x2,i ... x2,n

y2,1 ... y2,i ... y2,n

z2,1 ... z2,i ... z2,n

1 1 1 1 1




4× n 4× 4 4× n

(2.17)
and in matrix notation:

X̂T
2 = AX2

T (2.18)

where the matrix X̂2 contains the estimated coordinates of the landmarks of
the first dataset, the matrix A is the general transformation matrix and the
matrix X2 contains the true coordinates of the landmarks of the second dataset.
The least squares condition aims to minimise the error between the estimated
coordinates of dataset 2 and the real coordinates of landmarks of dataset 1:

dE

dA
=

d

dA
(X̂2 −X1)(X̂2 −X1)T = 0 (2.19)

where the squared error, E = (X̂2 −X1)(X̂2 −X1)T .
Working out Equation 2.19 with substitution of Equation 2.18 yields the solu-
tion:

AT = (X2
TX2)−1X2

TX1 (2.20)

where the expression (X2
TX2)−1X2

T is known as the pseudo-inverse.

Results After careful consideration, based on the noise factors as shown in
Figure 2.12, two datasets were selected. Several trials were performed with
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landmark xres yres zres

1 0.2019 0.1233 -1.2954
2 -0.1424 -0.0566 0.9915
3 0.4897 1.2442 -0.7115
4 -0.5660 -1.4431 0.8096
5 -0.3728 -1.2688 -0.2851
6 0.3896 1.4010 0.4908

Table 2.1: Residuals (mm.) of six landmarks (see Figure 2.13a) used for registration
of datasets 1 and 2.

a varying selection of 25 available landmarks before a satisfactory match of
the two selected datasets was found. Some important factors for successful
matching are:

• A small set of accurate landmarks is preferred over a large set with a
significant number of relatively inaccurate landmarks.

• Landmarks should be distributed across the object and not localised. This
is in accordance with the previous item: a large number of localised land-
marks is useless.

• The sum squared error does not always reflect the goodness of fit, e.g.
when one landmark is more accurate than the others the overall error
could be low, but since the fit is biased towards the particular landmark,
the overall fit is not optimal.

The final set contained just six landmarks (see Figure 2.13a) which, after solving
Equation 2.20, yielded the transformation matrix:

AT =




−0.9734 −0.1073 −0.1901 0.0000
0.1905 0.0033 −0.9466 0.0000
0.1388 −0.9798 0.0391 0.0000
13.3588 33.7066 −26.3516 1.0000




(2.21)

The most significant operation was translation as can be seen from the bottom
row of AT . Scaling appeared to be small which is not surprising considering the
fact that properly laser-scanned objects should not display major discrepancies
in size and shape. Table 2.1 displays the residuals for each landmark.

A further refinement by user-interaction using the immtk software yields the
final result of the registration as shown in Figures 2.13.
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(a) Lateral view: landmarks 1-6 (b) Anterior view: the blue patches
(odd = lhs, even = rhs). at the rhs near the orbit is noise.

1,2
3,4

5,6

z

y

x

(c) Top-posterior view: perfect match of (d) Bottom view: the blue structure,
the sagittal suture of both datasets. is the base of the skull.

Figure 2.13: Registered datasets: brown colour = dataset 1; blue colour = dataset 2.
Six landmarks were used to register the datasets. Dataset 1 was scanned about the
y-axis. Dataset 2 was scanned about the z-axis.
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2.5.4 Assembly of relevant parts

We have shown in the previous section how the different datasets can be regis-
tered. The selection of relevant parts can be easily done now using the cut-plane
option in the immtk software. Figure 2.14a shows the mesh of the registered
but unconnected skull.

2.5.5 Connection of relevant parts into a single, valid mesh
model

The technique to arrive at a valid geometry of the foetal skull is based on TPS
interpolation of the unconnected parts. A region across disconnected parts is
selected using the immtk software. The interior vertices are used to fit the
spline surface. The interior region is then re-triangulated according to a user-
set triangle size. This technique is described in depth in Section 3.3. Figure
2.14b shows the final mesh model. Figures 2.15 and 2.16 show left lateral
and top views respectively, of the original foetal skull and the reconstructed
computerised model.

(a) Unconnected, raw mesh model. (b) Final mesh model.

Figure 2.14: Skull models before and after surface interpolation and remeshing.

2.5.6 Discussion

As Figures 2.15 and 2.16 show, the result of the shape reconstruction is suc-
cessful. Note that the mandible was left out in the computerised model since it
is not a fixed part of the cranium and is unlikely to contribute to the moulding
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(a) Original foetal skull model.

(b) Computerised, reconstructed model.

Figure 2.15: Left lateral view of the original and the computerised reconstructed foetal
skull model. The image of the original model was captured by a HITACHI KP-180
camera. The image of the computerised model was rendered using the Geomview 1.6.1
software [84]. Note that the mandible is missing in the computerised model.
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of the foetal skull. The zygomatic bone was reconstructed using thick shell
elements to simulate its thickness because datapoints on the inside of the bone
could not be acquired with the laser scanner. The parts underneath the zygo-
matic bone and mandible were inaccessible as well and were TPS interpolated.
After reconstruction, the skull model was rescaled to average size, based on
the average value of the biparietal diameter, BPD , and the occipito-frontal
diameter, OFD , of a term foetus as reported in [37].

2.6 Summary

In this chapter, two methodologies to recover the shape of a foetal skull, were
outlined. Both techniques provide a surface model rather than a solid model.
This limitation is justified as the bones of the cranial vault of the skull are thin
as compared to their surface dimensions, hence the skull can be modelled as a
shell-based object. The first technique illustrated the warping from a 3D adult
skull to the shape of a foetal skull. Since this technique cannot recover the
fontanelles and sutures, the latter were mapped onto the model after warping.
The resulting model was named foetal skull model I . Despite a successful result
in terms of the recovery of the surface, foetal skull model I did not possess
the embedded configuration of the fontanelles and sutures. Therefore, it was
eventually replaced by a model obtained from laser-scanning a replica model
of a real foetal skull. This model was named foetal skull model II and will
be further used for the analysis of deformation of the foetal skull, subjected to
labour forces.
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(a) Original foetal skull model. (b) Computerised, reconstructed model.

Figure 2.16: Top view of the original and the computerised reconstructed foetal skull
model. The image of the original model was captured by a HITACHI KP-180 camera.
The image of the computerised model was rendered using the Geomview 1.6.1 software.
Note that the mandible is missing in the computerised model (lower part of the image).



Chapter 3

Mesh generation and

optimisation

Once the shape of the OOI is determined in 3D space, the next step involves
the creation of a mesh model for finite element analysis (FEA).
Elements of different shape are commonly used in FEA. For surface models, the
conventional shapes are triangular or quadrilateral. The triangular element is
preferred for models of arbitrary, complex shape such as the foetal skull, because
it ensures the generation of compatible meshes without violating the geometry.
Therefore, in the further course of this work, only triangular elements will be
considered.
In Section 3.1 some important properties, related to optimal mesh creation for
FE analysis, are covered. These include mesh compatibility, aspect ratio (ar),
angular distortion (ad), element size and structure.
In Section 3.2, the advancing front (AF) principle for FE mesh generation is
briefly discussed.
In Section 3.3, I suggest a combination of algorithms which allow us:

1. To interpolate missing parts of a surface.

2. To create meshes of arbitrary complexity.

3. To optimise meshes in terms of ar and ad .

3.1 Properties for optimal finite element (FE) mesh

creation

The properties discussed in this section are important to guarantee that the
FEA yields accurate results. In this chapter, we discuss these properties from

62
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(a) False connection of three (b) False connection of two first-order

first-order elements. elements to a second-order element.

=

=

6

3

4

1

6

55

3

2

4

=

v

v’

v

v’

v

v’

v’

1

v v’

v v’

v

2

��

��

� ��

��

�	


�

�


��

��

3

1

2

4

8

=4 4

=8=

=

6

3

7

7

4

3

=

v’

vv’v

v’

v
v’v

v’

1

v v’

v’

v

v’v

v

2

��

��

� �� �

��

�	


�

�


��

� ��

��

��1

2

1

2

55

6

3

Figure 3.1: Incompatible mesh connections. The deformed mesh is represented by
dashed lines.

a geometrical point of view. The theoretical explanation as to why they have
to fulfil certain criteria is covered in Chapter 4.

3.1.1 Mesh compatibility

Mesh compatibility is a concept which is related to the order of the shape
deformation modes of the element. Figure 3.1 shows two examples of incom-
patible element connections. In Figure 3.1a, the elements are all first-order.
The initially co-linear edges v2v4 and v4v3 of elements 1 and 2 respectively, are
connected to the single edge v2v3 of element 3. Since vertex v4 is not connected
to edge v2v3, a gap such as 4v′2v

′
4v
′
3 in Figure 3.1a, or overlap, can result after

deformation. In Figure 3.1b, the connection involves two first-order elements, 1
and 2, to a second-order element 3. Since the latter exhibits quadratic modes of
deformation, even when the common vertex v4 does not move, gaps or overlaps
can occur which are depicted in Figure 3.1b as light-coloured and dark-coloured
areas respectively.



Mesh generation and optimisation 64

1

2

1

2

1

22

1

75 60

α   = 1.1547
α   = 0.1443 α   = 0.1102

α   = 2.3094
α   = 0.1083

α   = 2.0000α   = 2.0000
α   = 0.1250

45 756060

Figure 3.2: Aspect ratios α1 and α2 for different shapes of triangles. Note the non-
linear relation between α1 and α2.

3.1.2 Aspect ratio of a triangle

Two distinct definitions of the aspect ratio, ar , of a triangle are commonly used.
The first definition relates the length of the longest side to the shortest height
(which is perpendicular to that side):

α1 =
max |−−→vivj |
min |−−−→vkmij | (3.1)

where

vi, vj , vk are distinct vertices of the triangle with i 6= j 6= k,
mij is a point on the edge vivj .

The second definition relates the area of the triangle to the sum of squares
of the edge lengths:

α2 =
1
2(−−→v1v2 ×−−→v1v3)

|−−→v1v2|2 + |−−→v2v3|2 + |−−→v1v3|2 (3.2)

where vi is a triangle vertex.
Figure 3.2 shows the values of α1 and α2 for an equilateral triangle, a right-
angled isosceles triangle, an isosceles triangle with top angle of 30◦ and a right-
angled triangle with corner angle of 60◦.

The optimum value of the aspect ratio is found for the equilateral triangle.
For triangles of degrading aspect ratio, α2 decreases whilst α1 increases.
Triangles with bad ar can be categorised as1:

Type I Right-angled triangles (with long base, short upwards edge and long
hypotenuse).

1Arbitrary triangles of bad ar can be categorised as a combination of one of these.
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Table 3.1: Values of α1 and α2 for triangles of Type I and II . Column 4 gives the
ratio of α1 with the optimal ar, i.e. for an equilateral triangle. Columns 6,8 give a
similar (but inverse) ratio for α2. Note that α1 does not differ for Types I and II since
base and height are used as a reference.

base height Type I ,II Type I Type II
α1 α1-ratio α2 α2-ratio α2 α2-ratio

5 1 5 4.33 0.0481 3.00 0.0633 2.28
10 1 10 8.66 0.0248 5.83 0.0329 4.39
20 1 20 17.32 0.0125 11.57 0.0166 8.69
50 1 50 43.30 0.0050 28.87 0.0067 21.66

100 1 100 86.60 0.0025 57.73 0.0033 43.30

Type II Isosceles triangles with one obtuse angle.

Type III Isosceles triangles with one sharp angle (and two long edges).

Table 3.1 shows values of α1 and α2 for triangles of Type I and Type II re-
spectively2.

Although both values are equally valid as a measure for the ar, the increasing
trend of α1 for increasing distortion and the corresponding integer representa-
tion makes it slightly more favoured than α2. It is also more commonly used
in the FE community. In the further course of this chapter we will use α1 as a
measure of ar.

It is not straightforward to define an upper bound of the ar for which nu-
merical errors are still within reasonable limits. NAFEMS [76] advises: α1 ≤ 4.

3.1.3 Angular distortion

The angular distortion, ad , of a triangle is directly related to the aspect ratio
α1. Some finite element packages use this measure as an alternative to α1 to
assess the shape distortion of a triangle. A typical threshold in the ABAQUS
FE software, used as a warning for angular distortion of the mesh, is an angle
less than 45◦. If we consider the guidance by NAFEMS [76] of a maximum
ar of 4, the minimum allowable angle for a right-angled triangle would be 14◦!
Thus, 45◦ seems a rather strict criterion but taking into account that this is
issued as a warning and not as an error, it is left to the user to decide whether
particular distortions are acceptable or not.

2Note that Type III triangles tend to become Type I triangles as distortion increases.
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3.1.4 Triangle size

The size of a triangle in the mesh is obviously an important property. The
theoretical arguments for mesh refinement are discussed in Section 4.3.3. Here,
we focus on the uniformity of triangle sizes across the mesh rather than their
actual sizes.

If we assume that the area Au of a triangle is an upper bound to the accurate
representation of the geometry, then any triangle with area Ai > Au should be
refined until the criterion Aj ≤ Au is reached, where triangles with index j are
created from a restricted neighbourhood of the original triangle i.

3.1.5 Structure of the mesh

Meshes which are directionally sensitive, such as the example as shown in
Figure 3.3a, should be avoided. For regular meshes the union jack motif as
shown in Figure 3.3b is preferred. The following example from [76] illustrates
why. Assume the dark-coloured triangles in Figure 3.3a are subjected to a pure
bending field. If the upper triangle is in horizontal tension then the lower trian-
gle will be in horizontal compression, hence opposite Poisson contractions in the
vertical direction result. The problem is alleviated by the combination of two
inversely oriented triangles (dark-coloured triangles in Figure 3.3b). A draw-
back of the mesh with union-jack motif is the increase of bandwidth3. However,
state of the art FE packages apply a wavefront minimisation algorithm [8, 19]
to alleviate this problem. Note that for an unstructured mesh or even an ‘ideal’
mesh consisting solely of equilateral triangles, some degree of directional bias
exists when the mesh is not sufficiently refined.

3.1.6 Mesh evaluation

To evaluate the quality and uniformity of a mesh we can:

• Calculate mesh statistics of a mesh quality indicator, mqi , e.g. the aspect
ratio ar .

• Report those elements, exceeding a pre-set threshold of a mqi .

Mesh statistics are useful to compare the overall quality of a mesh and can
typically be used to evaluate an optimisation strategy. An overall approach
such as a histogram is preferred, rather than reporting single statistics which

3The bandwidth of a symmetric m×m matrix A, e.g. the stiffness matrix of a FE structure,

is 2w + 1, if an element aij = 0, for all j ≥ i + w (upper triangle) and all j ≤ i + w (lower

triangle) with 1 ≤ i, j ≤ m.
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(a) Directionally sensitive mesh pattern. (b) Union jack mesh pattern.

Figure 3.3: Structure of the mesh.

can be misleading. Mesh statistics are however not sufficient to decide whether
a mesh is ‘fit’ for analysis. This has to be based on a criterion, involving the
specification of one or more thresholds of a particular mqi. For example all the
elements with ar, exceeding threshold t1 are reported, whilst elements with ar
exceeding threshold t2, where t2 >> t1, cannot be accepted. In most software
packages, the above distinction is characterised by warning messages as opposed
to error messages during the pre-processing phase. A warning message on an
ar, exceeding a pre-set threshold, will prompt the user to check the element
and optimise if deemed necessary. An error message will stop execution and
will force the user to adapt the element to satisfy the ar criterion.

3.2 The advancing front triangulation for FE mesh
creation.

The advancing front (AF) principle was originally developed by Lo in 1985
[62] and has since widely been used in algorithms for FE mesh generation and
adaptation.
The principle of an AF is simple (See Figure 3.4):

1. The initial front is the boundary, Γ, surrounding the region of interest
(ROI), Λ, to be triangulated. The boundary, Γ, is a closed contour or
polygon, consisting of connected vertices. The ROI, Λ, contains the inte-
rior nodes.

2. We travel around the boundary in counter-clockwise direction. This im-
plies that points on the lhs of Γ will lie inside the ROI and points on
the rhs will lie outside the ROI. This convention is also valid for multiply
connected domains.



Mesh generation and optimisation 68

� � � �� � � �� � � �� � � �

� �� �

� �� �� �
� �� �� � ��

��

��
��

��
��

		
		

Λ

Γ

new front

initial front


 
 
 
 
 


 
 
 
 
 


 
 
 
 
 


 
 
 
 
 


 
 
 
 
 


 
 
 
 
 


 
 
 
 
 


� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� �� �� �� �


 

 

 

 


� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� ��
� �� �

� ��

� �� �� ��

� ��

� ��

� �� �

  !

" "#

$ $% %

& &' '

( () )

* *+

, ,-

./

Figure 3.4: Advancing front triangulation: the edge of the initial front is replaced by
the new edges of the newly created triangle.

3. We start at an initial edge of the front and connect it to either:

• a vertex of the boundary, Γ, or

• a point of the region, Λ.

The selection is based on a criterion. Lo uses the Euclidean distance and
chooses the nearest neighbouring point or alternatively the two nearest
neighbours, selecting the triangle with the best ar .

4. If a suitable point is found, the front is updated by removing the original
edge and replacing it with the newly created edge(s) of the new triangle.
In other words, the newly created triangle lies outside the new front now
and is ignored for further processing.

5. We move up one vertex in the front (in counter-clockwise direction) and
start the procedure all over again until the front is empty of vertices
(edges).

The AF method has become the basis of most meshing algorithms currently
used in commercial mesh-modelling software packages.
A directly descended and currently popular approach is adaptive remeshing,
originally developed by Peraire et al. [82]. It is based on the AF principle
and provides the ability to remesh the model during the analysis. Remeshing
is based on the error variation of the variable of interest. If the errors in a
region are large compared to some average or minimum value then the region
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is refined. Conversely, when the error is small, the region can be made coarser.
The advantage of adaptive remeshing is that it saves computational costs by
refining the mesh only in those regions where deemed necessary, hence avoiding
overall refinement which leads to over-complex meshes.

3.3 A front-based triangulation algorithm for sur-
face interpolation

In the previous section, we did not outline how points in the region, Λ, inside
the boundary, Γ, can be created. These internal points or nodes should fulfill
the following criteria:

• They should be distributed over the ROI with a density based on the
(average) distance between boundary nodes.

• The distances of the internal nodes to the boundary nodes has to be
sufficient to avoid excessively small triangles and triangles of bad ar near
the boundary.

Lo [62] uses a scan-line approach whereby horizontal lines are scanned across
Λ to determine the parts inside and outside the boundary, Γ. Nodes are dis-
tributed across a line segment inside the valid regions at equal distances, the
latter determined by a pre-specified average size of an element. Nodes which are
too close to Γ, or to other internal nodes, are omitted. The scan line approach
is possibly the best solution for multiply connected regions but the even distri-
bution of points becomes awkward for rather complex boundaries. The method
implicitly yields triangles of reasonable size and ar but these crucial parameters
are not under control. Furthermore, the original algorithm was developed for
planar regions.

Controlling the aspect ratio and size parameters during triangulation through
specification of valid ranges is desirable but results into instabilities. An algo-
rithm, using this control strategy, is likely to get stuck when no candidate nodes
satisfy the constraints.
The set of algorithms which are outlined in this section were developed to solve
two problems which occur during the shape/mesh generation of the models to
be analysed:

• Interpolation of missing data, a problem which was typical for foetal skull
model II , obtained from laser-scan data (Section 2.5).

• Generation of meshes with an arbitrary number of elements (a property
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which will appear to be useful for the parietal bone test as described in
Chapter 6).

The algorithms are restricted to simply connected level-surfaces where the level
coordinate z can be represented as a function of x and y: z = f(x, y). Rather
than applying the scan-line approach to determine interior nodes, we assume
a square grid covering the x-y plane. This idea was tried out earlier by Shaw
and Pitchen [92] and Lo [62] but no satisfactory solution to the connection of
internally generated triangles to the outer boundary, Γ, was found to satisfy
the following conditions [62]:

Condition 1 Minimisation of the processing time spent in testing squares of
the grid which are outside the bounded region, Λ.

Condition 2 To ensure that every node generated should lie in the remainder
of the region (i.e. the region which has not been covered yet) and well
away from existing nodes.

Not being able to find a solution to satisfy these conditions Lo [62] stated:

‘In order to tackle domains with irregular boundaries and openings efficiently,
the concept of superimposing a rectangular grid has to be abandoned completely.’

Contrary to Lo’s claim, I will show that a grid-based approach is feasible in-
cluding the following features:

• Algorithms of O(n) complexity which thus satisfy Condition 1.

• Satisfying Condition 2 by:

– Using the invariant that generation of interior nodes cannot happen
outside the boundary.

– Specifying a parameter which controls the distance of interior nodes
to the boundary nodes.

• Level-surface (21
2D) triangulation as opposed to planar (2D) triangula-

tion.

• The ability to interpolate missing data.

• The ability of arbitrary mesh refinement.

The approach involves the following steps:
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1. TPS interpolation is performed on the surface patch.

2. The selected patch (possibly from a larger object and limited by an ex-
ternal boundary) is rotated to its principal axes.

3. Triangles are grown from the centre of the surface towards the surface
boundary, creating an internal mesh. The algorithm stops when this
internal mesh cannot grow any further without triangles penetrating the
surface boundary.

4. The internal mesh yields an internal boundary. This internal boundary is
connected to the surface boundary with the welding algorithm.

3.3.1 Thin-plate spline (TPS) interpolation

We have discussed the thin-plate spline function in Section 2.4.3 to warp ho-
mologous objects. The radial basis function will be used again, though in a
different form, suitable for interpolation of a level surface:

z = f(x, y) = −U(r) = −r2 log(r2) (3.3)

where the coefficient of the radial basis function

r =
√

(x2 + y2) (3.4)

The matrix C of which each coefficient is the Euclidean distance between
two datapoints, processed through the radial basis function was specified in
Equation 2.5.
The linear transformation matrix for n datapoints is specified as:

A =




1 x1 y1

... ... ...

1 xi yi

... ... ...

1 xn yn




(3.5)

The vector of level points:

z =
[

z1 ... zi ... zn 0 0 0
]T

(3.6)

The vector of spline parameters:

r =
[

w1 ... wi ... wn

]T
(3.7)
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and the linear transformation, P (x, y) = a0 + a1x + a2y, with parameter
vector:

a =
[

a0 a1 a2

]T
(3.8)

yielding the combined parameter vector:

q =

[
r

a

]
(3.9)

Putting C and A together yields the (n + 3)× (n + 3) matrix:

L =

[
C A

AT 0

]
(3.10)

with the matrix 0 being a 3× 3 matrix of zeroes.
The spline parameters can be obtained then from:

Lq = z

q = L−1z

(3.11)

3.3.2 Rotation of the patch to principal axes

Since the interpolated surface is a level surface, i.e. x-y base with dependent
variable z, an arbitrary patch or surface in its original coordinate system will
need to be transformed into a new base corresponding to the directions of maxi-
mum variance of the datapoints. We therefore calculate the principal directions
and rotate the patch into its principal base, using the eigenvectors, correspond-
ing to the two largest eigenvalues, as the new x-y base.

3.3.3 The triangle-growing algorithm

The suggested algorithm consists of the following steps:

• Find the centre of the boundary, Γ′, which is the projection of Γ in the
x-y plane.

• Starting from this centre point, create a matrix of boxes which covers
the entire domain4 Λ′ and Γ′. The size of the boxes is determined by the
user-set variable, µ, which is a fraction5 of the average edge length, l. The

4Λ′ is the projection of Λ in the x-y plane.
5Conventionally set as 0.5 < µ < 2.
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corner nodes of the boxes which are inside the region are the candidate
nodes for triangulation.

• A queue, consisting of internal nodes to be expanded from the centre
outwards to the boundary, is created. The initial node in the queue is
the centre node. The invariant of the algorithm is that no internal node
should be expanded beyond the boundary.
Starting with the first (current) node in the queue, we expand according
to three conditions which ensure that candidate nodes stay a sufficient
distance from the boundary:

C1 If the current node’s neighbouring boxes (four) are empty of boundary
points, delete the current node from the queue and add its neighbours
(maximum eight) to the queue. The current node is accepted for
interior triangulation.

C2 If a neighbouring box contains boundary points, which are at a suf-
ficient distance from the current node, then the current node is ac-
cepted for triangulation, but not expanded to the nodes on the ver-
tices of the neighbouring box. The distance by which the current
node is allowed to approach the boundary is specified by the user as
a fraction, κ, of the box-size µ× l.

C3 If at least one neighbouring box contains a boundary point which is
too close to the current node, then the current node is not accepted
for internal triangulation.

• Note that during the expansion process, processed and invalid nodes are
ignored.

• The algorithm finishes when the queue is empty.

• All accepted nodes in the interior region can now be triangulated in a
relatively straightforward fashion.
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In Pseudo-code:

Input: → average edge length, l (pre-calculated)
→ user-set box size, µ

→ queue Q, containing centre node, vr
c

→ a matrix M of boxes of size µ× l, containing boundary nodes, vb

→ user-set parameter, κ

Variables: ↔ current node, vr
a

Output: ← a set of interior nodes, accepted for interior triangulation

while Q not empty
vr
a ← first node in Q

if vr
a is processed or vr

a is invalid
continue (while)

else

set vr
a valid

find the box indices bi of which vr
a is the intersection point

for each bi (0 < i < 4)
if M [bi] contains boundary nodes

get boundary nodes vb
j

for each vb
j (0 < j < n)

if Euclidean distance between vb
j and vr

a ≥ κ× µ× l

set all neighbouring nodes of vr
a in bi invalid

else

set vr
a invalid

continue (while)
if vr

a is valid
find neighbouring nodes of vr

a (8) and add them to the end of Q

The number of boundary nodes, n, in a box is usually a small number and is
in most cases ≤ 1. Note that the last if statement is redundant but has been
left in for clarity.
After the interior nodes are connected to form a valid interior triangulation,
they can be connected to the outer boundary nodes using the welding algorithm.
This algorithm is described in the next section.
Figures 3.5 a,b,c,d and e illustrate how the triangle-growing algorithm operates
on a simple example involving an 18-node polygon boundary with elevated
centre point (Chinese hat) of which the interior region will be triangulated. In
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this example µ = 0.95. Brown nodes on the boundary are intersection points
with the boxes.

Step (a) The current node (coloured red) gets the first node in the queue,
which is the centre node. Since the four neighbouring boxes of the current
node are empty of boundary points it is expanded into eight neighbouring
points (coloured blue).

Step (b) The current node (centre node) is accepted for triangulation (coloured
black). The first node in the queue becomes the current node6. Again this
node has neighbouring boxes empty of boundary points and is accepted
for triangulation and expanded.

Step (c) The remaining seven nodes of the first expansion are all accepted for
interior triangulation (coloured black). A candidate current node on the
lhs has boundary points in boxes 1 and 3. Since the current node is at a
sufficient distance of the boundary points it is accepted for triangulation
but not expanded7.

Step (d) The previous current node and the symmetrical right node are ac-
cepted for triangulation. The symmetrical top and bottom node are as
well (not because of symmetry though!). The node in the upper left cor-
ner is now the current node. It contains boundary points in boxes 1,2 and
3 which are too close. The node is rejected for triangulation.

Step (e) The interior triangulation is finished.

Step (f) The internal and external (original) boundaries can be triangulated
now with the welding algorithm.

3.3.4 The welding algorithm

The welding algorithm connects or welds two closed polygons in space and is
based on the advancing-front principle. The algorithm is robust as long as the
distance between the boundaries is relatively consistent across the contours and
of the same order of magnitude as the lengths of the edges. Besides being used
for the second step of the previous method, it can be used independently to
connect two patches of an object together.
The welding algorithm involves the following basic steps (see Figure 3.5f):

6Note that the order of processing nodes has been ignored for ease of illustration.
7Nodes outside the region are coloured light-blue.
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(a) Centre node expansion (C1 satisfied).
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(b) Further expansion (C1 satisfied).
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(c) Current node accepted but not expanded (C2).
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(d) Current node rejected (C3).
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(e) Interior triangulation finished.
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(f) Connecting the boundaries.
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Figure 3.5: Different steps of the triangle-growing and welding algorithm to triangulate
the interior of an 18-node polygon or ‘Chinese hat’ (see text for explanation).
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• Choose an arbitrary initial node on Contour 1.

• Find the node on Contour 2, closest to the initial node of Contour 1.

• The connection of these two nodes is the initial leading edge8 from which
the algorithm can be initiated.

• In general, we search the node closest to the midpoint, m, of the current
leading edge (nearest neighbour - NN) AND sharing an edge with either a

or b. This means that only two candidate nodes, c and d, are considered;
one for each contour.

• Since c is closer, we connect it to the node it did not share an edge with
(node b in Figure 3.5f).

• Make edge bc the new leading edge of the front.

• Continue until the front is empty of nodes.

Despite its simplicity, the algorithm as it stands is not robust because:

1. Overlapping triangles can be generated, e.g. 4abc in Figure 3.6a.

2. fan-triangulation can occur: consecutive triangulated nodes all come from
the same contour because the node on the opposite contour is remote.
Fan-triangulation causes severely disrupted triangles (bad ar) and may
eventually lead to invalid connections. In Figure 3.6b node b is starved,
hence fan-triangulation results.

Problem 1 can be solved by consideration of the counter-clockwise convention
by which the front moves around the centre Cp (See Figure 3.6a). Nodes are
conventionally ordered first on Contour 1, then on Contour 2. Consider the
vectors ~v1 and ~v2, where the initial point of both vectors is the candidate node
and the endpoints of ~v1 and ~v2 are the nodes of the leading edge, then the
cross-product ~v1 × ~v2 should be positive. On Figure 3.6a, where ~v1 = ~ca and
~v2 = ~cb, the cross-product ~ca × ~cb is clearly negative. The alternative node d

should thus be chosen, creating 4abd which does satisfy the counter-clockwise
condition. Node c is triangulated two steps later through 4aec.
Problem 2 can be solved by the following condition:

if node vi of contour l, l ∈ [1, 2] has not been
updated since n consecutive updates (n is set by the user)

8Blue edge in Figure 3.5f.
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then take node vi of contour l as the new node to be
connected to the leading edge of the front.

Note that the two conditions to solve problems 1 and 2 overrule the NN condi-
tion.

3.3.5 Boundary points and arbitrary mesh refinement

At present, we have assumed that the boundary, Γ, which determines the in-
ternal region for triangulation, contains a fixed number of points. The question
is whether we can create elements of arbitrary size without changing the con-
figuration of the boundary and if so to what extent? Figure 3.8 shows that
we indeed can create elements of varying size by setting the parameters µ and
κ. However it is clear that this approach is limited since extreme values of
both parameters will yield meshes of bad quality. Therefore, the answer to our
question is simple: we do need to alter the configuration of boundary points! In
other words, increasing the number of boundary points and correspondingly, the
density, will yield finer meshes. Conversely, decreasing the number of boundary
points will yield coarser meshes. Just as we used the TPS surface interpola-
tion to preserve the geometry of the surface, we can use spline interpolation to
preserve or estimate the true geometry of the boundary curve. Since the spline
should interpolate the original boundary points, parametric cubic (PC) splines
should be used9. Once the spline is fitted, a new edge length can be specified
and new nodes can be placed on the boundary.

3.3.6 Examples

The following examples illustrate the different properties of the algorithms de-
scribed in the previous sections.

1. A regular polygon consisting of 18 edges in the x-y plane with raised
centre node (one edge length) in the z-direction (Chinese hat). Figure 3.8
shows triangulations using different values of µ and κ.

2. Figure 3.9 shows the left parietal bone of foetal skull model II , triangu-
lated at different degrees of mesh refinement.

3. Figure 3.7a and 3.7b show the underlying spline surfaces of the 18-node
polygon and parietal bone respectively.

9It is shown in [75] that PC splines are a realistic model of a 1-dimensional object (for

example a beam) subjected to pure bending.
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Figure 3.6: Triangulation discrepancies. Cp is the centre of the external boundary 2.
The internal boundary is marked 1. Green coloured points are midpoints of edges.
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(a) 18-node polygon with elevated centre (b) Left parietal bone of

(Chinese hat). foetal skull model II.

Figure 3.7: Supporting thin-plate spline (TPS) surfaces.

4. A part of a patch from the compound skull from Figure 2.14a as shown in
Figure 3.10a is selected. Figure 3.10b shows the result after spline fitting
and triangulation.

3.4 Mesh optimisation

Once an initial mesh is created, an optimisation strategy for mqi ’s such as
the aspect ratio (ar), angular distortion (ad) and triangle size as discussed in
Section 3.1 can be used. Adaptation of triangle size was covered in the previous
section. To improve the ar and the related ad , three techniques are commonly
used:

1. Laplacian smoothing: A vertex is moved towards the centre of its sur-
rounding polygon (Figure 3.12). This will generally improve the average
ar and ad . The new position of the vertex needs to lie on the surface of
the object. This can be dealt with in the following two ways:

• If the triangulated mesh is part of a level surface, the TPS interpo-
lated surface can be used to reposition the vertices to the centre of
their surrounding 3D polygons.

• If the triangulation is part of a general surface, another way of
parametrisation of the surface is required. Since the vertex is only
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(a) µ = 0.57, κ = 0.66 (b) µ = 0.86, κ = 0.66

(c) µ = 1.0, κ = 0.5 (d) µ = 1.0, κ = 0.66

Figure 3.8: Triangulated 3D polygon or ‘Chinese hat’ with different settings for
µ and κ.

moved within the surrounding polygon, a local surface interpolation
such as triangular Bezier patches [16, 27], is sufficient.

2. Edge swapping: The common edge shared by two triangles, forming a
quadrilateral, is changed to the edge of the two vertices of the quadri-
lateral which were not previously connected. Figure 3.13 illustrates the
technique. Edge swapping can be done automatically but it can be pro-
cessor intensive for highly refined meshes since each edge needs to be
considered. Moreover, one improvement can cancel out a previous one.
Since often only a few triangles need to undergo this procedure, we im-
plemented this facility in the immtk software. The software has a facility
which highlights triangles of bad ar or ad which can be improved by
user-interaction.
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(a) Original mesh: 10,537 elements (b) new mesh: 5,261 elements

(c) new mesh: 2,604 elements (d) new mesh: 1,058 elements

(e) new mesh: 532 elements (f) new mesh: 277 elements

Figure 3.9: Meshes of different complexity for left parietal bone of foetal skull
model II .



Mesh generation and optimisation 85

Table 3.2: Mesh statistics of the aspect ratio, α1, for the original and optimised meshes
of the parietal bones of foetal skull model I .

statistic Original Optimised
n 1599 1599
mean 1.985 1.680
std.dev. 0.64 0.41
minimum 1.167 1.160
maximum 9.812 5.172

3. Vertex/face addition/deletion: in some cases the two previous techniques
are not sufficient to satisfy a pre-set quality criterion hence vertices and/or
faces are added and/or deleted. The immtk software allows us to perform
these operations in a straightforward manner without violating the geom-
etry of the object.

Figure 3.14a shows the example of a parietal bone of foetal skull model I . The
initial mesh has been created using planar DT [34]. Figure 3.14b shows the
smoothed mesh. Figure 3.11 shows the histograms of the aspect ratio for both
cases. From Figure 3.11 and the statistics shown in Table 3.2 it is clear that
the mesh after Laplacian smoothing is of significantly better quality than the
original10.

3.5 Discussion

The main subject of this chapter was the introduction of a set of algorithms
which allowed us to triangulate simply-connected level surfaces, limited by a rel-
atively arbitrarily shaped boundary and possibly with incomplete data (gaps),
to an arbitrary degree of mesh refinement. The approach was used to generate
valid mesh models of objects to be analysed during the further course of this
research. Many elaborations of the suggested algorithms are possible, some
of which have been implemented and tested. The following paragraphs cover
elaborations and limitations of the suggested algorithms.

Surface geometry The surface geometry was approximated using TPS sur-
face interpolation. This technique interpolates parts of the surface where no
point data is available and works fine for generally smooth surfaces. However,
if the data points near a missing part are inaccurate, a not uncommon case

10Only 5 triangles have 4 < ar < 6 in the smoothed mesh, whilst 25 triangles have 4 < ar <
10 in the original DT mesh.
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(a) Original patch (b) Interpolated and triangulated patch

Figure 3.10: Triangulated patch. The blue part in (a) is selected from the general mesh
(coloured red) using the immtk software. The missing data is then TPS interpolated
and triangulated with the triangle-growing and welding algorithms of which the result
is shown in (b).

Figure 3.11: Histogram of aspect ratios. The blue colour corresponds to the original
mesh; the red colour corresponds to the optimised mesh.
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(a) Original mesh (b) After Laplacian smoothing

Figure 3.14: Original and optimised mesh models of the parietal bones of foetal skull
model I .

for laser-scanned objects, the spline can display unnatural shapes because of
its energy minimisation property. To alleviate this problem, inaccurate data
points near the gap should be omitted.

Extension for general surfaces The spline interpolation and subsequent
triangulation can be extended to general surfaces, if the latter are divided into
patches which can be transformed into level surfaces. For the foetal skull, this
is straightforward since it is merely a collection of individual shell-shaped parts.
Each part can be triangulated separately using the conventional approach. If
the boundaries of the different parts conform, i.e. neighbouring patches have
common vertices on their common boundary sections, then the collection of the
different triangulated parts into the original object is trivial.

Mesh refinement Refinement or coarsening of a mesh can be performed in
a straightforward manner. Care has to be taken however with adaptations:

• Coarsening of the mesh as shown in Figure 3.9 involves a risk of altering
complex geometries to an extent where it influences the stiffness at certain
locations of the object11. Despite the use of an underlying surface, the
curvature is always affected when a coarser mesh is created. Also, the
detail of the boundary is lost, irrespective of spline interpolation. This

11This phenomenon will become clear from the results of experiment I in Chapter 6.
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can be observed in Figure 3.9 by comparing the level of detail in the
boundary geometry at different mesh complexities.

• Adaptive remeshing: although popular in conventional applications of FE
analysis, adaptive remeshing has not been considered in the algorithms
for reasons similar to the previous issue. Adaptive remeshing alters the
mesh during analysis according to an error estimate of the variable of
interest to save computational time by avoiding over-complex meshes. In
most applications of structural mechanics this variable is stress or strain;
in computational fluid dynamics this can be air flow, density or pressure.
However, in these fields, the geometry is often 2D, if not, very simple
3D geometries of relatively constant curvature. In our case, the object
has a complex curvature. Coarsening the mesh at any location would
decrease the level of detail of the geometry. Even if we could adapt the
mesh according to curvature in a sensible way, later adaptations for a field
variable could disrupt the curvature adaptation. Therefore a sufficiently
fine mesh of constant density was preferred: an approach which might
result in a slightly over-complex mesh, but nonetheless guaranteed to be
accurate!

Mesh optimisation Optimisation of the mesh using Laplacian smoothing
is of limited use for meshes created with the triangle growing algorithm since
the internally grown triangles have vertices which are already in the centres of
their surrounding polygons. Laplacian smoothing will have some effect near
the boundary triangles, but edge swapping and vertex addition yield in general
better results and were thus used to optimise the mesh as shown in Figure
2.14b.

Boundary shape The shape of the boundary is crucial to the success of most
triangulation algorithms. The triangle-growing algorithm is robust for a large
variety of boundary shapes but will fail if the boundary or parts of the bound-
ary have high aspect ratios (e.g. tentacles or long, thin rectangular boundaries).
The problem here is that triangles cannot grow since the centre node is already
too close to the boundary.
The welding algorithm works well for boundaries which are at a relatively equal
distance compared to the spacing between the nodes. If the relative distance
between the two boundaries becomes too large, comparisons of Euclidean dis-
tances and calculations of cross-products become unreliable, which results in
invalid connections.
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It should be noted though that these extreme configurations did not occur in
the cases for which the algorithms were originally designed.

3.6 Summary

This chapter has described a set of algorithms for generating valid, compatible,
triangulated FE mesh models of an object of complex geometry, in this case a
foetal skull. The approach consists of three main algorithms:

1. thin-plate spline (TPS) surface interpolation,

2. the triangle-growing algorithm,

3. the welding algorithm.

The algorithms provide interpolation across regions where no data points are
available and are able to generate meshes of arbitrary complexity. The triangle-
growing algorithm and the welding algorithm have complexity O(N). Their
properties were illustrated by several examples, relating to the creation of valid
mesh models of the foetal skull and parts of it.
Furthermore, strategies to improve the quality of the mesh were outlined and
illustrated.



Chapter 4

Important concepts of finite
element analysis (FEA)

4.1 Introduction

The aim of this chapter is to outline important concepts of the finite element
method (FEM), necessary to perform a successful analysis of a physical prob-
lem. The current availability of commercial FE software saves the analyst or
researcher from developing a bulk of error-prone code. Despite this time-saving
advantage, there is a potential danger of incompetence by which the user can
operate the software without the slightest awareness of possible abuse. There-
fore it is essential that the user has a thorough understanding of the problem to
be solved so that errors in computed results can be detected and a judgement
made as to whether the results are to be trusted or not [19].
The next section gives a brief overview of the history of the FEM, followed by a
section describing the concepts of appropriate use. Since the theory behind the
FEM is extensive, the content of this section is tailored to the specific problems
of the analysis of deformation of the foetal skull.
The reader, unfamiliar with the FEM or in need of a refresh, may consult
Appendix A which gives a brief introduction of the basic concepts.

4.2 History

The original idea of the FEM was described in 1943 by the mathematician
Courant, in a paper which describes a piecewise polynomial solution for the
torsion problem [20]. At the time it was ignored by a majority of conserva-
tive, classical analysts, as well as engineers who are known not to be the most
diligent readers of mathematical journals! The method became popular in the
1950’s, mainly in the aircraft industry since this sector had the strongest mo-
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tives for accurately analysing structures of great complexity [76]. A classic
paper describing a FE approach in 1956, involved the analysis of delta wings
[102], which are too short to be reliably modelled by the classical beam the-
ory. The name finite element occurred for the first time in 1960 [19]. The
method was at first used for stress analysis of mechanical structures but was
soon expanded to the areas of heat transfer, fluid dynamics, magnetic fields,
groundwater flow and later on to the field of biomechanics. By the mid-1990’s,
roughly 40,000 papers and books about the FEM and its applications have been
published [19]. Since the early 80’s, commercially available software has been
developed which currently provides a wide range of options in terms of element
types, analyses and pre- and postprocessing facilities. Most of these packages
have been updated and improved throughout the years and have thus achieved
a high standard of reliability.

4.3 Concepts for the proper use of the finite element
method (FEM)

4.3.1 General

The FEM is a convenient tool to solve complex problems which are hard to
solve with conventional analytical methods. In most cases, the complexity of a
problem is a geometrical one: the object of interest is of such complex geometry
that the use of analytical methods results in inadequate solutions. A good
example is the modelling of foetal skull moulding using shell analysis. Dym [25]
outlined a general theory of shells by describing the equations of equilibrium,
the kinematic (or strain-displacement) relations and the constitutive (or stress-
strain) relations for static isothermal loading of isotropic shells. The resulting
set of PDE’s can be simplified to a set of ODE’s, for relatively simple objects of
revolution. The set of ODE’s can be numerically solved then, using for instance
the finite difference (FD) method. However, the geometry of the skull is too
complex to be described by an analytical, axisymmetric formulation. Any such
attempt would result in approximations far worse than those inherent to the
FEM, which involve [19]:

Modelling error which counts for basically any analysis method. When con-
fronted with a physical problem, we do not actually analyse this problem
but the mathematical model of it. To arrive at such a model, we make
assumptions which do not always reflect the exact behaviour of the prob-
lem.

Numerical error The numerical output has been rounded and truncated dur-
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ing the course of the analysis. Numerical errors are usually small but some
modelling practises can significantly increase them.

Discretisation error This is the typical error of the FEM. The physical struc-
ture which we analyse and the mathematical model derived from it, have
infinitely many degrees of freedom (dof) whilst the finite element model
has a finite number of dof. This implies that the discretisation error will
tend to zero as the number of elements increase but will never become
zero.

The theory of the FEM includes matrix manipulations, numerical integration,
equation solving and other procedures which are carried out automatically by
the FE software. This means that the user mainly deals with what is com-
monly known as pre-processing and post-processing. Pre-processing involves the
description of the geometry, the generation of the FE mesh, the description of
loads and boundary conditions, the specification of material properties and the
type of analysis which will be performed. Post-processing is another crucial
step of the analysis which involves the processing of a bulk of output results
which are provided by the FE software.
Despite its convenience and ease of use for arbitrary, complex geometries, FE
modelling is more than preparing a mesh, do some pre-processing, wait for the
results and subsequently print them! The pre- and post-processing steps are
crucial to the reliability of the results and have to be executed with care!
It is also advised to start the analysis with a simplified model and gradually
increase complexity as the analysis progresses.

4.3.2 Element shape and aspect ratio (ar)

Element shapes that are compact and regular usually give the greatest accuracy
[19]. In Chapter 3, we already mentioned the importance of the ar of a triangu-
lar element and the fact that the equilateral triangle exhibits the optimum ar .
Distortions or excessive aspect ratios usually reduce accuracy by making the
element stiffer, for example a linear strain triangle, LST , with quadratic terms
in its displacement field can be reduced to behaving like a first-order, constant
strain triangle, CST . In general, distortions usually degrade stresses more than
displacements. If strain gradients are sufficiently small than the influence of
the ar is minimal.

4.3.3 Convergence with mesh refinement

Monotonic convergence requires:
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1. The elements to be complete.

2. The elements and mesh to be compatible.

If these conditions are fulfilled, the accuracy of the results will increase contin-
uously as we continue to refine the finite element mesh [8].
The requirement of completeness of an element means that the displace-
ment functions of the element must be able to represent rigid body displacements
and constant strain states. Rigid body displacements are those displacement
modes which the body undergoes without stresses being developed in it. The
requirement of constant strain states is the ultimate destiny as element sizes
shrink to zero. As an example, we calculate the strain fields for a first-order,
constant strain triangle (CST ) and second-order, linear strain triangle (LST )
(see Figure 4.1).
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Figure 4.1: (a) First-order, constant strain triangle, CST , and (b) Second-order, linear
strain triangle, LST .

For a CST , the displacement field in generalised coordinates βi is:

u = β1 + β2x + β3y

v = β4 + β5x + β6y

(4.1)

The resulting strain field becomes:

εx = β2

εy = β6

εxy = β3 + β5

(4.2)
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For a LST , the displacement field in generalised coordinates βi is:

u = β1 + β2x + β3y + β4x
2 + β5xy + β6y

2

v = β7 + β8x + β9y + β10x
2 + β11xy + β12y

2

(4.3)

The resulting strain field becomes:

εx = β2 + 2β4x + β5y

εy = β9 + β11x + 2β12y

εxy = (β3 + β8) + (β5 + 2β10)x + (2β6 + β11)y

(4.4)

It can be readily seen from Equations 4.2 that the CST is capable of representing
constant strain states. The element gives good results when the strain gradient
is small. However, when subjected to pure bending, it yields rather poor results
and develops a spurious shear stress [19]. Despite these shortcomings, improved
results are obtained as the mesh is repeatedly refined.
The LST is capable of representing constant and linear strain states (Equations
4.4) and performs much better in cases of pure bending.

The requirement of compatibility means that the displacements within
the elements and across the element boundaries must be continuous. This
requirement was illustrated in Section 3.1.1.

Mesh refinement As mentioned before, FE results should converge towards
exact results as the mesh is repeatedly refined. We define:

h to be an approximate linear size measure of an element, e.g. for a triangular
element, A

1
2 , where A is the area of the element.

p as the degree of the highest complete polynomial in the element displacement
field. Thus, for the CST , p=1, and for the LST , p=2.

Commonly, one refers to h-refinement and p-refinement in which h or p are
changed from the old mesh to the new.

4.3.4 Non-linear geometry

In linear analysis, we assume that displacements and rotations are small, sup-
ports do not settle, stress is directly proportional to strain and loads maintain
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their original directions as the structure deforms [19]. The solution of the dis-
placements are obtained in a single step1:

U = K−1R (4.5)

with U, the global displacement vector; K, the global stiffness matrix; R, the
global loading vector. Linear analysis is thus convenient timewise and gives
good approximations as long as the earlier mentioned conditions are met. If
this is not the case, non-linear analysis should be considered.
In non-linear analysis, the principle of superposition does not apply, hence we
cannot scale results in proportion to load or combine results from different load
cases. The main problem in non-linear analysis is that the governing equations
must incorporate conditions which are not fully known until the solution is
known.
At all times we are trying to establish the equilibrium:

f − p = 0 (4.6)

where f are the applied loads and p are the internal resisting forces.
In numerical solutions, an exact equilibrium is never reached and consequently,
a converged state is sought in which the equilibrium error is acceptably small
[41]. A measure of the equilibrium error is provided by the vector of residual
or out of balance forces:

r = f − p (4.7)

The criterion for convergence is normally expressed as:

||r|| < φ ||f || (4.8)

where φ is the error fraction (φ ¿ 1).
The most basic solution strategy to a non-linear geometric problem is a purely
incremental method. Figure 4.2 illustrates the idea behind the method. The
entire external load f is administered to the object in small increments ∆f . For
each increment n, Equation 4.6 becomes2:

∆fn −∆pn = 0 (4.9)

Assuming linear behaviour within an increment n yields:

∆pn = [∂p/∂d]dn−1∆dn

= Kn−1
T ∆dn

(4.10)
1See Appendix A.
2Where ∆pn = f(dn) with dn, the vector of nodal displacements at increment n.
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where Kn−1
T is called the tangent stiffness matrix. Substitution of Equation 4.10

into Equation 4.9 yields the set of linear equations to be solved at each incre-
ment:

Kn−1
T ∆dn = ∆fn (4.11)

An updated solution for the displacements is then given by:

dn = dn−1 + ∆dn (4.12)

The main drawback of the incremental solution are the increasing load residuals
and displacement errors as the load is increased. This drift off from the true
solution is clearly illustrated in Figure 4.2.
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Figure 4.2: Purely incremental solution of a non-linear geometric problem. The con-
tinuous curve, or correct equilibrium curve, of applied load f as a function of displace-
ment d, is approximated by a piecewise linear curve. The latter exhibits residual force
errors, rn, and displacement errors, en, at each increment n. These errors increase as
the load is increased, hence the approximate solution drifts off.

An iterative approach such as the Newton-Raphson (NR) method aims to
improve this discrepancy. If an approximate solution dn

i (starting at iteration
i = 0) is reached, an improved solution is obtained using a truncated Taylor’s
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series expansion3 (neglecting higher-order terms):

rn
i+1 = rn

i − [∂r/∂d]dn
i

δdn
i (4.13)

Ideally, we wish the new residual to be zero, hence the current equilibrium
equation becomes:

rn
i −Kn

T,i δdn
i = 0 (4.14)

with the tangent stiffness matrix, Kn
T,i = [∂r/∂d]dn

i
.

The new and improved update becomes:

dn
i+1 = dn

i + δdn
i (4.15)

Figure 4.3 illustrates the NR method for a single increment. As the figure
shows, the residuals r and the displacement errors corresponding to δd in this
case, reduce as the iterative process progresses.
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Figure 4.3: The NR method for a single increment of the applied force f .

Despite the significantly improved accuracy as opposed to the purely incre-
mental algorithm, the NR method is expensive in computational terms as much
effort is required in calculation and factorisation of the tangent stiffness matrix
at each iteration [41]. To overcome this problem, many modifications of the

3Where the residual r = f(d).
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standard NR method have been suggested which include the modified Newton-
Raphson, mNR, and the quasi Newton-Raphson, QN , methods of which the
most popular is the Broyden-Fletcher-Goldfarb-Shanno, BFGS , method. In
depth coverage of these methods can be found in [8, 41].

Convergence control in ABAQUS/Standard

In the ABAQUS/Standard FE software the two main criteria4 for convergence
are [40]:

1. Rα, convergence criterion5 for the ratio of the largest residual, e.g. rn,
to the corresponding average flux norm, e.g. fn. The default value is
5× 10−3.

2. Cα, convergence criterion for the ratio of the largest solution correction,
e.g. δdn, to the largest corresponding incremental solution value, e.g.
∆dn. The default value is 10−2.

4.3.5 Example

The effects of h- and p- refinement and LG/NLG are illustrated by an example
of a square plate subjected to a uniform transverse load. The plate is fully
built-in and lies in the x-y plane. The analytical solutions for the maximum
deflection and stresses are obtained from Roark’s formulas6[110] and given by:

σmax = −β1qb
2

t2
(4.16)

σc =
β2qb

2

t2
(4.17)

uz,max =
αqb4

Et3
(4.18)

where σmax is the stress in the middle of an edge, σc is the stress at the centre
of the plate and uz,max is the maximum deflection (at the centre of the plate).
For a square plate: β1 = 0.3078, β2 = 0.1386 and α = 0.0138 [110].
The material of the plate is steel with Young’s modulus E = 370 MPa. The
edge length b = 100 mm. and the thickness t = 5 mm. The plate is subjected
to a constant transverse load across the entire surface, q = −0.02 MPa.
The analyses were run with the ABAQUS/Standard software for five models
consisting of 8, 32, 128, 512 and 2,048 elements respectively. For each of these

4Notation as specified in [40].
5Parameter α corresponds to the field variable, e.g. alpha = 1 for displacement; α = 2 for

rotation.
6The original theory is worked out in Chapter 6 of [100].
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models, the ABAQUS shell elements S3R and STRI65 were used and analysed
assuming LG and NLG , respectively. The S3R element is a general purpose
element (suitable for both thin and thick shells), has six dof and can model
finite (constant) strain. The STRI65 element is only suitable for thin shell
modelling exhibiting small (linear) strain. In the experiments as presented in
Chapter 6, the S3R elements will be referred to as constant strain shell (CSS )
elements and the STRI65 elements as linear strain thin shell (LSTS ) elements.

Discussion Table 4.1 shows the values of uz,max, σmax and σc for each anal-
ysis. Figure 4.4 shows the trajectories for increasing h-refinement (models 1-5)
of uz,max, for four different analyses. All curves appear to converge to the same
point, which is slightly higher in absolute value than the value as calculated from
Roark’s formulas7[110]. The curves for the analyses involving LSTS ’s (coloured
red for LG and magenta for NLG) overshoot the true value at less complex mod-
els to converge for models of higher complexity. A possible reason why coarser
models appear to behave less stiff than finer models, as illustrated in Figure 4.5,
is because of the approximate curvature of the surface of model 2 as compared
to the true surface curvature, which may cause the midpoint to descend more
than for model 5 (which is a more refined model with a curvature closer to
the true surface curvature). Figure 4.6 shows the maximum stress, σmax. The
curves for the analyses involving CSS ’s (blue and green colour) show clearly
that first-order meshes require more h-refinement than second-order meshes
(red and magenta colour) for the approximation of stresses. Figure 4.7 shows
distinct behaviour between linear geometric analyses (blue and red curves) and
non-linear geometric analyses (green and magenta curves). The results from
the linear analysis converge closer to the value from Roark’s formulas for σc

than the results from the non-linear analysis8. A possible explanation may lie
in the difficulty of calculating values of stress in a single point of the mesh. In
FEA, stress variables are calculated from the integration points of the element.
Values at nodes are thus obtained by extrapolation. Again, the value as cal-
culated from Roark’s formulas is a numerical approximation and might not be
entirely accurate. Finally, Figure 4.8 shows the Mises equivalent stress9 and
the deformation in the z-direction, uz, for non-linear geometry, NLG , second-
order elements, LSTS , for all five models. The continuity of the stress and

7Note that the values from Roark’s are obtained by numerical approximation.
8For the variables uz,max and σmax the difference between linear and non-linear geometry

is small!
9The (von) Mises equivalent stress is an invariant stress quantity and is defined as:

σe = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 where σ1, σ2 and σ3 are the three principal

stresses at the point in question.
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Table 4.1: Results of the bending of a fully built-in square plate subjected to a uniform
transverse load. The first row shows the values as calculated from Equations 4.16 -
4.18. Subsequent rows show values of models 1-5 with a mesh complexity of 8, 32, 128,
512 and 2,048 elements, respectively. Each model is analysed using CSS ’s and LSTS ’s
respectively under the assumptions of both LG and NLG .

Analysis uz,max (mm.) σmax (MPa) σc (MPa)
Roark’s -0.5968 +2.4624 -1.1088
1 - LG - CSS -0.0281 +6.15E-33 -6.08E-33
2 - LG - CSS -0.1304 +0.1406 -0.2026
3 - LG - CSS -0.5510 +1.2320 -0.9399
4 - LG - CSS -0.6119 +1.8840 -1.0680
5 - LG - CSS -0.6234 +2.1830 -1.0950
1 - LG - LSTS -0.5730 +1.3810 -1.3190
2 - LG - LSTS -0.6621 +2.1340 -1.3460
3 - LG - LSTS -0.6422 +2.4250 -1.1660
4 - LG - LSTS -0.6338 +2.4370 -1.1180
5 - LG - LSTS -0.6301 +2.4730 -1.1070
1 - NLG - CSS -0.0281 +6.44E-05 +4.39E-05
2 - NLG - CSS -0.1304 +0.1416 -0.2014
3 - NLG - CSS -0.5482 +1.2490 -0.9013
4 - NLG - CSS -0.6075 +1.9050 -1.0150
5 - NLG - CSS -0.6186 +2.2040 -1.0380
1 - NLG - LSTS -0.5712 +1.4010 -1.2870
2 - NLG - LSTS -0.6558 +2.1580 -1.2720
3 - NLG - LSTS -0.6365 +2.4440 -1.1010
4 - NLG - LSTS -0.6284 +2.4540 -1.0570
5 - NLG - LSTS -0.6248 +2.4890 -1.0470

displacement patterns clearly improves as the mesh is refined.
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Figure 4.4: Maximum vertical displacement, uz,max (mm.), of the centre of a fully
built-in square plate, subjected to a uniform transverse load. Models 1-5 contain 8, 32,
128, 512 and 2,048 elements respectively. Colour code: blue corresponds to LG - CSS ,
red corresponds to LG - LSTS , green corresponds to NLG - CSS , magenta corresponds
to NLG - LSTS . The dashed line corresponds to the value as calculated from Roark’s
formulas [110]: uz,max = −0.5968 mm.
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-0.6558

(a) Model 2: 32 elements

-0.6248

(b) Model 5: 2,048 elements

Figure 4.5: Comparison of the maximum vertical displacement, uz,max (mm.), for
two models of different complexity, analysed using LSTS ’s and assuming NLG . The
displacement is larger for model 2 despite its coarser mesh (see text for explanation).
Deformation magnification = 30.
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Figure 4.6: Maximum stress at the middle of an edge, σmax (MPa), of a fully built-in
square plate, subjected to a uniform transverse load. Models 1-5 contain 8, 32, 128,
512 and 2,048 elements respectively. Colour code: blue corresponds to LG - CSS , red
corresponds to LG - LSTS , green corresponds to NLG - CSS , magenta corresponds to
NLG - LSTS . The dashed line corresponds to the value as calculated from Roark’s
formulas [110]: σmax = +2.4624 MPa.
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Figure 4.7: Stress, σc (MPa), at the centre of a fully built-in square plate, subjected
to a uniform transverse load. Models 1-5 contain 8, 32, 128, 512 and 2,048 elements
respectively. Colour code: blue corresponds to LG - CSS , red corresponds to LG
- LSTS , green corresponds to NLG - CSS , magenta corresponds to NLG - LSTS .
The dashed line corresponds to the value as calculated from Roark’s formulas [110]:
σc = −1.1088 MPa.
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Model 4: 512 elements
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Model 5: 2,048 elements
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Figure 4.8: Mises equivalent stress (MPa), and displacement, uz (mm.), for models
1-5 with 8, 32, 128, 512 and 2,048 elements respectively. Note the improved continuity
of the patterns as meshes are gradually refined.
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4.3.6 Anisotropic materials

The constitutive equations for a general, linearly elastic, anisotropic solid ma-
terial in tensor notation is given by:

εij = Sijkl σkl (4.19)

where εij is the second-rank strain tensor, σkl is the second-rank stress tensor
and Sijkl is the fourth-rank compliance matrix.
The constitutive relations are usually written for σ as a function of ε.
With the fourth-rank elasticity tensor, Cijkl = S−1

ijkl, we can write:

σij = Cijkl εkl (4.20)

For a general 3D anisotropic body, i, j, k, l range from 1 to 3. This means that
there are 81 material constants in the elasticity tensor Cijkl. However because
of symmetry, there are only 21 independent material constants, necessary to
describe full anisotropy.

4.3.7 Hyperelasticity

A material is called hyperelastic if it possesses an elastic potential function, V ,
which is a scalar function of the strain, ε, and whose derivatives with respect
to one of the strain tensor components yields the corresponding stress tensor
component, σ [41] (see Figure 4.9).
In formula form:

V =
∫ εn

0
σ dε

or
σ =

dV

dε
(4.21)

The most widely used prescription of the specific strain energy potential,
for a hyperelastic incompressible material, is the Mooney potential [66]:

V = C1(Ī1 − 3) + C2(Ī2 − 3) (4.22)

where Ī1, Ī2, are the first and second deviatoric strain invariants, respectively,
and C1 and C2 the corresponding material-dependent constants10.
The principal stretches, λi, for i = 1, . . . , 3 , are related to the principal nominal
strains, εi, by:

λi = 1 + εi (4.23)
10This hyperelastic model is also known as the Mooney-Rivlin (MR) model.
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Figure 4.9: Hyperelastic relation between stress σ and strain ε.

The deformation gradient, expressed in the principal directions of stretch is
given by:

F =




λ1 0 0
0 λ2 0
0 0 λ3


 (4.24)

Assuming incompressibility and isothermal response we obtain detF = 1, which
implies:

3∏

i=1

λi = 1 (4.25)

The deviatoric strain invariants in terms of the principal stretches are then
given by:

Ī1 =
3∑

i=1

λ2
i

Ī2 =
3∑

i=1

λ−2
i

(4.26)

For more in depth coverage of the Mooney potential, see chapter 7 of [66].
General theory on hyperelasticity can be found in the Theory Manual of the
ABAQUS FE software [40].



Chapter 5

Analysis of deformation of the
foetal skull: The Model

5.1 Introduction

The aim of this chapter is to establish a biomechanical model for the analysis
of deformation of the foetal skull when it is subjected to labour forces. This
model will be used in the next chapter to perform a series of experiments aimed
at the assessment of foetal skull moulding during labour.
In Chapter 4, the importance of how close the physical model should reflect
reality was emphasised. A model of sufficient complexity is required to yield a
realistic solution but on the contrary, a too complex model should be avoided
since it might not produce a solution at all.
The processes involved with the expulsion of the foetus from the uterus and the
resulting deformation of the head are complex, hence some simplifications have
to be made.
Before making any assumptions, let us first describe the three stages1 involved
during the process of birth:

The first stage starts from the onset of true labour characterised by the in-
crease of frequency and intensity of contractions which causes the foetus
to be pressed against the lower uterine pole and the cervix to dilate. This
stage is completed when the cervix reaches full dilatation. Two phases
can be identified: the latent phase and the active phase. In the latent
phase the cervical dilatation is less than 3 cm. and contractions may be
infrequent. Full dilatation is conventionally taken as 10 cm., a value which
is reported by both Friedman [30] and Hendricks et al. [39].

The second stage starts at full dilatation of the cervix. The foetus is expelled
1See also Figures D.8 and D.9 in Appendix D.
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from the uterus and travels through the vagina. The second stage finishes
when the baby is delivered.

The third stage starts at the delivery of the baby and ends when the placenta
and membranes are fully expelled and the uterus has retracted firmly to
compress the uterine blood sinuses.

The third stage is obviously not within our interest.
The second stage is important with regard to the moulding of the foetal head
but requires the knowledge of soft tissue characteristics of the pelvic floor and
vagina, which are not commonly known. The position of the head in contact
with the birth canal and possibly the bony pelvis is difficult to assess and de-
pends a lot on the cephalo-pelvic proportions. Pressures acting on the head
depend on the contact between the head and birth canal and will therefore be
non-uniform in time and space. From a mechanical point of view we can classify
this situation as a mechanical contact problem which is of a non-linear nature.

This leaves us with the first stage of labour where the foetal head is in
contact with the cervix. Lindgren et al. [52–58], did extensive work on the
measurement of amniotic pressure and the pressure between the cervix and the
foetal head. Bell [10] worked out several theoretical models based upon the
findings by Lindgren. More recent work on the measurement of pressures are
by Allman et al. [3], Antonucci et al. [5], Beazley [9], Furuya et al. [33], Gough
et al. [35], Moolgaoker [74], Rempen and Kraus [85, 86] and Svenningsen et al.
[97].

The study of foetal head moulding during the first stage of labour is justified
for uncomplicated deliveries which do not involve cephalo-pelvic disproportion.
The importance of the first stage to foetal head moulding was pointed out in a
study by Lindgren and Smyth [52]. Moreover, the first stage involves in most
cases about 90% of the entire duration of labour [10].

Reliable measurements of material properties of the different components of
the foetal skull are another important issue for a successful analysis of defor-
mation. The research as performed by McPherson and Kriewall involving the
evaluation of the elastic modulus of foetal cranial bone [71], the work by Bylski
et al. on foetal dura mater [14] and the work by McElhaney et al. [67, 68] on
the material properties of adult skull bones and soft tissue are all major con-
tributions in this context.

In reality, the entire process of expulsion of the foetus is dynamic. However,
since uterine contractions change very slowly in time and cervical dilatation,
starting from the onset of labour until full dilatation, takes several hours, the
assumption of a static model is justified.
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Having decided to limit the modelling of foetal head moulding to the first
stage of labour plus the availability of data on loading conditions and material
properties, we can now design a static model to analyse the deformation of the
skull. However, a crucial piece of information is missing: how can we validate
the model?
The answer lies in studies done by Kriewall et al. [47] and Sorbe and Dahlgren
[94], involving the measurements of several cephalic diameters shortly after
birth and three days later to allow for sufficient restitution after moulding. In-
verse interpretation of these measurements provides us with data, suitable for
validation of our model. Moreover, since the cases studied in [47, 94] involved
normal vaginal deliveries without serious complications, the results are suitable
for the validation of a model which is restricted to the first stage of labour.
In the next sections, I will describe the necessary pre- and postprocessing steps
to perform and respectively evaluate the analysis of deformation of the foetal
skull2. Each of the sections outlines a concept as described above. Findings
from earlier research are interpreted and tailored into a model to be used for
analysis. The sections include:

• Establishment of the load distributions and loading conditions.

• The material properties of foetal skull bone and sutures.

• Validation of the results.

5.2 Load distributions and loading conditions

5.2.1 The origin of forces during labour

During pregnancy, the foetus resides in the uterus which is filled with amniotic
fluid. The net intra-uterine pressure, IUP , also referred to as amniotic pressure,
AP , is fairly low in the early stages of pregnancy with peak pressures up to
about 10 mmHg. and a contraction frequency of 2-3 contractions per hour [22].
This pattern gradually increases so that by the third trimester of pregnancy,
the contraction frequency may have reached 4-6 contractions per hour with IUP
peaks in the range of 20-40 mmHg. [99]. These contractions are painless and
may cause a sensation of tightening and pressure which in the latter case are
commonly known as Braxton-Hicks contractions. The first stage of labour starts
with, what is in obstetrical terms known as, the onset of labour. It is defined as
the development of regular, painful uterine contractions producing progressive

2Note that the first and most important step of pre-processing is the establishment of a
valid geometry, a prerequisite which was covered in Chapters 2 and 3.



Analysis of deformation of the foetal skull: The Model 113

dilatation of the cervix [99]. IUP peaks can reach values up to about 100
mmHg., and possibly even higher in exceptional cases such as uterine spasms
[56], and the contraction frequency increases to about 3-5 contractions per ten
minutes.

5.2.2 Intra-uterine pressure (IUP) and head-to-cervix pressure
(HCP) measurements

Measurements of intra-uterine pressure, IUP , and head-to-cervix pressure, HCP ,
have been performed by a variety of researchers. One of the main problems in
the interpretation and summary of these measurements is the variation in terms
of representation. Figure 5.1 shows an idealised curve of the amniotic pressure.
The distinction between peak pressure and active peak pressure (peak pressure
minus basal pressure) is clear from the figure but unfortunately not always from
the reported values in the literature! Other obscurities result from reporting
mean and maximum values. Mean values of a population sample of n patients
with pressure measurements over m contractions can involve double averaging.
Maximum values can be averaged over the number of contractions m and the
sample size n or can be absolute maxima. Therefore it is not straightforward to
report summary values from a range of investigators. Nonetheless, an attempt
was made of which the result is shown in Table 5.1, an extended and more com-
prehensive version of the summary table as reported by Rempen and Kraus
[85] and based on values reported in [5, 33, 54, 74, 85, 97, 101]. The variations of
the reported values amongst different researchers is apparent and may also be
explained by the following facts:

• For the measurement of HCP , it is generally difficult to keep the pres-
sure/force sensors in place between the sliding head and the uterine cervix,
thus inaccuracies may result.

• Furuya et al. [33], Moolgaoker [74], Rempen and Kraus [85] and Sven-
ningsen et al. [97] measured the pressure during the second stage of labour.
Normally, higher peak values could be expected as compared to measure-
ments during the first stage3. The accuracy may be lower as well since it
is even more difficult to keep transducers in place.

• Factors such as parity, location of measurement, latent or active phase,
rupture of the membranes and degree of dilatation influence the pressure
distribution4. No study takes account of all of them.

3Since the amniotic pressure is higher during the second stage because of increased uterine
activity and maternal bearing down efforts.

4These factors are briefly outlined in Section 5.2.3.
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Table 5.1: Head pressure measurements from different sources (mmHg.): basal =
average basal pressure (Pb); average = average peak active pressure (Pap); max.
= maximum peak active pressure, during contractions; n = the sample size (∗ =
primiparae only; ∗∗ average pressure over the trace i.o. average Pap; ∗∗∗ measurements
during second stage of labour).

IUP HCP
Author Year n basal max. basal average max.
Turnbull 1957 31 6-16∗ 20-80∗ - - -
Lindgren 1960 10 10-11.5 108-121 17.5-76 - 127-312
Moolgaoker∗∗∗ 1979 44 - - - 98-150∗∗ 357-497
Furuya∗∗∗ 1981 40 21 115.5 30 - 404
Svenningsen∗∗∗ 1988 46 - - - 158 390
Rempen∗∗∗ 1991 42 19.5 142 41.5 - 239
Antonucci 1997 6 - 30-75 - - 235-514

• A series of experiments as performed by Knoke et al. [42] to measure the
IUP with three intrauterine catheters pointed out the variation due to
the random placement of the catheter. The catheters were passed simul-
taneously into the same uterus during labour. They assessed nine women
and reported variation in recorded pressure of the order of 5-10 mmHg.

• Gough et al. [35] points out that in earlier experiments (by Lindgren
amongst others), the HCP pressure measurements are influenced by the
IUP .

5.2.3 Perinatal factors influencing the intra-uterine pressure
and head-to-cervix pressure

Lindgren’s extensive research on this topic is used as a framework and work
from other researchers is mentioned where necessary. Factors influencing the
intra-uterine pressure, IUP , and head-to-cervix pressure, HCP , include:

Location

1. The pressure between the rim of the cervix and the head, the HCP , is
on average greater than the amniotic fluid pressure or IUP . It shows an
increasing trend from the lower rim towards the greatest diameter [52, 57]
as shown in Figure 5.3. Figure 5.2 shows the different locations of the
pressure transducers. A similar trend of the HCP at different locations
of the head was found by Beazley [9] (see further).
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Figure 5.1: The idealised intra-uterine pressure cycle. Pp = peak pressure, Pap =
active peak pressure or intensity, Pb = basal pressure or tonus, Tc = contraction
period, Ti = interval period, Tr = rise of pressure period.

2. The pressure at the largest diameter of the head is proportional to the
square of the increase in diameter for normal cases of labour [52]. This is
shown Figure 5.4a. Figure 5.4b shows that the extension of this concept
for different levels (i.e. different diameters) on the head of a single case is
a plausible assumption.

Rupture of the membranes

Rupture of the membranes (ROM) results in a redistribution of the HCP , i.e.
greater pressures at the largest diameter (Q’) but lower values at 3 cm. below
(Q”) as compared to the pressure distribution before ROM (see Figure 5.5).

Parity and gravidity

The pressures at levels near the greatest diameter are larger for multiparae for
the same IUP than for primiparae, according to Lindgren and Smyth [52]. Ta-
ble 5.2 shows this effect which is valid for both cases of intact membranes and
ruptured membranes. Results from Moolgaoker for primigravidae and multi-
gravidae5 [74] show lower values of the HCP for the latter (see Table 5.3). This
appears to be in contradiction with Lindgren’s results, though care has to be
taken in the interpretation since the IUP is constant for both groups in his

5See Appendix D for the distinction between parity and gravidity. Note that both variables
are the same if the patient did not have any abortions or ectopic pregnancies.
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Figure 5.2: Schematic representation of an ellipsoidal foetal head in contact with the
cervix, showing the location of the pressure transducers for measurement of the HCP
(from Lindgren and Smyth, 1961 [52]). Pa is the amniotic pressure or IUP .

150

50

Q

Q

100

50

50

100

50

Q ’

mmHg.

Pa

’

’

’’

’

1 minute

Figure 5.3: Typical values of the IUP and the HCP at three levels of the foetal
head (from Lindgren and Smyth, 1961 [52]). Pa is the amniotic pressure or IUP . The
corresponding locations of the pressure transducers, Q, are shown in Figure 5.2.
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(a) Average of 52 cases. (b) Single case at 3 levels (See Figure 5.2).
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Table 5.2: Comparison of the HCP (mmHg.) at different levels of the head for primi-
and multiparae (from Lindgren and Smyth, 1961 [52]).

Primiparae Multiparae
Membranes Q’ Q” Q”’ Q’ Q” Q”’
Intact 143 129 101 223 165 52
Ruptured 150 104 82 248 103 26

Table 5.3: Comparison of the HCP (mmHg.) at two levels of the head for primi- and
multigravidae (from Moolgaoker, 1979 [74]).
aas = at or above spines; bs = below spines.

Primigravidae Multigravidae
aas bs aas bs

n 11 11 11 11
Average 150 124 124 98.3

Maximum 497 445 445 357

results. Turnbull [101] reported higher values of the IUP for primiparae as
opposed to multiparae, which would agree with Moolgaoker’s findings.

Progress of labour

Beazley [9] monitored two patients, one of which showed normal progress dur-
ing labour (patient A) and one which showed delayed labour (patient B). The
different outcome for these patients appeared to be due to the resistance of the
cervix which was measured to be 11.8 N for patient A as opposed to 190 N for
patient B in the early stage of labour and was also reflected in a higher HCP
for the latter. Table 5.4 shows the results of pressure measurements using three
balloon tipped catheters inserted between the foetal head and cervix, at the
levels of the lower rim, intermediate and at the maximum circumference, i.e.
the level of the biparietal diameter, BPD . For patient B, it can be observed
that during the latent phase of labour (i.e. cervical dilatation ≤ 3 cm.), the
HCP is larger at lower levels than at the largest diameter of the head. This
is the reverse pattern of what is usually observed during the active phase of
labour.

5.2.4 Mechanisms as a cause of the head-to-cervix pressure
(HCP) distribution

Lindgren and Smyth [52] suggested the following possible causes of the HCP :
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Table 5.4: HCP measurements (mmHg.) by Beazley [9] for two patients: patient A
showed normal progress during labour whilst patient B showed delayed labour. The
latent phase of labour corresponds to a cervical dilatation ≤ 3 cm. The active phase
corresponds to a cervical dilatation > 3 cm. Measurements are at the levels of the
lower rim (Low), intermediate level (Int.) and the level of the maximum circumference
(BPD).

Patient Latent phase Active phase
IUP BPD Int. Low IUP BPD Int. Low

A 40 - - - 50 90 50 30
B 60 - 125 200 60 165 70 40

• unequalised hydrostatic pressures due to a dilated cervix,

• direct thrust along the foetal axis between the uterine fundus and the
cervix and transmitted through the foetus,

• circumferential muscle bands around the largest diameter of the foetal
head,

• an effect due to the constriction of the cervix and lower segments as these
parts elongate axially,

• extra-uterine forces.

Figure 5.6 shows a diagram of the forces of expulsion according to Lindgren
and Smyth. In Figure 5.6a the cervix is closed and the foetus is surrounded
by fluid. In Figure 5.6b the cervix has opened, the membranes are still intact
and there is no contact between breech and fundus. Pure hydrostatic expulsion
causes a force:

F1 =
π

4
(PaD2

2 − PfD1
2) (5.1)

where Pa is the amniotic pressure or the IUP and Pf is the pressure in the
forewaters6. In Figure 5.6c, the membranes have ruptured and there is direct
contact between breech and fundus resulting in the downwards directed force
F2. Force F1 has increased now because the resisting pressure of the forewaters,
Pf , has become zero.

5.2.5 A theoretical model on the relation between the intra-
uterine pressure and head-to-cervix pressure

As the results from the intra-uterine pressure and the head-to-cervix pressure
measurements, as discussed in the previous sections, show significant intra- and

6The amniotic fluid in the bulging part of the membranes below the foetal head.
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Figure 5.6: Schematic representation of a foetus in utero, subjected to forces of expul-
sion according to Lindgren and Smyth [52]. The dashed line corresponds to the foetal
membranes. Dmax is the maximum diameter of the foetal head; the hatched area is the
area of head-to-cervix contact with lower and upper diameters D1, D2, respectively; Pa

is the amniotic pressure; F1 is the resultant force due to pure hydrostatic expulsion; F2

is the force due to direct contact between breech and uterine fundus; Pf is the pressure
in the forewaters. See text for further explanation.

inter-variability amongst researchers, it is difficult to define a load distribution
solely based on these experimental values. Moreover, none of the researchers
has studied a significant sample of the population nor did they report values
over the entire range of cervical dilatation for an individual patient. Therefore a
theoretical model, which fits the experimental data to the best possible degree,
is needed.

Lindgren’s model

Lindgren and Smyth[52] proposed the following theory based on the helicoidal
organisation of the fibrous and muscular structure of the lower segment of the
uterus and the cervix (Figure 5.7). From Figure 5.7b, calculating the equilib-
rium of forces based on the principle of virtual work7:

wLPr dR = −πR2Pa dH (5.2)
7Note that an increase of dR causes a decrease of dH and vice versa. L is assumed to be

constant.
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with:

R the radius of the largest diameter of the head,
w the width of the helix,
L the length of the helix,
Pa the amniotic pressure or IUP ,
Pr the radial pressure, exerted by the cervix or HCP .

Since the fibres of the uterus are organised in clockwise and anti-clockwise
directions, the structure cannot unwind hence the length L can be calculated
from:

L2 = H2 + (2πnR)2 (5.3)

with H, the length of contact in the vertical direction and n, the number of
turns. Differentiating Equation 5.3 yields:

dH

dR
= −4π2n2 R

H
(5.4)

The contact area wL is related to the height H as:

H =
wL

2πR
(5.5)

Combining Equations 5.2, 5.4 and 5.5 yields an expression for the radial to
amniotic pressure ratio:

Pr

Pa
=

2π2n2R2

H2
(5.6)

Equation 5.6 shows that the ratio of the radial pressure, Pr, and the amniotic
pressure, Pa, is proportional to the square of the largest radius of the foetal
head, R2, the square of the number of turns, n2, and inversely proportional to
the square of the length of head-to-cervix contact, H2.
Lindgren’s model suffers from the following shortcomings:

• The HCP/IUP ratio is constant for a particular degree of dilatation, thus
pressures at different levels of the head are constant. This contradicts
Lindgren’s claims that the pressure varies at different levels and is largest
at the level of the largest diameter of the head.

• Equilibrium had to be based on the concept of virtual work8.

• Note that Lindgren ignores the force on the buttocks, F2, as shown in
Figure 5.6c.

• The area of contact between the cervical helix and the head is an overes-
timate since windings will overlap.

8Because the resultant forces of Pa and Pr in the model are orthogonal.
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(a) Helicoidal structure of uterine (b) Diagram of the cervical helix
and cervical tissue. in contact with the foetal head.
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Figure 5.7: Structure of the uterus and cervix (originally from W. Langreder (1956)
and reported in [52]).
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Figure 5.8: Bell’s model: a spherical lower pole of the foetal head is in contact with
the cervix. The dark-coloured patch shows the right half of the head-to-cervix contact
area. Pr is the radial pressure (HCP), Pa is the amniotic pressure (IUP), R is the
largest radius of the foetal head, ri is the radius of initial dilatation and r0 is the
radius of the current dilatation.
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Bell’s model

Equation 5.6 shows that the radial pressure, Pr, is proportional to R2 for a
constant IUP . Figure 5.4a shows that the pressure in normal cases is related
to the square of the increase in diameter for different cases. Figure 5.4b shows
that this assumption is reasonable for an individual case.
Based on Lindgren’s findings, Bell [10] worked out several pressure distributions
assuming a spherical lower pole of the head (Figure 5.8).
Two possible configurations based on a quadratic relation between pressure and
radius are considered:

• Pressure distribution 1: the radial pressure is proportional to the square
of the radius of the head at all levels.

• Pressure distribution 2: the radial pressure is proportional to the increase
of the square of the radius of the head at all levels.

The equilibrium equation in the vertical direction is given by:

PaπR2 =
∫ φe

φ0

Pr cosφ 2πrR dφ (5.7)

Pressure distribution 1

Pr = Cr2 (5.8)

where C is a constant.
Substituting Equation 5.8 into Equation 5.7, using the relation r = R sinφ and
working out:

PaπR2 − 2π

∫ φe

φ0

Cr2R2 cosφ sinφdφ = 0

Pa − 2
∫ φe

φ0

CR2 cosφ sin3 φ dφ = 0

Pa − CR2

2
[sin4 φ]φe

φ0
= 0 (5.9)

Assuming:
φe =

π

2
(5.10)

and defining the cervical dilatation, D, as:

D = sin φ0 =
r0

R
(5.11)

and the ratio of the local radius and the greatest radius of the head:

γ =
r

R
(5.12)
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then substitution of Equations 5.8, 5.10, 5.11 and 5.12 into Equation 5.9 yields
the following expression, relating the radial pressure, Pr, to the amniotic pres-
sure, Pa:

Π1 =
Pr

Pa
=

2γ2

1−D4
(5.13)

Pressure distribution 2

Pr = C(r − ri)2 (5.14)

where C is a constant.
Substituting Equation 5.14 into Equation 5.7 and working out:

PaπR2 − 2π

∫ φe

φ0

C(r − ri)2R2 cosφ sinφdφ = 0

Pa − 2
∫ φe

φ0

CR2 cosφ sin3 φ dφ +

4
∫ φe

φ0

CriR cosφ sin2 φ dφ− 2
∫ φe

φ0

Cri
2 cosφ sinφdφ = 0

Pa − CR2

2
[sin4 φ]φe

φ0
+

4CriR

3
[sin3 φ]φe

φ0
− Cri

2[sin2 φ]φe

φ0
= 0 (5.15)

Substitution of Equations 5.14 and 5.11 into Equation 5.15 yields:

6Pa

3R2(1−D4)− 8Rri(1−D3) + 6ri
2(1−D2)

=
Pr

(r − ri)2
(5.16)

Finally, setting the initial dilatation:

Di =
ri

R
(5.17)

and substituting together with Equation 5.12 into Equation 5.16 yields the final
expression9, relating the radial pressure, Pr, to the amniotic pressure, Pa:

Π2 =
Pr

Pa
=

6(γ −Di)2

3(1−D4)− 8Di(1−D3) + 6Di
2(1−D2)

(5.18)

Discussion Figure 5.9 shows the two pressure ratios, Π1 and Π2, as a function
of γ for dilatation, D = 0.9, 0.7, 0.5 and 0.3, respectively, and Di = 0.3.
Figure 5.10 shows the pressure ratios, Π1 and Π2, at the largest diameter of
the head as a function of D for Di = 0.3 and γ = 1. From both figures, it
can be seen that pressure distribution 2 has slightly higher peak values than

9Note that substitution of Di = 0 yields Equation 5.13.
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pressure distribution 1 for all dilatations near the largest diameter of the head.
At lower levels closer to the cervical rim, this pattern is reversed thus making
distribution 1 less steeper than distribution 2.
Although the difference between the two pressure distributions is small, pressure
distribution 2 is preferred as a model for the loading distribution on the foetal
skull because:

• It supports Lindgren’s theory of the pressure being, in normal cases, re-
lated to the square of the increase in diameter.

• The pressure must be zero near the initial mean radius which is effectively
larger than 0 and generally considered to be 1.5 cm. (which corresponds
to Di = 0.3).

• Peak values near the largest diameter of the head are higher than for
pressure distribution 1 (worst case).

Assuming a IUP of 50 mmHg., the HCP for D = 0.9, is slightly more than
300 mmHg. for Π2 (see Figure 5.10). This value does agree with the maximum
value reported by Lindgren as shown in Table 5.1. Higher degrees of dilatation
or higher values of the IUP would yield maximum values of the HCP corre-
sponding to values as for example reported by Antonucci et al. [5] (see Table
5.1).

5.3 Material properties

5.3.1 Material properties of foetal cranial bone

Fibres from foetal cranial bone emanate from the centres of ossification, a prop-
erty which can be seen from Figures 2.1 and 2.2 in Chapter 2. McPherson and
Kriewall [71] showed that foetal cranial bone is an in-plane orthotropic material
which displays different material properties in tangential and radial (perpen-
dicular) directions relatively to the direction of the fibres.
From the formulation of a general isotropic material (Equation 4.19), we can
derive the constitutive relations for an in-plane (2D) orthotropic material in
matrix form (using single indices if the first and second index are the same):




ε1

ε2

2ε12


 =




1
E1

−ν21
E2

0
−ν12

E1

1
E2

0
0 0 1

G







σ1

σ2

σ12


 (5.19)

with E1, E2, the elastic moduli in the two in-plane directions, respectively;
ν12, ν21, Poisson’s ratios; G, the in-plane shear modulus.
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Figure 5.9: Pressure ratios, Π1 (blue colour) and Π2 (red colour), for different dilata-
tions, D, as a function of the ratio of the local radius and the largest radius of the
head, γ (the valid region is coloured white). Di = 0.3.
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Figure 5.10: Pressure ratios, Π1 (blue colour) and Π2 (red colour), at the maximum
diameter of the head as a function of cervical dilatation, D.
Di = 0.3.
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Writing Equation 5.19 for σij as a function of εkl (Equation 4.20) gives10:




σ1

σ2

σ12


 =




E1
1−ν12ν21

ν12E2
1−ν12ν21

0
ν21E1

1−ν12ν21

E2
1−ν12ν21

0
0 0 E1

2(1+ν12)







ε1

ε2

2ε12


 (5.20)

McPherson and Kriewall [72] found the following values for the elastic mod-
uli of foetal cranial bone, with index 1 denoting the direction tangential to the
fibres and index 2 denoting the direction perpendicular to the fibres:

E1 = 3.860 GPa
E2 = 0.965 GPa

No values of Poisson’s ratio were derived for foetal cranial bone. McElhaney et
al. [68] reported a value, ν = 0.22, for tangential compression of adult cranial
bone. We will use this value as an estimate for ν12.
For a body in plane stress, the in-plane shear stress components on perpendic-
ular faces must be equal in magnitude [21]:

E12 = E21 (5.21)

which gives us an expression for ν21:

ν21 =
ν12E2

E1
(5.22)

which yields, after substitution of E1, E2 and ν12: ν21 = 0.055.
Having obtained all the necessary constants we can calculate the elasticity ma-
trix, E, from Equation 5.20:

E =




3.907 0.215 0
0.215 0.977 0

0 0 1.582


 (5.23)

Since shell elements are used to model the foetal skull, shear stresses and strains
in the z-direction (direction perpendicular to the shell surface) have to be con-
sidered which requires the elasticity matrix, E, to be extended to 3D. Since
experimental values are not available, shear components in the z-direction are
given the same value as E33 in Equation 5.23. Thus the sparse 3D elasticity

10Note that the derivation of the shear modulus, G, is based on the assumption that the
material is in-plane isotropic rather than in-plane orthotropic.
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matrix becomes11:

E =




3.907 0.215 0 0 0 0
0.215 0.977 0 0 0 0

0 0 0 0 0 0
0 0 0 1.582 0 0
0 0 0 0 1.582 0
0 0 0 0 0 1.582




(5.24)

5.3.2 Material properties of fontanelles and sutures

McElhaney [67] reported values of Young’s modulus, E = 31.5 MPa, and Pois-
son’s ratio, ν = 0.45, of adult dura mater, under the assumption of linear elastic
behaviour and near incompressibility.
Bylski et al. [14] investigated the material properties of foetal dura mater.
They assumed the material to be homogeneous, isotropic, nonlinearly elastic,
incompressible and undergoing large deformation when subjected to a static
load (hyperelastic). Hyperelasticity was discussed in Section 4.3.7 defining the
Mooney-Rivlin (MR) model, which involves the two material constants, C1, C2.
Bylski et al. reported the following values for foetal dura mater:

C1 = 1.18 MPa
C2 = 0.295 MPa

The anisotropic and viscoelastic behaviour, generally displayed by soft tissues
[32], was ignored by both authors. This assumption was justified from research
by Melvin et al. [73], who reported that the general variability in the adult
dura mater tissue tends to overshadow the anisotropic and viscoelastic effects.

5.3.3 Material properties of the skull base and maxilla

Adult cranial bone is a transversely (tangent to the skull surface) isotropic
material [109]. Material constants for the skull base and maxilla of the foetal
skull have not been reported as yet. We will assume that the foetal skull base
and maxilla are similar to adult cranial bone and adopt the values of Young’s
modulus, E = 4.46 GPa, and Poisson’s ratio, ν = 0.21, for an adult skull, as
reported by McElhaney [67].

11The row of zeroes (third row) corresponds to zero stress and strain in the direction, normal
to the mid-surface of the shell.
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5.4 Validation of the model: experimental data

Validation of the model is based on experimental data as reported by Kriewall
et al. [47] and Sorbe and Dahlgren [94].

5.4.1 Kriewall’s research

Kriewall et al. examined 38 infants delivered at the University of Michigan
Medical Center. Of the total sample, 15 infants were born by elective Caesar-
ian section before the onset of labour, whilst the remaining 23 were delivered
vaginally from vertex presentations.
Measurements of each infant were made using obstetrical calipers. The measure-
ment of the biparietal diameter, BPD , bitemporal diameter, BTD , suboccipito-
bregmatic diameter, SOBD , occipitofrontal diameter, OFD , submentobreg-
matic diameter, SMBD , and mentovertical diameter, MVD , were made within
the first hour of birth and then repeated after 24, 48, and 72 hours, respec-
tively12.
A moulding index was derived making the following assumptions [47]:

• Consider the foetal head as an ellipsoid with principal axes corresponding
to the BPD , MVD and SOFD .

• To define curvature in the three-dimensional sense, the geometric mean
is taken from the curvature in the two planes defined by the normals in
the direction of the SOFD and the BPD , respectively.

• This product is made more sensitive by multiplication with the square of
the MVD .

Resulting in Kriewall’s moulding index:

MI =
MVD2

BPD × SOFD
(5.25)

Results Only the BPD , SOFD and MVD changed significantly over the first
three days postpartum. Table 5.5 shows the restitution of moulding over a three
day period for each of the three diameters of the moulding index, MI . Table 5.6
shows the moulding indices for each group at day 0 and day 3. The moulding
indices between groups were significantly different at day 0 but not at day 3.

12See Appendix C for the definition of foetal head/skull diameters.
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Table 5.5: Restitution of three principal diameters (mm.) after moulding according
to Kriewall et al. [47].

Variable Vaginal delivery (n=23) Caesarian section (n=15)
day 0 day 3 signific. day 0 day 3 signific.

BPD 93 91 p<0.01 94 89 p<0.01
SOFD 106 108 p<0.01 106 107 -
MVD 139 135 p<0.01 129 132 p<0.01

Table 5.6: Moulding index, MI , before restitution (day 0) and after restitution (day 3)
(from Kriewall et al. [47]).

Group n day 0 day 3 signific.
Vaginal 23 2.00 1.86 p<0.01
Caesarian 15 1.68 1.82 p<0.01

Discussion

• The definition of landmarks within the bregma is difficult, hence measure-
ments show significant inter-observer and intra-observer variability (up to
2 mm. as reported by the author).

• This measurement problem might have contributed to the fact that only
three of the seven diameters appeared to change significantly. The fact
that the other four diameters did not contribute to the moulding could be
explained by the measurement accuracy being insufficient as compared to
the changes of these diameters.

• If restitutional changes can be considered in the opposite direction of
changes from moulding, then the sensitivity of the moulding index is not
optimal. Consider the effects of moulding on the MVD and the BPD :
both variables increase during moulding, however the MVD occurs in the
numerator of Equation 5.25 and the BPD in the denominator.

• Similar effects in restitution for the BPD and the SOFD occur for both
groups, i.e. vaginal delivery and Caesarian section. Only the MVD ap-
pears to display different restitution between groups. This finding might
point out that the group involving Caesarian sections is not an ideal con-
trol group [47]. However, the reverse moulding behaviour could be due to
the amniotic pressure changes before the onset of labour.
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5.4.2 Sorbe and Dahlgren’s research

Sorbe and Dahlgren [94] investigated 319 vaginal deliveries. They used a photo-
graphic method to document the size of the infant’s head, immediately postpar-
tum and three days later. Six different diameters were measured, i.e. the bipari-
etal diameter, BPD , the occipito-frontal diameter, OFD , the orbito-occipital
diameter, OrOD , the suboccipito-bregmatic diameter, SOBD , the maxillo-
vertical diameter, MaVD , and the orbito-vertical diameter, OrVD . A modified
moulding index MMI was used based on Kriewall’s MI [47]:

MMI =
MaVD2

BPD × SOBD
(5.26)

where the mento-vertical diameter, MVD , in Equation 5.25 is replaced by
the maxillo-vertical diameter, MaVD , because it can be more accurately mea-
sured. The suboccipito-frontal diameter, SOFD , is replaced by the suboccipito-
bregmatic diameter, SOBD . This change was motivated by the fact that in
94.7% of the deliveries in this study, the foetuses were delivered in occiput an-
terior vertex presentation13, for which the SOBD is the presenting (and maxi-
mum) diameter.
Table 5.7 shows the skull diameters immediately postpartum and three days
later, for the entire series, primiparas and multiparas, respectively. Table 5.8
shows the modified moulding index, MMI , immediately postpartum and three
days later for the same groups.

Discussion

• From both tables, we observe significant changes for the SOBD , OrVD
and MaVD for primiparas. If we consider moulding as the inverse process
of restitution then:

– The SOBD decreases during moulding.

– The OrVD increases during moulding.

– The MaVD increases during moulding.

• Diameters do not show significant changes for multiparas nor does the
modified moulding index, MMI .

• The SOBD is the least affected for multiparas whilst it does change sig-
nificantly for primiparas.

13see Figure D.4a.
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Table 5.7: Skull diameters (mm.) immediately postpartum and three days later as
reported by Sorbe and Dahlgren [94].

Diam. Day 0 Day 3
mean (mm.) std. (mm.) mean (mm.) std. (mm.) p

The entire series, n=319
BPD 105.0 4.5 105.0 4.7 0.44
OFD 134.0 6.7 133.6 5.6 0.26
OrOD 131.4 6.2 131.3 4.9 0.38
SOBD 115.4 6.2 117.1 5.7 0.0008
OrVD 129.1 6.8 126.9 6.2 0.0003
MaVD 142.4 6.5 140.5 6.0 0.002
Primiparas, n=202
BPD 105.1 4.7 105.5 4.6 0.20
OFD 134.3 7.0 134.2 5.4 0.46
OrOD 131.4 6.3 131.7 5.5 0.35
SOBD 115.4 6.4 118.1 6.0 0.0002
OrVD 130.2 6.3 127.8 5.9 0.0006
MaVD 143.3 6.3 141.2 5.5 0.003
Multiparas, n=117
BPD 105.2 3.9 105.1 4.8 0.40
OFD 133.5 5.3 133.5 5.4 0.49
OrOD 131.5 5.6 130.6 4.0 0.11
SOBD 115.1 5.7 115.6 4.9 0.24
OrVD 127.6 6.6 126.8 6.1 0.21
MaVD 140.7 6.1 139.9 6.0 0.20

Table 5.8: Modified moulding index (MMI ), immediately postpartum and three days
later as reported by Sorbe and Dahlgren [94].

Day 0 Day 3
mean std. mean std. p
The entire series, n=319
1.70 0.16 1.61 0.12 p<0.001

Primiparas, n=202
1.73 0.16 1.61 0.12 p<0.001

Multiparas, n=117
1.66 0.15 1.61 0.11 p=0.02
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• Contrary to Kriewall’s findings, the BPD does not significantly change
for either of the two groups in this study.

• The MMI is again not optimal, in the empirical sense, since the BPD
does not change and the OrVD , which does show significant changes, is
not used in the formulation of the MMI .

5.4.3 Landmark specification for validation

In the previous section, several diameters were used to assess the change of shape
of the foetal head during the moulding process. We will use these diameters
and the corresponding landmarks for validation of the results as presented in
Chapter 6. Appendix C covers the definition of each diameter and correspond-
ing landmark and shows their location on the foetal head and skull. Some
landmarks as shown in Figure C.1 of Appendix C, cannot be used for mea-
surements on the skull because they are located in the centre of a fontanelle or
suture. Since we aim to measure deformations of the cranial vault, landmarks
should be located on bone rather than fontanelles or sutures. This problem is
solved by defining a left and right landmark, symmetrically positioned around
the original landmark as is shown in Figure C.2 for the bregma.
Note that the mentum and mento-vertical diameter, MVD , cannot be measured
because the mandible has been left out in the skull model. The submento-
bregmatic diameter, SMBD , as reported by Kriewall [47], but not defined, is
omitted because the location of the sub-mentum is unclear14.

5.5 Summary

In this chapter, a model for the analysis of deformation of a foetal skull, sub-
jected to labour forces, was presented. The model is limited to the first stage of
labour. An idealised model for the pressures acting on the foetal skull, assuming
the shape of the lower pole of the skull to be spherical [10], is used. Material
properties of foetal cranial bone, fontanelles, sutures, skull base and maxilla
were specified, based on reported values from [14, 67, 68, 71, 72]. Finally, a set
of diameters and landmarks were defined for validation of experimental results
which will be compared with results from clinical experiments as reported in
[47, 94].

14The SMBD is just like the MVD of no importance in our model because the mandible is
missing.



Chapter 6

Analysis of deformation of the
foetal skull: The Experiments

The work presented in this chapter involves a series of experiments aimed at
a better understanding of the foetal head moulding phenomenon. Theoretical
concepts from FE analysis, as discussed in Chapter 4, will be adopted during the
course of this chapter. Different assumptions concerning the load distribution,
material properties and validation were discussed in Chapter 5 and will be
applied unless otherwise stated.
The first experiment is an extension of the work by McPherson and Kriewall
[72] and involves the parietal bones only.
The second experiment involves the entire skull including the parietal bones,
the frontal bones, the occipital bone, the temporal bones, the skull base, the
maxilla, the fontanelles and the sutures. The mandible is left out since it is
not a fixed part of the cranium and is unlikely to contribute to the moulding
process. Linear elastic and hyperelastic behaviour of the fontanelles and sutures
are evaluated as well as the influence of material properties and pressures to
the degree of moulding.
The third and final experiment presents three models of the deformation of the
foetal skull, subjected to pressures during the first stage of labour, which differ
in terms of speed of processing, stiffness and accuracy.

6.1 Experiment I

The first experiment is a parietal bone test similar to the one as performed by
McPherson and Kriewall [72]. It was mentioned in Section 4.3.1, that starting
the analysis with a simple model is preferred. This is why the first experi-
ment involves the parietal bones only. During the analysis we aim to fulfil the
following objectives:

135
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1. to compare linear geometric analysis with non-linear geometric analysis,

2. to assess the influence of the number of elements (h-refinement) and the
order of the elements (p-refinement) on the degree of deformation,

3. to compare the effect of constant thickness vs varying thickness of the
parietal bone on the degree of deformation,

4. to compare the variation between the left and right parietal bone in terms
of deformation,

5. to compare the results with those obtained by McPherson and Kriewall
[72].

6.1.1 McPherson’s parietal bone test

McPherson and Kriewall [72] reconstructed the shape of a foetal parietal bone
(lhs) by using orthogonal radiographs of a foetal skull and manual determina-
tion of landmarks using orthographic projection1. The bone on the rhs was
obtained by reflection. The model contains 64 nodes and 63 elements (see Fig-
ure 6.1). The elements are arranged in three concentric rings, each ring being
of different thickness, decreasing from the centre towards the boundary. These
values are based on the findings reported in [72] and we will use them through-
out the course of the experiments.
The elements were first-order triangles and quadrilaterals.
The material properties of the parietal bone were considered to be orthotropic
and set to E1 = 3.86 GPa, E2 = 0.965 GPa and ν12 = 0.28.
Boundary conditions are shown in Figure 6.1. The nodes on the lower edge
have only 1 dof, i.e. rotation about the y-axis. The nodes on the upper edge
have five dof with displacements in the x-direction inhibited.
The pressure distribution is linearly distributed over the head-to-cervix contact
area for dilatation 0.5, with a maximum value of the HCP , at the level of the
SOB plane, of 200 mmHg., and a minimum value at the cervical rim of 50
mmHg. Above the SOB plane, an amniotic pressure of 50 mmHg. is present.
These values show good agreement, according to the authors, with those re-
ported in [54].
Three relative diametral strains, υ1, υ2 and υ3, in % and used to assess the
deformation of the model, are calculated from the change of diameters dm1,
dm2 and dm3 respectively (Figure 6.1):

1A similar approach as the recovery of foetal skull model I, as discussed in Section 2.4, but
not involving active contour fitting and thin-plate spline interpolation.
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Table 6.1: Relative diametral strains (%) of three diameters of the parietal bone after
moulding (from McPherson and Kriewall [72]).

υ1 υ2 υ3

-1.33 +1.00 -1.04

θ

z

dm
θx,y,z, x

,

y

z

x

zxx,y,z, θ

dm

2

1

θ,
y

x

dm3

Figure 6.1: McPherson’s parietal bone model. The figure on the lhs shows the bound-
ary conditions: two nodes of the lower edge are restricted in all dof, except for rotation
about the y-axis; six nodes on the upper edge are only restricted in the x-direction.

υi =
dmi − dm0

i

dm0
i

× 100 (6.1)

for i = 1, . . . , 3, with dm0
i , the original diameter.

The results of their analysis are shown in Table 6.1.

6.1.2 Parietal bone test I

Geometry

The left parietal bone of foetal skull model II is used. Six models of 277, 532,
1,058, 2,604, 5,261 and 10,537 elements, respectively, are used to assess the
effect of h-refinement and were visualised in Figure 3.9. Each of the six mod-
els is modelled with first-order, constant strain triangular shell elements, CSS
(ABAQUS - S3R), and second-order, linear strain triangular shell elements,
LSTS (ABAQUS - STRI65), respectively, to assess the effect of p-refinement.
The thickness of the parietal bone is set to an average value of 0.75 mm., based
on results as reported in [72]. The axis directions are shown in Figure 6.2.
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Figure 6.2: Left parietal bone: diameters measured for evaluation of deformation and
boundary conditions. The nodes on the lower edge are restricted in all dof, except
for rotation about the y-axis; the nodes on the upper edge are only restricted in the
x-direction.

Material properties

As specified in Section 5.3.1: E1 = 3.86 GPa, E2 = 0.965 GPa, G12 = G13 =
G23 = 1.582 GPa, ν12 = 0.22 and ν21 = 0.055.

Boundary conditions

Figure 6.2 shows the boundary conditions.

Loading

We adopted the linear load distribution from [72], which is shown in Figure 6.3.
The HCP is 200 mmHg. at the level of the SOB plane and linearly decreases
to 50 mmHg. at the level of the cervical rim for dilatation D = 0.5. The IUP
(above the SOB plane) is 50 mmHg.

Analysis

Both linear geometric, LG , and non-linear geometric, NLG , static analyses
are performed. Strains υ1, υ2, υ4 and υ5 are measured. The corresponding
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50 mmHg.

200 mmHg.

50 mmHg.

Figure 6.3: Linear pressure distribution on the left parietal bone at dilatation D = 0.5.
The top figure shows the left parietal bone projected in the x-z plane. The pressure
is visualised with normals at each node of the underlying mesh. The location where
the pressure increases from 50 mmHg. to 200 mmHg. is determined by the intersection
of the bone with the SOB plane (see Figure 6.9 for the location of the SOB plane on
the foetal skull). The bottom figure shows the left parietal bone, projected in the y-z
plane. The pressure distribution is visualised using a colour code.
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Table 6.2: Parietal bone test I : average diameters and standard deviation of the
undeformed models (mm.).

dm1 dm2 dm4 dm5

73.5 ±0.5 59.6 ±0.3 85.7 ±0.7 67.6 ±0.6

diameters are shown in Figure 6.2. Equation 6.1 explains the relation between
strain υi and diameter dmi.

Results

Diameters, before and after deformation, were measured by orthogonally pro-
jecting the parietal bone in the y-z plane. Strains can be calculated then by the
application of Equation 6.1. The absolute error on the distance measurements
is 0.05 mm.
Table 6.2 shows the diameters of the undeformed models.
Table 6.3 shows the strains for linear and non-linear analyses, respectively, for
both constant-strain shells, CSS , and linear strain thin shells, LSTS .
Figure 6.5 shows the original parietal bone (red colour) and deformed parietal
bone (blue colour) for all models, at a deformation magnification of 5.

Discussion

Reliability of results and errors: The results from Table 6.3 are subject to
a small relative error based on the absolute measurement error and the
accuracy by which landmarks can be located for measurement. The latter
depends on the geometry of the boundary which is less detailed for coarser
models. The error can be represented by the standard deviation of the
original diameters as reported in Table 6.2.

Linear vs Non-linear geometry: The strains υ are, in all the cases, signif-
icantly higher for the analyses assuming NLG . This implies that the
assumption of NLG is justified and should be considered in further ex-
periments despite the requirement of significantly longer processing times
as is shown in Table 6.4 for model 1. Processes were run on a SGI-Indigo-
2 with MIPS R10000 processor. The CPU time is more than 13 times
longer for CSS ’s and more than 16 times for LSTS ’s. The relative im-
provement for υ1 is however more than 100% for both CSS ’s and LSTS ’s
(Table 6.3).

p-refinement or first-order elements, CSS , vs second-order elements, LSTS .
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Table 6.3: Parietal bone test I : relative diametral strains (%) for six models of
decreasing geometric complexity (the relative error is specified as a percentage of the
strain!).

υ1 (relative error = 1%)
model n LG-CSS LG-LSTS NLG-CSS NLG-LSTS

1 10,537 -2.17 -2.32 -4.83 -5.36
2 5,261 -1.22 -1.46 -1.86 -2.81
3 2,604 -0.93 -1.35 -1.52 -2.18
4 1,058 -1.04 -1.47 -1.58 -2.83
5 532 -1.48 -1.86 -2.91 -4.37
6 277 -1.21 -1.80 -1.93 -3.84

υ2 (relative error = 1%)
model n LG-CSS LG-LSTS NLG-CSS NLG-LSTS

1 10,537 +1.56 +1.74 +3.16 +3.64
2 5,261 +0.83 +1.04 +1.18 +1.89
3 2,604 +0.64 +0.81 +0.81 +1.27
4 1,058 +0.68 +0.81 +0.83 +1.56
5 532 +0.87 +1.20 +1.32 +2.22
6 277 +0.72 +1.08 +0.89 +1.77

υ4 (relative error = 1%)
model n LG-CSS LG-LSTS NLG-CSS NLG-LSTS

1 10,537 +1.89 +1.99 +2.32 +2.52
2 5,261 +1.09 +1.33 +1.34 +1.72
3 2,604 +1.24 +1.56 +1.43 +1.79
4 1,058 +1.30 +1.64 +1.50 +1.98
5 532 +1.34 +1.94 +1.60 +2.36
6 277 +1.22 +1.80 +1.36 +2.08

υ5 (relative error = 1%)
model n LG-CSS LG-LSTS NLG-CSS NLG-LSTS

1 10,537 +2.35 +2.58 +4.74 +5.21
2 5,261 +1.20 +1.60 +2.04 +3.12
3 2,604 +0.86 +1.16 +1.16 +2.28
4 1,058 +0.71 +1.14 +1.39 +3.57
5 532 +1.42 +1.97 +3.01 +4.52
6 277 +0.99 +1.68 +1.62 +3.68
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Table 6.4: Analysis times (sec.) for model 1 (10,537 elements).

Time (sec.) LG-CSS NLG-CSS LG-LSTS NLG-LSTS
User time 42.220 580.84 111.05 1895.8
System time 10.800 129.60 24.790 380.23
Total CPU time 53.020 710.44 135.84 2276.0
Wallclock time 62.000 1070.0 203.00 4146.0

The LSTS ’s show better performance than the CSS ’s for all cases. The
effect of p-refinement is however much smaller than the effect of LG vs
NLG . The relative difference decreases for more complex models as is
shown in Figure 6.4 for all strains, obtained from a non-linear analysis.
The time spent to analyse second-order elements is higher than for first-
order elements which is illustrated in Table 6.4, columns 1 and 3 for linear
analysis, and columns 2 and 4 for non-linear analysis.

h-refinement or in this case h-coarsening displays a peculiar behaviour as
compared to the mainstream belief that models of higher mesh refine-
ment are less stiff than coarser models. It is clearly shown in Figures
6.4 and 6.5 that some coarser models show higher degrees of deformation
than corresponding finer models. The answer may lie in the following
explanations:

• Geometry: When the model becomes too coarse, it tends to behave
as a bent plate rather than a shell. This means the inherent stiffness
due to the smooth curvature of the shell is lost. In Section 4.3.5, we
observed a similar phenomenon with a square plate subjected to a
uniform transverse load. Figure 4.5 showed how a coarser mesh can
display less stiff behaviour than a finer mesh.

• Boundary conditions: The boundary conditions become less ‘strict’
for coarser models since they contain less boundary nodes. This may
result into larger rotations in between nodes.

6.1.3 Parietal bone test II

Most of the conditions and parameter settings are the same as for test I. The
sole difference is the involvement of the right parietal bone and the varying
thickness of the bones.
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(a) strain υ1 (b) strain υ2
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Figure 6.4: Diametral strains as a result of a non-linear analysis. The solid curve
represents CSS ’s; the dashed curve represents LSTS ’s.
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Figure 6.5: Original mesh (red colour) and deformed mesh (blue colour) for models
1-6, subjected to a linear HCP at cervical dilatation D = 0.5.
The deformation magnification = 5.

1

2

3

4

5

6

LG-CSS LG-LSTS NLG-CSS NLG-LSTS



Analysis of deformation of the foetal skull: The Experiments 145

(a) Posterior view of left and right parietal bone (b) Right parietal bone
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Figure 6.6: Left and right parietal bones: diameters measured for evaluation of defor-
mation and boundary conditions. The nodes on the lower edge are restricted in all dof,
except for rotation about the y-axis; the nodes on the upper edge are only restricted in
the x-direction. There are three concentric areas of distinct thickness, decreasing from
the centre area towards the outer area.

Geometry

A model of the left parietal bone of foetal skull model II containing 10,537 ele-
ments and a model of the right parietal bone of foetal skull model II containing
10,530 elements, were used. Both first-order shells, CSS (ABAQUS S3R), and
second-order shells, LSTS (ABAQUS STRI65), are tested. The thickness of
the parietal bones varies over three regions [72]:

• Inner ring: 0.89 mm.

• Middle ring: 0.74 mm.

• Outer ring: 0.61 mm.

The axis directions are as shown in Figure 6.6.

Material properties

The same settings as in parietal bone test I : E1 = 3.86 GPa, E2 = 0.965 GPa,
G12 = G13 = G23 = 1.582 GPa, ν12 = 0.22 and ν21 = 0.055.
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Table 6.5: Parietal bone test II : diameters (mm.) of the undeformed models for left
and right parietal bones.

Model n dm1 dm2 dm3 dm4 dm5

Left 10,537 73.7 59.1 90.1 85.7 67.5
Right 10,530 74.6 60.0 90.1 82.4 70.2

Boundary conditions

Left parietal bone: the same as in parietal bone test I (See Figure 6.2).
Right parietal bone: nodes corresponding with those of the left parietal bone
when mirrored about the y-z plane (See Figure 6.6).

Loading

As before, a linear HCP distribution of 200 mmHg. at the level of the SOB plane
decreasing to 50 mmHg. at the level of the cervical rim for dilatation D = 0.5.
Amniotic pressure of 50 mmHg. above the SOB plane. This distribution covers
both the left and right parietal bones.

Analysis

Both linear and non-linear static analyses are performed. All strain measures
corresponding to the five diameters as shown in Figure 6.6 are measured. Strain
υ3 corresponds to the biparietal diameter, BPD , and is measured across the left
and right parietal bone.

Results

Table 6.5 shows the diameters of the undeformed models.
Table 6.6 shows the results for a linear geometric analysis, LG , and a non-linear
geometric analysis, NLG , respectively.
Figures 6.7 and 6.8 show the original meshes (red colour) and deformed meshes
(blue colour) of the left and right parietal bones, respectively, for different anal-
yses. The deformation magnification is 5.

Discussion

Left vs Right parietal bone: The results of the left and right parietal bones
are in complete agreement.

Linear vs Non-linear geometry: As in parietal bone test I , the analysis
assuming NLG shows higher degrees of deformation.
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(a) LG-CSS (b) LG-LSTS

(c) NLG-CSS (d) NLG-LSTS

Figure 6.7: Original mesh (red colour) and deformed mesh (blue colour) for the left
parietal bone. The deformation magnification = 5.
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(a) LG-CSS (b) LG-LSTS

(c) NLG-CSS (d) NLG-LSTS

Figure 6.8: Original mesh (red colour) and deformed mesh (blue colour) for the right
parietal bone (mirrored about the y-z plane). The deformation magnification = 5.
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Table 6.6: Parietal bone test II : relative diametral strains (%) for left and right
parietal bones, under the assumption of linear and non-linear geometry, respectively.
The relative error is approx. 1% of the strain value.

Linear geometry, LG
Model/Elmnt υ1 υ2 υ3 υ4 υ5

Left-CSS -3.07 +2.23 -0.97 +2.70 +3.65
Left-LSTS -3.46 +2.55 -1.06 +2.94 +4.16
Right-CSS -2.27 +1.34 +1.86 +3.08
Right-LSTS -2.61 +1.41 +2.16 +3.52

Non-linear geometry, NLG
Model/Elmnt υ1 υ2 υ3 υ4 υ5

Left-CSS -7.06 +4.73 -2.55 +3.20 +6.37
Left-LSTS -7.39 +5.39 -2.75 +3.44 +6.77
Right-CSS -6.70 +5.81 +2.85 +7.56
Right-LSTS -6.70 +5.85 +2.90 +7.56

First-order vs Second-order shells or CSS vs LSTS : The difference is very
small and nearly zero for non-linear analysis of the right parietal bone.
However, the CPU time (SGI Indigo - MIPS R10000) for a NLG-CSS
analysis of the right parietal bone was 1122 sec. as opposed to 5104 sec.
for a NLG-LSTS analysis!

Varying thickness vs Constant thickness: Comparing the results of the
left parietal bone with varying thickness (Table 6.6) with model 1 of the
left parietal bone of constant thickness from the first parietal bone test
(Table 6.3), we spot a significant increase for the diametral strains of the
bones with varying thickness!

The biparietal diameter - dm3: a small decrease of the BPD occurs which
corresponds with the result from McPherson and Kriewall [72].

McPherson’s model: The strains υ1-υ3 show the same directional changes for
both models, however the strains of the author’s model are considerably
larger than those of McPherson’s model (see Table 6.1). This difference
is mainly because of the more accurate geometry of our model in terms
of number of elements (10,537 vs 63) and the assumption of non-linear
geometry. Nonetheless, McPherson’s model is less stiff than one would
expect, considering the low number of elements and the assumption of
linear geometry. However, in Figure 6.1 we can see that the parietal
tuberosity is approximated by a sharp corner point which will cause a
significant reduction of stiffness in the y and z-directions. This is why the
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factor, by which the BPD of McPherson’s model differs from the author’s,
is smaller than the factor for υ1.

6.1.4 Summary

The parietal bone test was aimed at the fulfilment of a set of objectives as
specified in the beginning of Section 6.1.
The first objective involved the comparison of linear geometric with non-linear
geometric analysis. The results showed better elastic behaviour for the latter.
Less stiff models in FE analysis are considered to be superior to stiffer models if
the difference between them is based on the number of elements or the geometry.
Objective number two involved the refinement of the mesh in terms of the
number of elements (h-refinement) and the order of the elements (p-refinement).
H-refinement was inversely applied (h-coarsening) to assess the feasibility of
using less complex models to reduce analysis times. We found that the less
complex models were more stiff than the original model at 10,537 elements.
An exception occurred for the least complex models with 532 and 277 elements
respectively, which displayed moderate stiffness as compared to more complex
models. Care should be taken with the interpretation of this outcome because
the reason is likely to be the poor representation of the original geometry for
these models, making them behave like a bent plate rather than a shell. The
effect of p-refinement on a sufficiently complex model was minor which was
illustrated in parietal bone test II , where the improvement using second-order
elements was negligible, despite the significantly higher processing time.
Bone of varying thickness, decreasing from the centre towards the boundary,
showed a significantly higher relative strain over the entire region as compared
to bone of average constant thickness.
No discrepancies were found between the behaviour of the left and the right
parietal bone.
The actual values of the diametral strains found in this experiment are difficult
to validate so it will be left until Section 6.4 to assess the credibility of the
parietal bone model as a plausible model of foetal head moulding. Despite
this, the parietal bone experiment has pointed out some important facts, which
will be taken into consideration for the next experiment which involves the
evaluation of the complete skull model.

6.2 Experiment II

Experiment II covers the analysis of deformation of the foetal skull when sub-
jected to the pressure of the cervix during the first stage of labour. The next
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sections describe the default parameter settings which will not normally change
unless otherwise stated.

6.2.1 Pressure distributions

From Chapter 5, pressure distribution 2, as specified in equation 5.18, is con-
sidered to be a realistic model of the pressure as exerted by the cervix on the
foetal head. Figure 6.9 shows the location of the SOB plane of which the in-
tersection with the head corresponds with the location of the cervix in contact
with the largest diameter of the head, i.e. the SOBD , for an occiput anterior
vertex presentation. Figures 6.10a-d illustrate the non-linear pressure distribu-
tion for dilatations D = 0.9, 0.7, 0.5 and 0.3, respectively. The maximum value
of cervical dilatation is conventionally taken to be 10 cm. as reported in [30]
and [39]. At this degree of dilatation, the cervix loses contact with the head and
the second stage starts. Therefore the maximum dilatation for the experiment
is set to D = 0.9. The active phase of labour starts at 3 cm. of dilatation [17]
which corresponds to a minimum value of D = D0 = 0.3. The part of the
skull which is in contact with the amniotic fluid, i.e. the part above the SOB
plane, is subjected to an average amniotic pressure of 50 mmHg. The largest
diameter of the skull is set to 90 mm. which corresponds to the average BPD
as reported in [37] when ignoring the thickness of the skin. The fontanelles are
not subjected to any pressures, an assumption which is justified on the basis
of the geometry of the foetal skull where fontanelles and sutures are embedded
into the convex hull of the cranial vault.

6.2.2 Geometry of the undeformed mesh

The landmarks and diameters for validation of the model are defined in Ap-
pendix C and displayed in Figures C.1 and C.2. Table 6.7 shows the location
of the landmarks on the undeformed mesh. Table 6.8 shows the original diam-
eters. In this experiment, landmarks are represented by a distinct node of the
undeformed skull. Deformation is then evaluated on the basis of the displace-
ments of this node from which an absolute diametral strain can be calculated2.
Figure 6.9 shows the direction of the axes.

2The term ‘absolute’ is used here to indicate a strain with a dimension, e.g. mm., as opposed
to a ‘relative’ strain which is dimensionless. It does not however imply ‘absolute value’ which
would mean that the strain has no sign!
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zx

y

Figure 6.9: Location of the sub-occipito bregmatic (SOB) plane, corresponding to oc-
ciput anterior vertex presentation and the axis directions for the analysis of deformation
of foetal skull model II (see also Figure D.4a).
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(a) D = 0.9

(b) D = 0.7



Analysis of deformation of the foetal skull: The Experiments 154

(c) D = 0.5

(d) D = 0.3

Figure 6.10: Pressure distribution as exerted by the cervix, for different degrees of
dilatation.
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Table 6.7: Coordinates of landmarks (mm.), used for validation (see Appendix C, for
definitions).

Landmark x y z

2 0.43 -25.81 62.53
3 0.91 -4.59 56.76
4L 3.46 1.80 56.28
4R -2.04 1.59 56.32
5L 1.77 25.87 46.15
5R -1.28 26.29 46.58
6L 21.19 40.84 -4.22
6R -22.27 40.84 -3.57
7L 6.26 9.87 -61.59
7R -3.11 9.30 -61.27
8 1.89 -5.21 -63.17
9 1.36 -31.69 -51.28
10L 45.54 6.78 -26.75
10R -44.10 8.46 -22.73
11L 24.61 26.30 42.51
11R -25.93 26.05 36.51
12L 40.67 -12.45 -1.48
12R -39.88 -9.52 -1.70

Table 6.8: Diameters (mm.) of the undeformed foetal skull. ‘Single’ implies the
measurement of a diameter between two single landmarks. ‘Left’ and ‘Right’ implies
the existence of left and right landmarks for the same location, thus two diameters are
given.

Diameter Single Left Right
MaVD 129.28 128.73
OrOD 119.93
OrVD 119.35 118.91
OFD 119.66 119.74
SOFD 113.16 113.78
SOBD 88.71 89.97
BPD 89.75
BFD 50.90
BTD 80.60
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6.2.3 Basic experiment

Geometry

The foetal skull model contains 63,413 elements. The size of the triangles
is 0.94 mm. on the average. The mandible is left out since it is not a fixed
part of the cranium and is unlikely to contribute to the moulding process.
The zygomatic bone is approximated by thick-shell elements, since the data
acquisition process was unable to scan the inner points of this bone. The
cranial vault bones, i.e. parietal, frontal and occipital bones are divided into
three concentric rings, emanating from the centre of the bone and of variable
thicknesses. These are set as reported in [72]:

• Inner ring: 0.89 mm.

• Middle ring: 0.74 mm.

• Outer ring: 0.61 mm.

The locations of the rings were obtained by region growing from the centre of
the bone (tuberosities) at equal distances towards the border. The resulting
regions were then (manually) adapted according to the fibre structure of the
skull model and by comparison to atlas images from [26].
The thickness of the squamosal bones is set to 0.89 mm.
The thickness of the maxilla and skull base is set to 2 mm. - an estimate based
on the thickness of the palate of the foetal skull model.
The thickness of the fontanelles/sutures is set to 0.57 mm., an average from
values as reported in [14].
Figure 6.11 shows the foetal skull with the regions of different material and
thickness properties in different colours.

Material properties

• Foetal cranial bone, in-plane orthotropic:
E1 = 3.86GPa, E2 = 0.965GPa, G12 = G13 = G23 = 1.582GPa,
ν12 = 0.22, ν21 = 0.055, from [72].

• Maxilla and skull base, isotropy assumed:
E = 4.46GPa, ν = 0.21, from [67].

• Fontanelles and sutures: isotropy assumed,
E = 31.5MPa, ν = 0.45, from [67].
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Figure 6.11: Coloured foetal skull model: red colour is bone; blue colour are su-
tures/fontanelles. Darker red colours correspond to regions of higher thickness values
(visualisation in Geomview 1.6.1 [84]).
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Elements

First-order elements, CSS (ABAQUS - S3R), are used for both bone, fontanelle
and suture structures. The S3R shell element in ABAQUS provides accurate
results in most loading situations and is valid for thin and thick shell problems.
However, due to its constant bending and membrane strain approximations,
high mesh refinement is required to capture pure bending deformations or solu-
tions to problems of high strain gradients [40]. The results from experiment I ,
showed that first-order elements at the highest level of refinement are a justified
choice in terms of accuracy and processing time.

Boundary conditions

Three nodes on the base of the skull are fully built-in to avoid rigid body
translation and rotation. Additionally, three fully built-in nodes on the facial
part of the skull are specified, to avoid rigid body rotation about the x-axis.

Loading

As defined in Section 6.2.1

Analysis

Non-linear geometry, NLG , static analysis.

Results

Table 6.9 shows the strains (mm.) of the principal diameters3. The first two
rows show the values as reported by Kriewall et al. [47]. The third and fourth
row show values as reported by Sorbe and Dahlgren [94]. The next rows give
the original diameter of the author’s results followed by the absolute diametral
strains for dilatations, D = 0.9, 0.7, 0.5 and 0.3, respectively.
Table 6.10 shows the maximum positive and negative deformations for each
dilatation case.

Discussion

From Table 6.9, it can be seen that the resulting strains are direction-wise (i.e.
elongation vs compression) in complete agreement with the measurements from

3(0) indicates the original size of the diameter in mm. Positive strains imply increase of

the diameter after deformation or elongation; negative strains imply decrease of the diameter

or compression.
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(a) Displacements in the y-direction, uy (mm.).

x

z
y

(mm.)uy

(b) Rotations about the z-axis, urz (radians).

z
y

x

(rad)urz

Figure 6.12: Contour plots for basic experiment (D = 0.9).
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Table 6.10: Maximum deformations (mm.) for each dilatation case for basic experi-
ment.

dof D = 0.9 D = 0.7 D = 0.5 D = 0.3
- + - + - + - +

ux -0.9069 0.4956 -0.3052 0.3715 -0.2357 0.3205 -0.2266 0.2948
uy -1.1720 0.9144 -0.8817 0.2913 -0.8313 0.2165 -0.8453 0.2003
uz -0.6127 1.0260 -0.2646 0.5161 -0.1679 0.4249 -0.1620 0.4092
urx -0.2192 0.1710 -0.1094 0.0866 -0.0919 0.0724 -0.0889 0.0705
ury -0.1263 0.2308 -0.0478 0.1033 -0.0385 0.0807 -0.0368 0.0766
urz -0.2682 0.4673 -0.1728 0.1754 -0.1438 0.1410 -0.1385 0.1360

Kriewall et al. [47] and Sorbe and Dahlgren [94] (except for the BPD which will
be discussed shortly). However, the magnitude of the strains are significantly
smaller. Only the decrease of the SOBD for D = 0.9 is of comparable magni-
tude to the value reported by Sorbe and Dahlgren. In general this means that
the model behaves realistically in terms of the shape after deformation but not
in terms of the degree of deformation.
Table 6.10 shows the maximum positive and negative deformations for all dilata-
tions. The values of uy, i.e. the displacement in the y-direction, and the values
of urz, i.e. the rotations about the z-axis, are of particular interest because of
their magnitude. Figure 6.12 shows that these large deformations occur within
the anterior fontanelle. Elements on the lhs of the centre-line of the fontanelle,
bend upwards whilst elements on the rhs bend downwards. This corresponds
with a positive rotation about the z-axis of those elements laying in between the
up- and downwards moving elements. It will be shown in further experiments
that by decreasing the stiffness of the fontanelles and sutures, these rotations
may eventually lead to convergence problems.
Except for uy and urz, the most significant changes occur for D = 0.9. This
is not at all surprising if we compare the pressure distributions as shown in
Figure 6.10 (and also Figure 5.9). The maximum pressure is higher than 300
mmHg. for D = 0.9 and only about 150 mmHg. for D = 0.7, 0.5 and 0.3.
Results from Kriewall et al. (Table 6.9) show an increase of the BPD of 2 mm!
Sorbe and Dahlgren did not find any changes for the BPD , whilst the current
experiment shows a slight decrease of the BPD . The decrease of the BPD is
in agreement with the results from parietal bone test II and reported in [72].
From a mechanical point of view, one would suspect the BPD to decrease when
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subjected to a pressure distribution as exerted by the uterine cervix. The com-
parison with real cases has to be treated with care though: other factors might
have influenced the results as reported by Kriewall et al. [47].

6.2.4 Elaboration I

The results of the basic experiment showed the effect of the cervical pressure
on the foetal head under relatively normal conditions, i.e. average values of
pressures, material constants, thickness of the cranial bones, fontanelles and
sutures. The next set of experiments will focus on the effect of increasing or
decreasing each of these values to cause a higher degree of deformation. Values
are set according to standard deviations and/or extrema as reported in [71] for
the bones and in [14] for the fontanelles/sutures.
Only dilatation D = 0.9 is considered since this configuration gave the highest
degree of deformation in the previous tests.
Table 6.11 shows the parameter settings for five of the six different analyses4:

Analysis 0 is the analysis with the original parameter settings as described in
the basic experiment for dilatation D = 0.9.

Analysis 1 changes the material properties of the bone which are set to a
minimum value of E1 = 2.830 GPa and E2 = 0.570 GPa.

Analysis 2 changes the thickness of the fontanelle/suture to a lower bound
value of 0.36 mm.

Analysis 3 changes the thickness of the cranial vault bones to lower bounds
of 0.74 mm., 0.59 mm. and 0.46 mm., for the inner, middle and outer
concentric areas respectively. The thickness of the squamosal bones is set
to 0.74 mm.

Analysis 4 changes the IUP to an upper value of 75 mmHg. [5]. Application
of Equation 5.18 will subsequently adapt the HCP (Pr) distribution to
the value of the IUP (Pa).

Analysis 5 increases the thickness of the squamosal bones to 2 mm., as if they
were part of the skull base.

4Analysis 5 does not involve any change of the basic parameters as reported in Table 6.11.
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Table 6.11: Basic parameters for five different analyses. tb = thickness of bone; tf =
thickness of fontanelles and sutures.

Analysis E1 E2 G12 G13 tb tf Pmax

(MPa) (MPa) (MPa) (MPa) (mm.) (mm.) (MPa)

0 3.860E3 0.965E3 1.582E3 1.582E3 0.89-0.61 0.57 -6.66E-3

1 2.830E3 0.570E3 1.160E3 1.160E3

2 3.860E3 0.965E3 1.582E3 1.582E3 0.36

3 0.74-0.46 0.57

4 0.89-0.61 0.57 -9.99E-3

Results

Table 6.12 reports the values of the strains for each analysis. The following anal-
yses did not fully converge to 100% of the load and were therefore extrapolated
using polynomial regression:

analysis 2 : 88.8% convergence
analysis 3 : 93.0% convergence

Excessive rotations of the fontanelle/suture elements are the main cause of non-
convergence. This potential problem was already illustrated in Figure 6.12 in
the previous section. The problem will be discussed in depth in Section 6.3.1.

Discussion

Changing the thickness of the fontanelles/sutures (analysis 2) seems to have
the most significant effect on the stiffness of the entire skull. The finding is pe-
culiar since the fontanelle/suture structures behave very much like membranes
meaning that they are nearly incompressible and on the other hand very elastic
when subjected to tensile forces. Despite this fact, their influence on the gen-
eral stiffness of the structure appears to be eminent. This effect will be further
investigated assuming hyperelastic behaviour of the fontanelles/sutures in the
next section.
Changing the thickness of the cranial vault bones (analysis 3) has a slightly
smaller effect but nonetheless significant. This doesn’t apply however for the
squamosal bones since the results of analysis 5 (squamosal bone thickness = 2 mm.)
hardly differ from those of analysis 0 (squamosal bone thickness = 0.89 mm.).
From this result, one may conclude that the contribution of the squamosal
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bones to the moulding of the foetal skull is negligible.
The effect caused by decreasing the material constants (analysis 1) is relatively
small as compared to the effect of decreasing the thickness of bones, sutures
and fontanelles. An explanation could be the inherent stiffness of a shell-shaped
object.
Increase of the IUP and correspondingly the HCP to an excess of 50% (analy-
sis 4) has a major non-linear effect on the deformations.
The change of the SOBD is larger than the values as reported by Sorbe and
Dahlgren [94] for analyses 2,3 and 4. Note however that extremum values were
taken and that the proportion of the load absorbed by the skin has not been
accounted for.
The left side of the skull appears to be slightly less stiff than the right side.
This effect is mainly due to the geometry of the parietal bones.
The BPD decreases more than 0.4 mm. when the fontanelles/sutures are de-
creased in thickness (analysis 2). This effect emphasises the major influence of
these structures to the general stiffness of the skull.
A similar study like elaboration I is described in [49]. The absolute diametral
strains as reported in this study were significantly smaller because the assump-
tion of constant thickness (0.75 mm.) of the cranial vault bones5. This finding
emphasises the importance of the varying thickness of the cranial bones to the
stiffness of the skull.

The aim of the experiment was to assess the effect of lower or upper bound
parameter values which cause a higher degree of deformation. That the latter
was achieved is not surprising, however, the model is still too stiff as compared
to clinical experimental results. This shows that the overstiffness of the model
cannot be simply explained by the variation in the model parameters.

6.2.5 Elaboration II

In the previous section, the importance of the fontanelle/suture structures to
the stiffness of the overall structure was pointed out.
Bylski et al. [14] investigated the behaviour of foetal dura mater under large
deformation biaxial tension. They found experimental values for the stiffness
coefficients in two directions assuming the Mooney-Rivlin (MR) hyperelastic
model: C1 = 1.18 MPa and C2 = 0.295 MPa.
In the next experiment all the parameters are set to the same values as for
the basic experiment, except for the material properties of fontanelle/suture

5Note that the loading distribution in this study was different as well: a constant load of

250 mmHg. over the entire area of head-to-cervix contact, for dilatation, D = 0.9, was applied.
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structures which are assumed to behave as a hyperelastic medium following the
MR model, with values C1 and C2 as mentioned above.
The experiment is run for dilatations D = 0.9, 0.7, 0.5 and 0.3, respectively.

Results

Table 6.13 shows the resulting absolute diametral strains for D = 0.9, 0.7, 0.5
and 0.3, for hyperelastic fontanelles/sutures.
The following analyses did not reach full convergence and deformations were
thus extrapolated using polynomial regression:

D = 0.9 : 63.7% of the full load
D = 0.7 : 75.0% of the full load

Table 6.14 shows the maximum positive and maximum negative deformations
for each analysis.

Discussion

Assuming hyperelastic behaviour of the fontanelles/sutures appears to have
a significant effect on the entire stiffness of the structure which is shown by
comparing the results in Table 6.13 with those in Table 6.9. The cause of this
effect might in this case well be due to the more realistic values of the material
constants: the values on foetal dura mater as reported by Bylski et al. [14] are
more than an order of magnitude smaller than the elastic modulus for adult
dura mater as reported by McElhaney [67]!
The following effects on the diameters occur when comparing the current results
with those of elaboration I .

MaVD The absolute diametral strains have increased considerably. The degree
of increase is more eminent for the rhs measurements (mainly due to the
displacements of landmark 7R on the right parietal bone). Note that the
values at D = 0.9 are much closer to the value as reported by Sorbe and
Dahlgren [94].

OrOD and OFD These two diameters are very near each other (See Figure
C.2) which is reflected in similar displacement patterns across different
dilatations for both the basic experiment and elaboration II . Peculiar is
the trend for dilatations 0.7 and 0.5 from elongation in the basic exper-
iment to compression in elaboration II . This is possibly related to the
decrease of stiffness of the posterior fontanelle which causes lifting of the
parietal bones and the occipital bone. This prohibits the bulging of the
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Table 6.14: Maximum deformations (mm.) for each dilatation case - elaboration II
(hyperelastic fontanelles/sutures).

dof D = 0.9 D = 0.7 D = 0.5 D = 0.3
- + - + - + - +

ux -7.488 +5.876 -1.211 +0.8934 -0.8912 +0.8302 -0.7607 +0.7189
uy -10.51 +2.342 -2.556 +0.7064 -2.189 +0.5251 -2.102 +0.4694
uz -4.187 +2.814 -0.7646 +1.127 -0.6874 +0.9866 -0.5381 +0.9571
urx -1.062 +3.072 -0.2761 +0.4649 -0.2826 +0.3463 -0.2791 +0.2962
ury -1.748 +1.747 -0.2722 +0.2855 -0.3048 +0.2518 -0.2041 +0.2440
urz -0.6255 +3.608 -0.4600 +0.8977 -0.4273 +0.6924 -0.4436 +0.5708

parietal bones in the negative z-direction, a phenomenon which would
occur for a stiffer posterior fontanelle. This effect would indeed be more
eminent for pressure distributions which cover most of the parietal bones
(i.e. for D = 0.3 - 0.7).

OrVD The order of magnitude of the elongation for D = 0.9 is much closer to
the value, reported by Sorbe and Dahlgren. The same effect on the rhs
measurements occurs as observed for the MaVD .

SOFD The difference between the two experiments is in general less than a
factor 2. The diameter hardly changes for either experiment. The values
as reported by Kriewall et al. [47] shows a compressive strain of -2 mm.6

SOBD The compressive strains are larger for D = 0.9 than the value reported
by Sorbe and Dahlgren and the difference as compared to the basic ex-
periment is large (almost a factor 10 for the rhs measurement). Also for
the lower degrees of dilatation the SOBD has changed considerably.

BPD At dilatation 0.9, the biparietal diameter shows a decrease of more than
1 mm. As before, this is in contradiction with the increase of 2 mm. as
reported by Kriewall et al. It is however in agreement with the results
from parietal bone test II and those reported in Table 6.1 [72]. Since we
only assess the skull moulding as caused by the head-to-cervix pressure
(HCP), other effects during the second stage of labour may be involved
which cause the BPD to increase. On the other hand, Sorbe and Dahlgren
did not find any significant changes in the BPD .

6Note that the accuracy of Kriewall’s reported values is only 1 mm.
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BFD and BTD Despite the increase of compressive strains under hyperelastic
conditions, the change of the BFD is minimal. This is not too surprising
since frontal bones are almost entirely subjected to the amniotic pressure
(IUP) only. A peculiar behaviour is shown by the BTD at D = 0.9 which
changes from a minor compressive strain in the basic experiment to a
reasonable tensile strain in elaboration II . This effect may be explained
as a countereffect to the compression of the BPD , since landmarks 12L
and 12R, which determine the BTD , are not subjected to the HCP .

The minimum and maximum values are shown in Table 6.14. Figure 6.13 shows
again the displacements in the y-direction and rotations about the z-axis for
dilatation D = 0.97. The same effect as mentioned in the basic experiment
occurs but to a much higher degree. From Table 6.14, the extrapolated value
of +3.608 radians implies the element would have warped entirely around it-
self. This value was +0.873 radians, at the time convergence halted, which
corresponds to a deflection of 50◦! In the current experiment, displacements
of landmarks were extrapolated to 100% of the load. In Section 6.3.1 we will
discuss the validity of this approach and possible alternatives.

6.3 Experiment III

The final set of experiments presents three models which are all capable of
providing a solution of the deformations for full application of the load. One
of the models, involving polynomial extrapolation of the deformations, was
already discussed in the previous section. In the next section we will point out
the advantages and shortcomings of this model and subsequently suggest two
other models which vary in terms of speed, accuracy and stiffness.

6.3.1 The convergence problem

Decreasing the stiffness of the fontanelle/suture structures by either decreasing
their thickness (elaboration I of experiment II ) or assuming hyperelastic be-
haviour (elaboration II of experiment II ) has shown to display more realistic
behaviour of the deformation of the entire skull. However, higher degrees of
deformation have an adverse effect on the convergence of the solution due to
excessive rotations of the fontanelle/suture structures or even buckling in the
extreme case (corresponding to negative eigenvalues in the tangent stiffness ma-
trix). In the previous experiments we used extrapolation of the deformations
corresponding to 100% of the load. It is obvious that care has to be taken with

7The values are not extrapolated and correspond to 63.7% of the loading.
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(a) Displacements in the y-direction, uy (mm.).
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Figure 6.13: Contour plots for elaboration II (D = 0.9).
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this approach. Figure 6.14 shows a trajectory of a nodal dof with extrapola-
tion using second-, third- , fourth- and fifth- order polynomials respectively.
The extrapolated values differ significantly, e.g. more than a factor 2 between
quadratic and quintic interpolation! However, to conclude from this result that
a higher-order polynomial is preferred is contradicted by the example as shown
in Figure 6.15. The quintic polynomial overfits the data and yields therefore
an unrealistic extrapolated value.

6.3.2 Alternative solutions to the convergence problem

One alternative solution to the convergence problem is to perform a linear anal-
ysis. This is obviously the least time-consuming approach but the accuracy is
poor. Results of a linear model with hyperelastic fontanelles/sutures, model I ,
are given in Table 6.15.
A better solution in terms of accuracy is adapting the model during the anal-
ysis: elements which reach zero stiffness are removed or changed as to increase
their stiffness or the local neighbourhood around the element is refined. This
solution is time-consuming both in terms of use of the CPU as for individual
user input since a significant amount of time is spent to inspect results before
appropriate decisions can be made. The results are remarkable though as can
be seen in Table 6.15 - model III : the analysis shows the best agreement with
the findings of Sorbe and Dahlgren [94]. In Table 6.15, model II corresponds
with the extrapolated results from elaboration II of experiment II for D = 0.9.
A comparison of the SOBD between model II and model III might indicate
that the former overestimates the degree of moulding considering the fact that
the value of model III corresponds better to the value as reported by Sorbe and
Dahlgren.
Table 6.16 shows the times needed for each analysis.
Figures 6.16 - 6.18 show the moulding of the skull for model III . The lifting
of the parietal bones can be clearly seen from Figures 6.16 and 6.17. This phe-
nomenon was also shown in the parietal bone tests (Figures 6.5, 6.7 and 6.8), is
commonly known in the obstetric and paediatric community and was reported
in [36, 72].

6.3.3 The moulding index

During the course of this chapter, we have reported results of the analysis by
calculating strains of the diameters rather than calculating the moulding in-
dices, as defined by Kriewall et al. (Equation 5.25) and Sorbe and Dahlgren
(Equation 5.26). The reason is that the moulding indices hide information
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(a) quadratic extrapolation (b) cubic extrapolation
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(c) quartic extrapolation (d) quintic extrapolation
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Figure 6.14: Extrapolation of a load-displacement trajectory (dx in mm.). Conver-
gence halted at 63.7% of the total load (F = 0.637). The blue line is the original
trajectory. The green line is the polynomial.
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(a) quintic extrapolation
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Figure 6.15: Extrapolation of a load-displacement trajectory with overfit (dz in mm.).
Convergence halted at 63.7% of the total load (F = 0.637). The blue line is the
original trajectory. The green line is the polynomial. Note the overfitting of the quintic
polynomial (a), resulting in an unreliable extrapolated value for dz.
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(a) undeformed skull

(b) deformed skull

Figure 6.16: Front view of the foetal skull before and after moulding for model I II -
deformation magnification = 4. Note the lifting of the parietal bones which causes the
BPD to decrease.
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(a) undeformed skull

(b) deformed skull

Figure 6.17: Lateral view of the foetal skull before and after moulding for model I II

- deformation magnification = 4. The lifting of the left parietal bone is clearly visible.
The same effect causes the SOBD to decrease. Note the upward bulging of the anterior
fontanelle.
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(a) undeformed skull

(b) deformed skull

Figure 6.18: Top view of the foetal skull before and after moulding for model I II -
deformation magnification = 4. The anterior fontanelle is compressed, resulting in up-
and downward displacements of its membranous structure.
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Table 6.16: Analysis times (sec.) for three models as a solution to the convergence
problem (∗ user interaction time is not included).

Time (sec.) model I model II model III ∗

User time 454.05 41218. 80294.
System time 85.690 4839.1 9392.2
Total CPU time 539.74 46057. 89686.
Wallclock time 878.00 67355. 131359.

Table 6.17: The modified moulding index, MMI , for three different models of foetal
head moulding and from clinical experiments by Sorbe and Dahlgren [94] (∗ the MMI ’s
from Sorbe and Dahlgren are averages and corrected to account for the skin).

Before After % moulding

Sorbe∗ 2.08 2.18 4.8

model I 2.10 2.13 1.4
model II 2.08 2.27 9.1
model III 2.10 2.23 6.2

Table 6.18: Relative diametral strains (%) for model III of experiment III (row 2)
and corrected average diametral strains from Sorbe and Dahlgren (row 1) [94], for all
diameters.

MaVD OrOD OrVD OFD SOFD SOBD BPD BFD BTD

+1.47 - +1.85 - - -1.90 0.00 - -

+1.10 +1.63 +1.04 +1.52 -0.75 -2.84 -0.92 -0.22 -0.02
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and are not always consistent with the effects of the changes of the diameters.
The latter was apparent from Kriewall’s moulding index and was discussed in
Section 5.4.1. Nonetheless, for the sake of completeness, Table 6.17 gives the
modified moulding index, MMI , for all three models, before and after mould-
ing and the values of Sorbe and Dahlgren [94]. Since there is a discrepancy
in magnitude between Sorbe’s values as reported in Table 5.8 and the author’s
values, because the former include the skin, a corrected MMI is calculated by
taking the original diameters of the author in combination with the displace-
ments from Sorbe and Dahlgren.
The percentage moulding (third column in Table 6.17) is calculated from:

MMI a −MMI b

MMI b
× 100 (6.2)

where MMIb and MMIa are the modified moulding indices before and after
moulding respectively.
It is observed that model II and model III display higher degrees of moulding
than model I . Model III shows the best agreement in terms of percentage
moulding (6.2%) with the converted average value from Sorbe and Dahlgren
(4.8%).

6.4 Discussion

Table 6.18 shows the relative diametral strains for model III of experiment III 8

and those from Sorbe and Dahlgren9[94].
Comparison of the results in Table 6.18 shows relatively good agreement both in
terms of the shape after deformation as the degree of deformation. One should
not expect much better agreement considering the variance in the model pa-
rameters and the simplifications in the model, e.g. the omission of the second
stage and soft structures of the foetal head (e.g. skin, membranes and brains).
The order of magnitude of the strains is relatively constant and roughly ranges
between 1-3% for the first seven diameters in the table. Relative diametral
strains for experiment I - the parietal bone test - as shown in Table 6.6 for NLG ,
range between 2.5-7.5%. Despite some minor differences in the load distribu-
tion and the location of the diameters between the two experiments, this result
shows that the parietal bone test displays unrealistically large strains. The main
reason is the lack of stiffness because surrounding bones and fontanelles/sutures
are missing. The boundary conditions, as specified by McPherson and Kriewall

8The largest absolute diametral strains from Table 6.15 are chosen when both left and right

measurements are available.
9These values are corrected to account for the skin.
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[72] can not normally compensate for this shortcoming. Thus, this result em-
phasises again the importance of analysing the entire skull rather than isolated
parts of it.

6.5 Summary

This chapter presented a FE analysis, aimed at the assessment of foetal skull
moulding during the first stage of labour. Experiment I involved a simple test
on the parietal bones and was aimed at the evaluation of h- and p-refinement,
first- and second-order elements and linear vs non-linear geometric analysis.
The results of this test were in agreement with the findings of Kriewall and
McPherson [72] and also showed that the use of first-order elements at the
highest level of refinement and the assumption of non-linear geometry, was suf-
ficient for high accuracy without excessive requirements of CPU time.
Experiment II evaluated the behaviour of the complete foetal skull, involv-
ing the parietal bones, the frontal bones, the occipital bone, the squamosal
bones, the skull base and maxilla, the fontanelles and the sutures. The ba-
sic experiment assumed linear elastic behaviour of the fontanelles and sutures.
The results were in agreement with clinical experimental results by Sorbe and
Dahlgren [94] in terms of the shape after deformation but the degree of defor-
mation was significantly smaller. Elaboration I aimed to assess the influence of
several parameters in the model on the degree of moulding. It was found that
the thickness of the fontanelles and sutures played a crucial role in the over-
all stiffness of the skull. Additionally to this finding, elaboration II assumed
nonlinear, hyperelastic behaviour of the fontanelles and sutures. The more re-
alistic material constants in this model resulted in a significant improvement of
the elastic behaviour of the foetal skull. However, because of the higher and
more realistic degree of deformation, convergence problems occurred during the
analysis, due to excessive rotations of the incompressible fontanelle/suture ele-
ments. In experiment III , three models were suggested to solve this problem.
The fastest approach involved a linear geometric model, model I , which showed
poor realistic behaviour because of the generally non-linear nature of the prob-
lem. An alternative approach, i.e. model II , under the (correct) assumption of
non-linear geometry, involved extrapolation of the results in case convergence
failed for the application of 100% of the load. Although the behaviour of this
model was more realistic, the accuracy of the results was found to be very
sensitive to the order of the fitted polynomial and the percentage of load at
which convergence stopped. Finally, model III , was based on user-interactive
adaptation of the model during the analysis by removing, stiffening and refining
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elements which showed excessive rotations. This model yielded the most real-
istic results when compared to the experimental results by Sorbe and Dahlgren
[94], despite the longer CPU time and user-interaction time as compared to the
other models.
Visualisation of the final model showed the lifting of the parietal bones when
subjected to the pressure of the cervix. A finding which corresponds to the re-
sults from experiment I and the results from McPherson and Kriewall [72]. This
phenomenon is also reported in [36] and is commonly known in the obstetric
and paediatric community.



Chapter 7

Conclusions

7.1 Summary and conclusion

Foetal head moulding is a phenomenon with exhibits positive and negative
characteristics in relation to the process of human childbirth. The positive as-
pect manifests itself during the birth process where the moulding of the skull
allows the foetus to pass through the birth canal even when the dimensions
of the latter are restricted. However, excessive head moulding may result into
cranial birth injuries, which may affect the well-being of the infant at birth
and possibly for the rest of its life. Thus, a realistic model of the behaviour
of the foetal skull during delivery is of major importance to the obstetric and
paediatric community. In obstetrics, the concept of a birth simulation for early
diagnosis on the progress of labour has become popular during the last decade.
In the early and mid 90’s, several individual researchers and research groups
did interesting preliminary work on the birth simulation but never covered the
concept of foetal head moulding in depth. However, a simulation which does
not involve foetal head moulding would have poor specificity since it would be
more likely to recommend the need for Caesarian section even if vaginal de-
livery would be perfectly possible. In paediatrics, a realistic model of foetal
head moulding is a major step towards the understanding of mechanical cranial
birth injuries. Excessive moulding occurs when labour is prolonged, or when
contractions are too forceful, or when there is malposition of the foetal head
or inept instrumental interference. Displacements of the skull bones may cause
bony lesions, dural membrane injury, intracranial hypertension with focal or
general brain swelling and possibly with retinal haemorrhage, congestion of the
Galenic venous system and direct injury of major intracranial vessels [36].

The objective of the research, as presented in this dissertation, was to con-
tribute to the understanding of the foetal head moulding phenomenon by study-

182
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ing the deformation of a human foetal skull when it is subjected to the forces
of labour. Previous work on the biomechanics of foetal head moulding involved
the assessment of the parietal bones only. The model, presented in this disser-
tation involves the static analysis of deformation of a complete foetal skull.

The fact that the cranial bones of the foetal skull are very thin as compared
to their surface dimensions, justified the use of a shell-based surface model. A
first attempt to recover the outer shape of a foetal skull required the acquisition
of orthogonal images of a foetal skull and a 3D adult skull obtained from CT
images. Specification of corresponding landmarks on both objects allowed us
to warp the shape of the adult skull into the shape of a foetal skull. This model
was eventually replaced by a more accurate model, acquired from laser-scanned
data of a life-size model of a real foetal skull. The registration problem, to
create a valid surface model from different acquisitions of laser-scanned data,
was solved using least-squared error based matching of landmarks. Different
triangulated patches of the object were subsequently connected using a com-
bined technique of thin-plate spline interpolation and advancing front-based
triangulation to generate a valid, compatible mesh for finite element analysis.

A biomechanical model of foetal skull moulding was designed, based on clin-
ical research involving the assessment of material properties of structures of the
foetal and adult skull and the measurements of intra-uterine and head-to-cervix
pressures. Based on the nature of the available data from this research, it was
decided to restrict the model to a static analysis of the first stage of labour,
when the foetal head is in contact with the uterine cervix.

A first experiment involved the finite element analysis of the parietal bones
of the foetal skull as an extension of the earlier work by McPherson and Kriewall
[72]. The results of this experiment, though more accurate, were in agreement
with their findings. Further evaluation of these results indicated the need of
using the finest possible mesh to ensure the highest possible accuracy. It was
also shown that at this level of refinement, the considerable excess of process-
ing time needed when using second-order elements as opposed to first-order
elements, was not worthwhile.

With this information in mind, the second experiment, involving the as-
sessment of the entire skull, was performed. The complex nature of the finite
element model, containing shell elements with orthotropic properties for foetal
cranial bone, isotropic properties for the foetal skull base and hyperelastic prop-
erties for the fontanelle and suture structures, was shown to be sensitive to
relatively small changes of the material properties of each of these components.
Convergence problems did occur for higher degrees of deformation because of
the excessive rotations of the fontanelle and suture structures which behave
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like membranes and are thus incompressible. This problem was solved using
three different models which were validated by comparing the change of princi-
pal diameters of the skull with results from clinical studies on the quantitative
assessment of foetal head moulding as performed by Kriewall et al. [47] and
Sorbe and Dahlgren [94].

The first model assumed linear geometry. In this case a solution is always
found and the time needed for processing is short. However, the model is in
general too stiff because of the non-linear nature of the problem.

The second model assumed non-linear geometry and results were extrapo-
lated using polynomial regression in case the solutions failed to converge in a
reasonable time and within preset error bounds, for full application of the load.
This model required considerably more processing time than the first model
but gave more realistic results. A major drawback of this model is that the ex-
trapolated results can show significant variation, depending on the order of the
fitted polynomial and the percentage of load applied when convergence failed.

Finally, a third model assuming non-linear geometry was suggested for which
full convergence was achieved by adapting the model during the analysis, i.e.
removing, stiffening or refining the elements which showed excessive rotations
or tendency towards zero or negative stiffness. This model, though expensive in
terms of processing and user interaction time, showed very good agreement with
the clinical experimental results from Sorbe and Dahlgren [94]. Visualisation
of the deformed models showed the lifting of the parietal bones, a phenomenon
which was reported in [36, 72] and which is commonly known in the obstetric
and paediatric community.

The biomechanical model of foetal head moulding as presented in this dis-
sertation is a significant improvement as compared to the previously suggested
model of the parietal bones by McPherson and Kriewall [72]. Despite the varia-
tion within the parameters involved in the birth process, the model shows good
agreement with clinical experimental results on the quantitative assessment of
foetal head moulding, both in terms of the shape after deformation as the de-
gree of deformation. The model allows us to evaluate the biomechanics of foetal
head moulding in a quantitative fashion and continuously across the geometry.
Therefore, it can be used in the obstetric field, to improve the sensitivity of a
computerised birth simulation, aimed at the early diagnosis of possible com-
plications during vaginal delivery. In the paediatric field, it can be applied to
investigate mechanical cranial birth injuries as well as congenital malformations
such as hydrocephalus.
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7.2 Elaborations and further research

The results of the absolute diametral strains in the experimental sections of
Chapter 6 were presented with an accuracy of four digits. This accuracy was
necessary to compare subtle changes as a result of different parameter settings.
It would of course be foolish to assume that we have calculated the deforma-
tions of the moulded skull with such an accuracy, considering the fact that the
parameters involved in the model, i.e. geometry of the skull, head-to-cervix pres-
sures, intrauterine pressure, material properties of foetal bone and fontanelles
and sutures, can vary significantly, depending on a wide range of factors. In-
trauterine and head-to-cervix pressures depend on parity, gravidity, duration
of labour, maternal position, rupture of the membranes, maternal physiologi-
cal factors, size of the uterus, size, position and compressibility of the foetus,
etc. Both the material properties and geometry of the foetal skull depend on
morphogenetic processes such as biological growth and ossification. Gestational
age was shown in [71] to be a major factor to the bending stiffness and general
thickness of foetal cranial bone. Hence, this brief summation points out the
variation present within the model parameters. In elaboration I of experiment
II , presented in Chapter 6, the effect of the variation of these parameters on
the degree of foetal skull moulding was evaluated. However, to perform an in-
depth study on the variation of foetal head moulding, more comprehensive data
on the model parameters is required. In the next sections, I will outline the
feasibility and possible strategies to the successful acquisition of such data. Fur-
thermore, involvement of other structural components of the skull model, such
as skin, brains and membranes, the consideration of the second stage of labour
and further improvements of geometric modelling and finite element analysis
are suggested.

Shape and geometric modelling of the foetal skull

The skull model used throughout this research was obtained from laser-scanning
a replica model of a real foetal skull. This resulted in an accurate model of
the surface of the skull, an approximation which was reasonable under the
assumption that the bones of the cranial vault can be considered as thin shells.
However, the acquisition of a CT dataset of a foetal or newborn skull would
simplify the process of modelling the geometry of the surface as well as providing
the internal structures of the skull base and facial bones. It is however not clear
how much the internal structures would influence the moulding of the skull in
general. In elaboration I of experiment II (Chapter 6), the change of thickness
of the temporal bones did not show a significant effect on the skull moulding.
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Besides the ethical and political difficulties to obtain a complete CT dataset of
a foetal or newborn skull, its availability would not provide sufficiently accurate
data to model the thickness of the cranial vault bones. In [71], the average of
the reported values of the parietal bone thickness was around 0.75 mm. The
interplanar resolution of conventional CT scanners is about 1 mm. whilst the
intraplanar resolution is of the order of 0.5 mm. To accurately model the
thickness of the cranial vault bones, an accuracy of at least 0.1 mm. is required.

Shape variation of the model

The model as presented in this work involved the analysis of a single foetal skull.
To investigate the sensitivity of foetal skull moulding to shape variations would
require the availability of a number of skulls. However, as mentioned before,
there are ethical problems related to this. An alternative solution could be
based on warping using thin-plate spline interpolation. Variation of principal
diameters could be obtained from measurements from a clinical experiment
similar to the one as conducted by Kriewall et al. [47] and Sorbe and Dahlgren
[94].

Mesh generation for biomechanical models

The mesh generation algorithms as described in Chapter 3 allow fast mesh
creation for arbitrary complexity but are restricted to level or visible surfaces
(21

2D). A significant improvement would involve the extension to 3D surfaces
and solids. This would avoid the time-consuming, user-interactive tessellation
of the object into smaller level patches.

Material properties of the foetal skull

In the past, only Bylski et al. [14] and McPherson and Kriewall [71] investigated
material properties of the structures of the foetal cranium. Although ethical
issues would pose an even greater problem than the acquisition of CT data, more
sophisticated experiments could provide more accurate data on the material
properties.

Hyperelastic behaviour of the fontanelles and sutures

In this work, the Mooney-Rivlin (MR) model was used to model the hyperelastic
properties of the fontanelles and sutures. It was not clear in how much this
model was responsible for a more realistic behaviour of the deformation of the
skull as opposed to the actual values used in the MR model as reported in
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[14]. Bylski et al. [14] found a hyperelastic model, i.e. the Skalak, Tozeren,
Zarda and Chien (STZC) model, which fitted the experimental data, from a
biaxial tension test, better than the Mooney-Rivlin model. The assessment of
this model in future work should be considered.

The involvement of skin, brains and membranes

In the current model, the skin, brains and membranes1 were ignored.
Since the brain is virtually incompressible, the model should include a parameter
to model deformation without change of volume.
Previous work on the biomechanics of brain tissue using a poroelastic model
[81] and the biomechanics of hydrocephalus [77, 81] could be combined with
the foetal head moulding model to investigate brain damage following excessive
moulding.

Viscoelastic and plastic behaviour of the bones of the cranial vault

Experiments investigating possible viscoelastic behaviour of the skull bones of
the foetal cranial vault have not been conducted as yet. The assumption of
viscoelastic behaviour of the cranial vault bones is realistic considering the fact
that articular cartilage is known to show this behaviour [32]. Consideration of
viscoelasticity and more specifically, creep, into a model of foetal head moulding
would show continuing deformation even when the load is held constant.
There must be some degree of plasticity as well considering the significant time
it takes for restitution after moulding (i.e. about three days as reported in
[47, 94]).
As mentioned before, more sophisticated experiments than those reported in
[70, 71], to assess the properties of foetal cranial bone, are required.

Measurements of the intra-uterine and head-to-cervix pressures dur-

ing the first stage of labour

It was pointed out in Chapter 5 that studies involving the measurements of
the intra-uterine pressure and the head-to-cervix pressure showed significant
inter-observer and intra-observer variation. None of the studies done so far
have studied a significantly large sample nor did they take full account of corre-
lated variables such as cervical dilatation, parity and gravidity, rupture of the
membranes and progress of labour. Better controlled studies are necessary to

1The membranes imply here the protective membranes between the brains and the cranial

vault such as the dura mater, not the foetal membranes.
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provide reliable and sufficient data. These data could then be used in the foetal
head moulding model, either directly or as a validation for an idealised model.
Bell’s model, as described in Chapter 5, assumes the lower pole of the foetal
head/skull to be of a spherical shape. This assumption results in a relatively
simple model which does agree satisfactorily with experimental values. The
geometry of the lower pole of the head is however more complicated in reality.
A better mathematical model could be sought after but care has to be taken
not to go into overcomplex parameter specifications.

Static vs dynamic analysis

In this work, the analysis of deformation of the foetal skull is based on the
application of a static load. The true process is dynamic, though it changes
very slowly in time. It is likely that a dynamic analysis would improve the
model only when viscoelastic properties of the cranial vault bones and the
uterine cervix would be considered.

Viscoelastic properties of the cervix

Bell [10] pointed out that the dilatation of the cervix is not strictly linear in
time, but oscillates around a linearly increasing average dilatation in time. This
is due to the viscoelastic properties of the cervix. As mentioned in the previous
paragraph, a dynamic analysis is required to take the viscoelastic behaviour of
the cervix into account.

The involvement of the second stage of labour

The second stage of labour was left out at this stage since many parameters,
needed for a successful simulation, are missing. One of these involves a realistic
model of the pressure distribution on the head. Even though several researchers
have measured the pressures on the foetal head during the second stage, it is
difficult to model the pressure distribution because of the complex geometry
of the birth canal which involves the maternal pelvis and soft tissues. The
generation of a 3D solid mesh of the maternal pelvis was accomplished in [23]
using Delaunay tetrahedrisation. Soft tissue modelling of the maternal birth
canal could be aided by the current availability of MRI, CT and photographic
images of the Visible Female (Visible Human Project). Current developments
on the biomechanical behaviour of soft tissue have been covered amongst others
in [32, 96, 108] and sections III and IV of [13]. Once the geometry is modelled, a
mechanical contact analysis could be applied to model the interaction between
the foetal head and the maternal birth canal.
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Validation of foetal head moulding

Kriewall et al. [47] and Sorbe and Dahlgren [94] are the only researchers who
performed quantitative assessment of foetal head moulding in the past. The
study by Sorbe and Dahlgren covers a sufficiently large sample of 319 vaginal
deliveries without any major complications. Better controlled experiments are
needed though, preferably in combination with intra-uterine and head-to-cervix
pressure measurements.

Finite element modelling for biological objects of complex geometry

and structure

The final model on deformation of the foetal skull (model III in experiment III
of Chapter 6) showed good agreement with the experimental results from Sorbe
and Dahlgren [94]. However, the amount of time needed, i.e. processing time
as well as user-interaction time, to arrive at this model was considerable. More
complex models would require even more time hence more optimal solution
strategies should be sought after. The ABAQUS software for FEA, which we
used throughout this research, requires to stop analyses, evaluate results, change
the model and restart the analysis. This procedure has to be repeated until full
convergence is reached. A major and reasonably straightforward improvement
could be the automatic adaptation of a model based on pre-specified conditions
as set by the user.



Appendix A

An introduction to the Finite

Element Method (FEM)

A.1 General concepts of the mechanics of deformable

bodies

To analyse the mechanical behaviour of a deformable body we conventionally
aim to establish [76]:

Force and moment equilibrium relating stress to applied forces or other
stresses, whether there are applied forces or not. If displacements are
small then the equations of equilibrium may considered to be linear.

Geometric compatibility relating strain to displacements and are purely ge-
ometrical arguments which depend on the definition of strain and the type
of deformation and geometry of the particular structure. If the displace-
ments are small then the strain-displacement relationships may considered
to be linear.

Stress-strain relations or constitutive relations relating stress to strain. They
are usually empirical thus depend on experimental evidence.

The set of equations obtained from these three conditions allows us to solve for
displacements, stresses and strains.

A.1.1 Stress

Figure A.1 shows the stress components on a parallelepiped with infinitesimally
small sides ∆x,∆y, ∆z. There are three direct stress components, σxx, σyy, σzz

and three independent shear stress components, σxy, σyz, σzx.
Index definitions and sign conventions are:

190
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• For direct stress components the second index is basically redundant but
it will be kept for conformity with shear stresses. The index denotes the
direction of the face upon which the stress component acts. The sign of
the resulting stress component is positive when a positively directed force
component acts on a positive face OR when a negatively directed force
component acts on a negative face.

• Shear stress components are described by two distinct indices: the first
index denotes the direction of the face upon which the stress component
acts. The second index denotes the direction of the shear force. The sign
convention is as before.

It can be shown that σij = σji, for j 6= i (the proof can be found in [21]).
Rather than representing stress by a two-dimensional tensor, it is more conve-
nient to represent it by the column vector:

σ =
[

σxx σyy σzz σxy σyz σzx

]T
(A.1)
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Figure A.1: Stress components acting on the six sides of an infinitesimally small
parallelepiped. To guarantee moment and force equilibrium: σ,

ij = σij + ∂σij

∂i ∆i, for
i, j = x, y, z.
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A.1.2 Displacement - Deformation - Rigid body motion

Figure A.2 shows a body before and after displacement. The displacement of
an individual point is the vector quantity:

u = [ u v w ] (A.2)

The displacement of a continuous body consists of two distinct motions:

1. Rigid body motion: translation and rotation of the body as a whole.

2. Deformation: motion of points on the body, relative to each other.
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Figure A.2: An arbitrary 3D body before and after deformation.

A.1.3 Strain

Figure A.3 shows the deformation of an infinitesimally small element (in 2D,
for ease of illustration).
Under the assumption that the strains are small as compared to unity, we can
write the normal strain in the x-direction:

εx = lim
∆x→0

O′C ′ −OC

OC

= lim
∆x→0

[∆x + (∂u/∂x)∆x]−∆x

∆x

=
∂u

∂x

(A.3)
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Similar reasoning yields the strains in the y-direction and in the z-direction
after extending to 3D yields:

εy =
∂v

∂y
(A.4)

εz =
∂w

∂z
(A.5)

For the shear strain component in the x-y plane we can write:

εxy = lim
∆x,∆y→0

(6 COE − 6 C ′O′E′)

= lim
∆x,∆y→0

(π

2
− 6 C ′O′E′

)

= lim
∆x,∆y→0

(
π

2
−

(
π

2
− (∂v/∂x)∆x

∆x
− (∂u/∂y)∆y

∆y

))

=
∂v

∂x
+

∂u

∂y

(A.6)

and for the shear strains in the y-z and z-x planes respectively:

εyz =
∂w

∂y
+

∂v

∂z
(A.7)

εzx =
∂u

∂z
+

∂w

∂x
(A.8)

Hence the strain vector in 3D becomes:

ε = [ εx εy εz εxy εyz εzx ]T (A.9)

A.1.4 The elastic stress-strain relations

The elastic stress-strain relations or constitutive relations for a linear-elastic
isotropic 3D body are (in matrix notation):



σxx

σyy

σzz

σxy

σyz

σzx




= E
(1−2ν)(1+ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2 − ν 0 0
0 0 0 0 1

2 − ν 0
0 0 0 0 0 1

2 − ν







εx

εy

εz

εxy

εyz

εzx




(A.10)
where E is Young’s modulus and ν is Poisson’s ratio. In the abbreviated nota-
tion the constitutive relations become:

σ = Eε + σ0 (A.11)

where E is the material stiffness matrix and σ0 is the initial stress vector1.
1For example, stress caused by temperature changes.
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Figure A.3: Deformation of a small 2D element of a continuous body.

A.2 The Principle of Virtual Displacements (PVD)

In Section A.1 the three relationships of the analysis of a three-dimensional
deformable body were outlined. At each point of the deformable body, equilib-
rium is expressed by six independent equations, i.e. translational equilibrium
in each direction x,y,z and rotational equilibrium about each axis. The PVD
is a single scalar equation which is able to enshrine these six equations for the
whole body. Assume a particle subjected to forces pi as is shown in Figure A.4.
Now imagine the particle displaces by an imaginary or virtual displacement δu.
Under the assumption that virtual displacements are independent of the real
forces, the virtual work δW is given by the scalar product:

δW =
n∑

i=1

pi.δu (A.12)

If the particle is in equilibrium, then
∑n

i=1 pi = 0 hence:

δW = 0 (A.13)
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Figure A.4: A particle in 3D space subjected to n forces pi and a virtual displacement
δu.

Alternatively, if equation A.13 is satisfied for arbitrary δu, then the particle is
in equilibrium2.

A.3 Formulation of the displacement-based Finite

Element Method for a general continuum

Figure A.5 shows a three-dimensional body of arbitrary shape. The body is
placed in a fixed coordinate system with coordinates x, y, z. Any point on the
surface has an outward-pointing surface normal n with components or direction
cosines ∂n

∂x , ∂n
∂y , ∂n

∂z .
The body is in general subjected to two types of external forces:

body forces - force per unit volume:

pb = [ pb,x pb,y pb,z ]T (A.14)

surface traction forces - force per unit area:

ps = [ ps,x ps,y ps,z ]T (A.15)

Application of the PVD and stating the equilibrium between the virtual (inter-
nal) strain energy, δU , and the virtual external work, δWex:

δW = δU − δWex = 0 (A.16)
2Arbitrary, to exclude the case where

∑
pi and δu are orthogonal.
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Figure A.5: An arbitrary 3D body, with prescribed boundary conditions, subjected
to body forces, pb, and surface traction forces, ps.

Writing out equation A.16 yields:
∫

V

σT .ε̄ dV =
∫

V

pb.ū dV +
∫

S

ps.ū dS (A.17)

where the ū are virtual displacements3 (in global coordinates) and ε̄ the corre-
sponding virtual strains.
Finally, for an assembly of n elements, the PVD becomes:

n∑

l=1

∫

V l

σT .ε̄ dV =
n∑

l=1




∫

V l

pb.ū dV +
∫

S l

ps.ū dS


 (A.18)

A.4 Example

Equation A.17 allows us to derive a finite element formulation for a variety of
different element shapes. To stay within the realm of this work, we will illustrate
the derivation of a solution for a second-order (linear strain) triangular plate
element (LST ) of thickness t.

A.4.1 Representation in barycentric coordinates

Barycentric coordinates or area coordinates were first introduced by F. Möbius
in 1827 [27]. Consider the triangle4n1n2n3 in Figure A.6a. An arbitrary point,
p, inside the triangle can always be specified using the barycentric combination:

3We will use this shorter notation in the further course of the text instead of δu.
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p =
3∑

i=1

ξini (A.19)

where ni are points in a general coordinate system and ξi are the barycentric
coordinates. If equation A.19 is to be geometrically meaningful, we require that
ξ1+ξ2+ξ3 = 1. This implies that ξi = Ai/A, for i = 1, . . . , 3, with A =

∑3
i=1 Ai

or the area of 4n1n2n3.
We can also write (see Figure A.6b):

ξi =
hi

Hi
(A.20)

for i = 1, . . . , 3.

A.4.2 Shape functions

For a single 2D element, the displacement vector is represented by:

u =
[

u v
]T

(A.21)

The nodal displacements for a second-order triangular element l are given by:

dl =
[

d1 d2 . . . d12

]T
(A.22)

We can write then:
u = Ndl (A.23)

where

N =

[
N1 0 N2 0 N3 0 N4 0 N5 0 N6 0
0 N1 0 N2 0 N3 0 N4 0 N5 0 N6

]

The shape functions are readily seen to be:

Ni = 2(ξi − 1
2
)ξi

for i = 1, . . . , 3
Ni = 4ξi−3ξ1+(i−3) mod 3

for i = 4, . . . , 6

A.4.3 The strain-displacement relation

The relation between strain and displacement is given by4:
4Remember that the terms involving a z-component in ε, as given in Equation A.9, are

absent.
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ε = ∂u (A.24)

with

∂ =




∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x




We define the strain-displacement matrix:

B = ∂N (A.25)

combining equations A.23,A.24 and A.25 gives

ε = Bdl (A.26)

A.4.4 Working it all out!

For a single element l, working out the lhs of Equation A.17 using Equations
A.115 and A.25: ∫

V l

σT ε̄ dV =
∫

A l

εTEε̄ t dA

=
∫

A l

dl
TBTEBd̄l t dA

= dl
Tkld̄l

(A.27)

with the element stiffness:

kl =
∫

A l

BTEB t dA (A.28)

One remaining problem is the conversion from barycentric coordinates to gen-
eral coordinates to allow us to calculate B, since ∂ is a function of the general
coordinates x, y.
For the second-order triangle we can write:

x =
3∑

i=1

ξi xi

y =
3∑

i=1

ξi yi

(A.29)
5Omitting the initial stress σ0.
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and after elimination of ξ3:

x = (x1 − x3)ξ1 + (x2 − x3)ξ2 + x3

y = (y1 − y3)ξ1 + (y2 − y3)ξ2 + y3

(A.30)

The conversion from the derivative operator in general coordinates ∂ to the
derivative in barycentric coordinates is given by:




∂
∂ξ1

∂
∂ξ2


 = J




∂
∂x

∂
∂y


 (A.31)

where the two-dimensional Jacobian:

J =




∂x
∂ξ1

∂y
∂ξ1

∂x
∂ξ2

∂y
∂ξ2


 (A.32)

Going back to our triangular element, we can write:



∂
∂x

∂
∂y


 =

1
2A




y2 − y3 y3 − y1

x3 − x2 x1 − x3







∂
∂ξ1

∂
∂ξ2


 (A.33)

with 2A = |J|
We can write for an infinitesimally small area of the triangle:

dA = dh2(dh1
L1

H1
)

= H2 dξ2 L1 dξ1

= 2Adξ1dξ2

Incorporating this result into Equation A.28 yields the isoparametric formula-
tion of the stiffness:

kl =
∫ 1

0

∫ 1

0
BTEB|J|t dξ1dξ2 (A.34)

The integrand in Equation A.34 is a collection of products of derivatives of N

with respect to ξ. Because of the complexity, integration is mostly done by
numerical integration (NI). A popular technique for numerical integration is
the Gauss quadrature procedure (See [8],[19] for excellent coverage of this and
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other NI techniques).
Returning to the PVD , we work out the rhs in Equation A.17:

∫

V l

pb.ū dV +
∫

S l

ps.ū dS = PT
l d̄l (A.35)

after substitution of the lhs with ū = Nd̄l and the kinematically equivalent
force defined as:

Pl =
∫

V l

NTpb dV +
∫

S l

NTps dS

The individual element displacements are incorporated into the global displace-
ment vector, U, using the selection matrix, al, which is for the case of a LST
a 12 ×m matrix, for m dof for the entire assembly. The matrix consists of 12
unit elements and many zeroes. Writing this for the lth element:

dl = alU (A.36)

Substitution of Equation A.36 into the rhs of Equation A.35 and into A.27
respectively, and summation over all elements yields:

[
UT

n∑

l=1

aT
l klal

]
Ū =

[
n∑

l=1

PT
l al

]
Ū (A.37)

The general formulation of an assembly of elements is then formulated as:

KU = R (A.38)

with the general stiffness matrix:

K =
n∑

l=1

aT
l klal (A.39)

and the transpose of global loading vector:

RT =
n∑

l=1

PT
l al (A.40)

Equation A.38 allows us to calculate the nodal displacements in U with given
loading, as represented in R, and after calculation of the stiffness matrix, K,
from the elements stiffnesses kl (Equation A.34). Once the nodal displacements
are known, the strains can be calculated from Equation A.26 and subsequently
the stresses, from Equation A.11.
Equation A.38 assumes static behaviour of the structure. Extra terms involving
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inertia and damping forces can be added to yield the statement of dynamic
equilibrium:

MÜ + CU̇ + KU = R (A.41)

With the mass matrix, M, and the damping matrix, C.
In this appendix, a brief overview of the principles of the FE method was given
using the example of a second-order triangular element. The theory of the FE
method is vast and further elaborations are beyond the scope of this work. For
an in-depth coverage of the FE method, we refer the interested reader to [8]
and [76]. A more practical approach can be found in [19]. Finally, non-linear
finite element analysis is covered in [41].
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Anatomy of the foetal skull

1. Anterior fontanelle: the largest fontanelle located on the top of the
cranial vault and slightly anterior. It is the point where frontal (5), coronal
(6) and sagittal (8) sutures join.

2. Posterior fontanelle: located at the back of the skull. It joins the
sagittal (8) and lambdoidal (9) sutures.

3. Mastoidal fontanelle or postero-lateral fontanelles - left and right: lo-
cated at the side of the skull and slightly posterior. Joins the squamosal
(7) and lambdoidal (9) sutures.

4. Sphenoidal fontanelle or antero-lateral fontanelles (left and right): lo-
cated at the side of the skull and slightly anterior. Joins the coronal (6)
and squamosal (7) sutures.

5. Frontal suture: connects the bridge of the nose and the anterior fontanelle
(1).

6. Coronal sutures - left and right: connect the anterior fontanelle (1) and
the sphenoidal fontanelle (4).

7. Squamosal suture - left and right: connects the mastoidal (3) and sphe-
noidal (4) fontanelle.

8. Sagittal suture: located in between the parietal bones (10) and con-
necting the anterior (1) and posterior fontanelles (2).

9. Lambdoidal suture - left and right: joins at the posterior fontanelle
(2) at one end and diverging towards the mastoidal fontanelle (3) at the
other end.
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10. Parietal bones: the large bones at both sides of the vault and located
slightly posterior.

11. Frontal bones: smaller than the parietal bones (10) and part of the
neurocranium, though connecting to the viscerocranium at the orbits (20).

12. Occipital bone, external part: located at the back and slightly down-
wards.

13. Occipital bone, lateral part: located at the skull base.

14. Squamosal temporal bone: the bone which is directly connected to
the zygomatic arch bone (16).

15. Petrosal temporal bone: the bone in between the occipital bone (12)
and squamosal temporal bone (14).

16. Zygomatic bone: or zygomatic arch or jaw bone is connected to the
squamosal temporal bone (14).

17. Sphenoidal bone: the bone which lies in between the maxilla (19) and
the squamosal temporal bone (14).

18. Mandible

19. Maxilla: the facial bone of the skull, incl. the palate.

20. Orbit: the eye-socket.

21. Tympanic Ring

22. Frontal tuberosity: a protuberance of the frontal bone, respectively
right and left.

23. Parietal tuberosity: a protuberance of the parietal bone. Frontal and
parietal tuberosities disappear gradually during the first years of life.

24. Occipital tuberosity: a protuberance of the occipital bone. Doesn’t
necessarily vanish, hence can still be seen on the adult skull.

25. Foramen magnum
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(a) antero-lateral view (b) lateral view

(c) basal view (d) posterior view

Figure B.1: Anatomy of the foetal skull. Source: Life Before Birth by M.A. England
[26].



Appendix C

Main diameters and

corresponding landmarks of

the foetal head and skull

The main diameters of the foetal head/skull and the corresponding landmarks1,
for validation, are defined.
See Figures C.1 and C.2 for the location of landmarks and diameters on the
foetal head and skull respectively.

Mentum - Pogonion (1) According to Riolo [88] the true mentum or menton
is lower than the landmark which is used to specify the mento-vertical
diameter (MVD).

Maxilla - Anterior nasal spine (2)

Orbit - Nasion (3) Located where the frontal suture meets the upper part
of the bridge of the nose.

Front (4) The extremum of the sinciput2 in the horizontal direction.

Front-high (5) Located in between the front (4) and bregma (6). I define this
landmark as the intersection point of the line that connects the left and
right frontal tuberosities (11) across the vault and the centerline of the
frontal suture.

1The first explanatory term for a landmark is the one commonly used to specify the di-

ameter. If present, the second explanatory term is the more correct term of the landmark as

specified by Riolo et al. [88].
2The forepart of the head or skull.
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Bregma (6) Located where the coronal, sagittal and frontal sutures meet. For
a foetal or newborn skull, this is the centre of the anterior fontanelle.

Occiput - vertical (7) Is difficult to locate. The top vertex of the (triangu-
lar) posterior fontanelle (where sagittal and lambdoidal sutures meet) is
taken.

Occiput (8) The extremum of the occiput in the horizontal direction.

Sub-occiput (9) The extremum of the occipital tuberosity.

Parietal tuberosity (10) Left and right.

Frontal tuberosity (11) Left and right

Temporal-squamosal landmark (12) See Figure C.2.

Orbito-vertical diameter - OrVD The distance from the orbit (3) to the
occiput-vertical landmark (7).

Orbito-occipital diameter - OrOD The distance from the orbit (3) to the
occiput (8).

Maxillo-vertical diameter - MaVD The distance from the maxilla (2) to
the occiput-vertical landmark (7).

Mento-vertical diameter - MVD Also known as the occipito-mental diam-
eter; the distance from the mentum (1) to the occiput-vertical landmark
(7).

Occipito-frontal diameter - OFD The distance from the front (4) to the
occiput (8).

Suboccipito-frontal diameter - SOFD The distance from the front-high land-
mark (5) to the sub-occiput (9).

Suboccipito-bregmatic diameter - SOBD The distance from the bregma
(6) to the sub-occiput (9).

Biparietal diameter - BPD In theory measured between the left and right
parietal tuberosities (10), in practise however, the largest diameter in a
coronal plane which intersects the parietal bones.

Bifrontal diameter - BFD In theory measured between the left and right
frontal tuberosities (11), in practise however, the largest diameter in a
coronal plane which intersects the frontal bones.



Main diameters and corresponding landmarks of the foetal head and skull 208

Bitemporal diameter - BTD Reported by Kriewall [47], but not defined.
The distance between two distinct landmarks (12) each on the left and
right temporal squamosal bone, is taken. The landmarks are the typical
dents emanating from the zygomatic bone upwards towards the squamosal
suture.
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Figure C.1: Landmarks and diameters for evaluation of foetal head moulding: foetal
head. Note that landmarks 1-9 lay on the centre-line across the head.
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Figure C.2: Diameters for evaluation of foetal head moulding: foetal skull. Landmark
12 (left and right) is used to specify the BTD . Landmark 6L and 6R illustrate the use
of left and right measurements when the original landmark (in this case the bregma)
lies inside a fontanelle or suture.



Appendix D

Glossary of

medical/obstetrical

terminology

Sources to this glossary1 are [1, 2, 17, 45, 83, 90, 98, 104] and Chapter 13 in [99].

Abortion The expulsion or extraction of all (complete abortion) or any part
(incomplete abortion) of the placenta or membranes, without an identifiable
foetus or with a foetus (alive or dead) weighing less than 500g. In the absence
of known weight, an estimated duration of gestation of less than 24 completed
weeks is taken.

Acidosis Any condition in which the hydrogen ion concentration of blood and
body tissues is increased, thus the pH is lowered. Respiratory acidosis refers to
acidosis resulting from carbon dioxide retention by the lungs. Metabolic acidosis
implies either retention of non-volatile acids or loss of base.

Amniotic fluid The fluid contained within the amnion (see membranes) in
which the foetus floats.

Apgar score Used to check the condition of the infant usually after 1, 5 and
10 minutes after birth. A score from 0-2 is given for five different signs. An
Apgar score of 8-10 implies the infant is in best condition. See Table D.1.

Assisted vaginal delivery See forceps delivery and vacuum extraction.
1Slanted text is used to emphasise a word but does not necessarily imply that the word is

an item in the glossary!
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Table D.1: Apgar score. ∗ using nasal catheter.

Sign 0 1 2

Heart rate Absent < 100 bpm ≥ 100 bpm
Respiratory effort Absent Slow, irregular Good, crying
Muscle tone Limp Some limb flexion Active
Response to stimulus∗ Nil Grimace Vigorous cry
Colour Blue, pale Body pink, limbs blue Pink

Arterial pH Is the pH measured from a foetal scalp blood sample or the
umbilical arteries (see umbilical cord pH). The value of the pH should normally
be greater than 7.25. Values lower than that may point at foetal acidosis.

Atlanto-occipital point The anatomical location where the base of the skull
is connected to the spine.

Birth canal See Vagina

Bradycardia Abnormally slow heart rate, usually taken ≤ 60 bpm.

Calvaria pl of Calvarium: The vault of the skull.

Cartilage Is a tough, firm, animal skeletal tissue. There are several varieties
but it basically consists of rounded cells, scattered in a resilient polysaccharide-
containing matrix with numerous collagen fibres. It is important as a shock-
absorbing material and is also the main pre-cursor tissue of bone and part of
the body’s growth mechanism. Articular cartilage forms the gliding surface of
a joint (articulation).

Caesarian section Is the operation by which a potentially viable foetus is
delivered through an incision in the abdominal wall and the uterus.

Cephalic presentation Occurs in about 95% of deliveries and is charac-
terised by the head occupying the lower segment of the uterus.

Cephalo-pelvic (dis)proportion The geometric (dis)proportion between
the foetal head and the maternal pelvis.
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Cerebrum - cerebral, cerebro: The term applied either to the brain as a whole
or to its uppermost portion made up of the two cerebral hemispheres.

Cervix or cervix-uteri. The lower barrel-shaped part of the uterus. Its lower
end joins the vagina at an angle varying from 45-90 degrees. Its main function is
during early pregnancy by retaining the embryo safely within the uterine cavity.
The cervix becomes much softer and more congested as gestation progresses. It
becomes shorter (effaced) and slightly dilated as term approaches. See Figures
D.1, D.3, D.7 and D.8.

Cervical Dilatation The widening of the cervix during the first stage of
labour caused by the foetal head pressing against the lower pole of the uterus
and the traction within the the tissue of the lower uterine muscles. See Figures
D.3 and D.8.

Cervical ostium or cervical os - internal and external. See Figures D.1 and
D.7.

Cervical rim The external cervical os.

Cervical spine Upper part of the vertebral column or backbone, consisting
of 7 vertebrae (out of 33 across the entire spine).

Conception The fertilisation of an ovum by a spermatozoon and the implan-
tation of the resulting zygote.

Cortical bone or compact bone, is a dense type of bone, for example the
shaft of long bone. A more spongy type of bone is found, for example at the
articulating ends of long bones, which is called cancellous bone.

Cranium - cranial. The skull; the bones enclosing the brain.

Delivery The actual expulsion of the products of conception, including the
placenta.

Dilatation See Cervical Dilatation
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Dura mater The dura mater encloses the entire central nervous system. The
cranial dura mater is firmly bound to the surrounding bones of the cranial vault.
The dura mater exhibits three major folds: the tentorium cerebelli, the falx
cerebri and the falx cerebelli. See Figure D.10.

Edema or Oedema. Is the excess fluid in the tissue spaces. A sufficient accu-
mulation in the subcutanous tissues causes visible swelling. It may be localised
due to local vascular causes or generalised, implying overall body retention of
fluid and electrolytes.

Ectopic pregnancy or extrauterine pregnancy is one in which a fertilised
ovum implants in an area other than the uterine cavity.

Effacement The shortening or taken up of the cervix prior to dilatation. See
Figures D.3 and D.8.

False Labour Is quite common in late pregnancy and is characterised by ir-
regular brief contractions of the uterus accompanied by mild back or abdominal
pain but lack of progress. The presenting part does not descend.

Foetus The offspring of a viviparous animal while in the uterus. In man, the
term is conventionally used during the period from 8 weeks after conception
until delivery.

Foramen magnum The large hole in the occipital bone at the base of the
skull through which the brainstem passes from the cranial cavity to become
continuous with the spinal cord (see (25) in Appendix B).

Forceps delivery Is the process by which the baby is delivered using an
obstetric forceps to extract the baby’s head. The primary functions of the
forceps are traction (for example, for assistance in the terminal phase of labour)
and rotation (in cases in which there is no cephalo-pelvic disproportion but the
head presents with an unfavourable diameter).

Galenic venous system Consists of the great vain of Galen (vena cerebri
magna Galeni) and the internal cerebral vein (vena cerebri interna aka vena
cerebri parva Galeni). The internal cerebral vein is together with the basal vein
(vena basalis), the largest supply to the great vain of Galen. See Figure D.11.



Glossary of medical/obstetrical terminology 215

Gestation See Pregnancy.

Gestational age Calculated from the last menstrual period (LMP) (rather
than the date of conception) or from ultrasound measurements of for example
the biparietal diameter.

Gravidity Refers to the total number of pregnancies, including abortions,
ectopic pregnancies and normal intrauterine pregnancies.

Hypophysis or Pituitary gland. The gland is oval in shape and lies in the
base of the skull in a depression of the sphenoidal bone (see (17) in Appendix
B), called the pituitary fossa.

Hypoxaemia or Hypoxemia. A decrease in arterial oxygen tension.

Hypoxia Lack of oxygen supply.

Intracranial hypertension Raise of blood pressure above normal levels on
the arterial side of the circulation, inside the cranium.

Ischemia or Ischaemia. Insufficient blood supply to an area of tissue or an
organ, due to obstruction or functional constriction of one or more blood vessels
or as a part of a more general circulatory failure.

Lower uterine pole The fictitious lowest point of the lower uterine segment
of the uterus which is in contact with the foetal head (in case of cephalic presen-
tation). Corresponds more or less to the location of the internal os (see Figure
D.7).

Lower uterine segment The thin lower part of the uterus See Figure D.2.

Membranes or foetal membranes, protect the foetus and include the amnion,
the chorion, allantois and the yolk sac. The amnion is the innermost membrane
and surrounds the foetus.

Mesenchyme is embryonic connective tissue of the mesoderm, consisting of
irregularly tracking cells in a jelly-like matrix. It gives rise to connective tissue,
blood vessels, cartilage, bone, etc.
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Mesoderm The middle of three germinal layers of the embryo, in between
the ectoderm and endoderm. From it are derived muscle, cartilage, bone, blood,
blood vessels, connective tissues and many other structures.

Mode of delivery Includes normal vaginal delivery, Caesarian section, for-
ceps delivery and vacuum extraction.

Morphogenesis The origin and development of a part, organ or organism.

Multigravida(e) A woman who has been pregnant more than once.

Multipara(e) A woman who has delivered more than one offspring weighing
500g. or more, or of 24 weeks of gestation or more.

Nullipara A woman who has not delivered an offspring weighing 500g. or
more, or of 24 weeks of gestation or more.

Obturator internus muscle of the pelvic diaphragm. See Figure D.6.

Occiput-anterior vertex presentation See Vertex presentation.

Occiput-posterior vertex presentation See Vertex presentation.

Ossification Is the formation of new bone which normally takes place in pre-
existing cartilage or fibrous tissue. The skeletal elements of the endoskeleton,
i.e. the vertebral column, the skull base, shoulders, pelvic girdles and the limbs
are preceded by cartilage models that form bones by endochondral ossification.
The viscerocranium, i.e. the covering bones of the skull and the superficial
elements of the shoulder girdle are derived from the exoskeleton and ossify
intramembranously (dermally).

Parity The state of having given birth to an infant or infants weighing 500g.
or more, alive or dead. If the weight is not known, an estimated length of
gestation of 24 weeks or more may be used. Thus, a patient is parous if she has
given birth, irrespective of the mode of delivery, at or beyond the 24th. week of
pregnancy.
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Pelvic floor Although not a part of the bony pelvis, the pelvic floor forms
a part of the birth canal and thus plays an important role in the mechanism
of labour. The pelvic diaphragm is the main support of the pelvic floor and is
shown in Figure D.6. The two levator ani muscles form a gutter during the
second stage of labour, with the opening of the vagina facing forward between
the sides of the gutter (see Figure D.5).

Placenta Is the intimate apposition or fusion of foetal organs to maternal
tissues for the purpose of physiologic exchange. At term it is circular in shape,
forming a spongy disc about 20 cm. in diameter and about 3 cm. thick. Its
weight is usually around 500g. but there is a direct relationship with the foetal
weight. See Figures D.7 and D.9.

Pregnancy or gestation: The maternal condition of having a developing foe-
tus in the body.

Primigravida(e) A woman who has been pregnant only once.

Primipara(e) A woman who has given birth to one offspring weighing 500g.
or more, or of 24 weeks of gestation or more.

Prolonged labour Generally this implies the prolongation of the first stage,
a condition which occurs most commonly in primiparae. Prolongation of the
second stage of labour is usually referred to as delay of labour.

Retinal haemorrhage Haemorrhage of the retina, i.e. the light-sensitive
structure of the eye.

Rupture of the membranes (ROM) The membranes may rupture at any
time during labour, although this usually occurs towards the end of the first
stage of labour. When the membranes rupture spontaneously near term it is
probable that labour will begin within a short time, although sometimes the
onset is delayed. Early rupture of the membranes is more likely to occur if
the presenting part is not engaged or if there is a malpresentation, but it also
occurs in many normal cases.

Septum An anatomical structure which serves as a dividing wall or partition.
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Spines or Ischial spines: Anatomical location of the pelvis. They are used
to determine the station of the foetus: ‘zero’ station implies the head has de-
scended to the level of the spines (see Figure D.6).

Tentorium See Figure D.10.

True labour is accompanied by a regular sequence of uterine contractions,
progressively stronger and closer together and resulting in effacement and di-
latation of the cervix and, in the absence of malpresentation or cephalo-pelvic
disproportion, descent of the presenting part.

Tuberosity A bony protuberance.

Umbilical cord The structure, containing the two umbilical arteries and
the umbilical vain, together with supporting tissues, which connects the foetal
circulation with the maternal placenta.

Umbilical cord pH Is the pH measured from a blood sample of the umbilical
cord. This procedure is considered to be safer than foetal scalp blood sampling
(see also Arterial pH).

Uterus The uterus is a pear-shaped, thick-walled, muscular organ, situated
between the base of the bladder and the rectum. It is divided into two main
portions, the larger portion or body above and the smaller cervix below. The
body itself is divided into a thick upper segment and a thin lower segment (see
Figure D.2). During pregnancy the uterus is adapted to contain the growing
foetus and placenta, and it also undergoes changes in preparation for its task
of expelling the foetus during labour. At term the uterus is about 35 cm. long
and on the average 23 cm. in diameter. It weighs about 1 kg. in contrast to the
unpregnant uterus which weighs roughly 65g. See Figures D.1 and D.7.

Uterine activity Uterine contractions. The uterus contracts irregularly and
painlessly throughout pregnancy (Braxton-Hicks contractions). At the onset
of labour, the contractions become regular and painful, enough to distract the
woman from her usual activities and cause the cervix to be taken up and dilated.

Uterine fundus see Figure D.1.

Uterine tubes see Figure D.1.
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Vacuum extraction The vacuum extractor or ventouse, introduced by Malm-
ström in 1954, is designed to assist delivery by the application of traction to a
suction cap attached to the foetal scalp. The instrument lacks the precision of
the forceps and disregards the finer details of the pelvic architecture as well as
the mechanism of labour.

Vagina Is a strong canal of muscle, on the average 7.5 cm. long, and extends
from the uterus to the vestibule of the external genitalia. Because the cervix
of the uterus projects into the upper portion, the anterior wall of the vagina is
1.5-2 cm. shorter than the posterior wall. See Figures D.2, D.6 and D.7.

Vascular Relating to the blood vessels.

Vertex presentation With a vertex presentation, the denominator is the
occiput. It is conventional to describe four positions for each presentation:

• Left occipito-anterior position - See Figure D.4a,

• Right occipito-anterior position,

• Right occipito-posterior position - See Figure D.4b,

• Left occipito-posterior position.
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Figure D.1: The unpregnant uterus. Source: Grant’s Atlas of Anatomy [1].

Figure D.2: The thick upper uterine segment and the thin lower uterine segment at
the end of the first stage of labour. The dashed lines show the position of the uterus
during contraction. Source: Obstetrics by Ten Teachers - Chamberlain [17].
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Figure D.3: Effacement (a-c) and dilatation (d) of the uterine cervix. The foetal head
is in contact with the lower uterine pole. Note the bulging of the membranes creating
the forewaters. Source: Obstetrics by Ten Teachers - Chamberlain [17].

(a) Left occiput-anterior presentation (b) Right occiput-posterior presentation

Figure D.4: Vertex presentations. The dash-dotted line in (a) shows the orientation
of the SOB plane. Source: Obstetrics by Ten Teachers - Chamberlain [17].



Glossary of medical/obstetrical terminology 222

Figure D.5: The pelvic floor with levator ani sling. Source: Obstetrics by Ten Teachers
- Chamberlain [17].
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Figure D.6: Pelvic diaphragm, viewed from above. Source: Anatomy of the Female
Reproductive System - Krantz [43].
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Figure D.7: A term baby in utero. 1 = placenta; 2 = uterus; 3 = peritoneum; 4
= cervix; 4a = internal os(tium); 4b = external os(tium); 5 = vagina. Source: The
Human Body on File - Swan [98].
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(a) Partial effacement of cervix (b) Full effacement of cervix

(c) Partial dilatation of cervix (d) Full dilatation of cervix

Figure D.8: First stage of labour. Source: The Human Body on File - Swan [98].
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(a) Baby’s head rotates, (b) Head rotates back to former angle,

(internal rotation) (restitution).

(c) Shoulders and rest of baby follow (d) Third stage of labour

(delivery of placenta)

Figure D.9: Second and third stage of labour. Source: The Human Body on File -
Swan [98].



Glossary of medical/obstetrical terminology 226

Figure D.10: Tentorium and falx. Source: The Oxford Medical Companion [104].

Figure D.11: Galenic venous system. Source: Radiological anatomy and topography
of the cerebral veins - Krayenbuhl [45].
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