Multi-Paradigm Programming through Graph Rewriting:
Case for Support

Dr. JRW. Glauert
School of Information Systems, UEA
Norwich NR4 7TJ

1 Purpose

The project aims to demonstrate that extended notions of graph rewriting can act as the basis for
practical implementations of multi-paradigm languages, based on largely declarative principles. The
languages chosen will combine process and functional programming on the one hand and functional
and concurrent logic programming on the other. The objective is to support implementations on both
sequential and parallel architectures.

The precursor to the main project will be research to identify a core model of graph rewriting able to
support the chosen language paradigms. This model will have restricted capabilities but will be chosen to
allow efficient sequential implementation.

By extending established techniques, the project will develop an implementation for sequential machines,
based on the core model, and focussing primarily on integration of functional and process paradigms.
The project will finally study truly parallel implementation of multi-paradigm languages. A study will
search for primitives for concurrent computation based on graph rewriting. Implementation experiments
will involve direct implementation of such primitives. Initialy, task granularity and work distribution will
mirror the process structures of user programs.

2 Background
2.1 Previous Work

Declarative Programming

Declarative languages have attracted considerable attention over the last decade because of their concise
and powerful notation, theoretical clarity, practical benefits such as automatic heap space management,
and perceived potential for exploiting implicit parallelism.

The promise has yet to be realised, partly through lack of acceptable implementations and programming
environments, and partly due to the difficulty of coding portions of applications which do not fit
naturally into a declarative style.

It can be argued that serious sequential implementations are now available. Logic programmers have a
number of usable Prolog systems to choose from and many substantial programs exist. Lisp can be used
declaratively, and now functional programmers are building serious systems using the New Jersey
implementation of Standard ML. Those concerned to exploit lazy evaluation can use the Hope*
language developed at ICSTM during the Flagship project or the Clean language [BruEL87] from the
University of Nijmegen, based directly on graph rewriting principles. These systems produce code
approaching the performance of corresponding algorithms programmed in C.

Nevertheless, pure declarative systems are only gaining limited acceptance. A barrier may be that they
either refuse to countenance non-declarative styles, or accommodate them in ways which are inelegant
and/or violate the theoretical basis which made the languages attractive in the first place. Clear problems
exist concerning input-output, other interactions associated with an operating system, and program state.

Multi-Paradigm Programming

There are proposals to integrate functional and process programming models such as early work on FP2
[HufMM85]. More recently, Facile [GiaMP89,GiaMP90] is an experimental programming language
resulting from a concrete attempt to integrate the typed call-by-value A-calculus with a process language
similar to CCS. Call-by-value A-calculus and CCS have merged symmetrically to obtain a language that
supports both functional and process abstractions: functions may be defined and used to specify internal
computations of concurrent processes; dynamic process creation and communication over typed

channels may occur during any expression evaluation. Functions, processes and communication
channels are first class values.

Practical work on Facile at ECRC is adding the primitives of Facile to the New Jersey Standard ML
compiler. Work by Milner's group at Edinburgh is proposing similar extensions to SML. Such
languages provide a natural interface to non-deterministic computation, while exploiting the strengths of
functional programming for deterministic computation.

A new theory of mobile processes has been developed by Milner, Parrow and Walker [MilPW89]. It
models the case of dynamic reconfiguration of communications between processes. In the original CCS,
communication channels were fixed statically. The r-calculus is the underlying theory of mobile
processes and involves interesting naming problems, since names of channels may be passed on channels
to other processes, and may conflict with local names of other channels. This work builds on previous
work by Engberg and Nielsen [EngN86].

In [Mil90] Milner studied the connection between the A-calculus (in the form of the lazy A-calculus and
the call-by-value A-calculus) and the tTcalculus. It was established that it is possible to simulate functions
using processes. In [Let91] Leth established a similar connection between her process calculus (LCCS)
and the above variants of the A-calculus as well as other representations of functional languages, such as
combinators and director strings.

This work enables integrated languages such as Facile to be handled in a single theoretical framework,
interpreting programs as networks of processes. The principal applicant is spending some months of
study leave in 91/92 at ECRC where he will be work with the Facile group on such issues. An early result
of this work [GlaLT91] is a new model of functions as processes which accommodates lazy and strict
evaluation strategies.

| mplementation through Graph Rewriting

Graph rewriting has been used as a technique for implementing functional languages. The origins of the
graph rewriting approach are in the thesis by Wadsworth [Wad 71] where he introduces the technique as
an optimisation of term rewriting; identical subterms are shared using pointers. It is now widely accepted
as the standard way of implementing functional programming languages. Peyton-Jones [Pey87] provides
a very comprehensive survey of the state-of-the-art. He highlights work on the G-Machine and the lazy
language LML by the Programming Methodology Group at Chalmers University [Aug84, Joh84] which
has produced a very efficient sequential implementation. A number of variants of the G-Machine have
been proposed including [Pey91].

Probably the fastest lazy functional language implementation is the Concurrent Clean System [PIaEN91].
This language is based on the theory of Term Graph Rewriting (TGR) [BarEG87] which has been the
focus of the Semagraph ESPRIT 1l BRA in which the applicant is involved.

Extended forms of TGR have been investigated using the Dactl notation [GlaK S90]. Kennaway and
Glauert [Ken88, Ken90, Gla90] show that this notation can be used to implement functional languages,
but more significantly, Dactl has been used to translate concurrent logic languages such as GHC, chosen
as the basis for the kernel language of the Japanese Fifth Generation Computing Systems project
[GlaP88] and to implement Standard ML [GlaHKP88], including the imperative features. Recent work
addresses languages integrating functional and logic ideas [GlaP91].

Very recently, work by the Facile project at ECRC [GlaLT91] has shown that a useful subset of a process
notation similar to the t-calculus can be mapped directly to a graph rewriting system using Dactl.

Parallel Implementation of Functional Languages

Despite the promise of functional languages for the exploitation of implicit parallelism, most schemes for
parallel implementation of functional languages rely on annotations supplied by the programmer or
provide a limited number of parallelism templates.

Early experiments with the ZAPP model focussed on the divide-and-conquer template [McBS87].
Recent, more general work on skeletons is reported in [DarFM91].

The Concurrent Clean system [PIaEN91] uses annotations, as does, in effect, early work on GRIP
[HamP90]. A parallel implementation on Transputers has been developed on top of the ZAPP model
[McBS91] at UEA. Impressive speedups can be achieved by these methods, although trial and error are
still needed to select a good pattern of annotation.

Languages integrating functional and concurrent programming allow explicit expression of parallelism
without requiring a separate layer of notation. One approach to implementation of such languages is to
exploit concurrency if and only if the program generates processes. A more sophisticated approach
would use congruences, or transformations between equivalent process representations with the same
observable behaviour but different degrees of concurrency.

2.2 Research Experience

Dr. John Glauert joined the School of Information Systems at the University of East Anglia as
Information Technology Lecturer in 1984 and has been Senior Lecturer in the department since January
1991.

He is member of the Declarative Systems Project is one of a number of research groups active at the
University. Other leading members of the research group are Prof. Ronan Sleep, Dr. Richard Kennaway
(SERC Advanced Fellow), and Dr. Simon Brock.

The current focus of the group is to provide contributions to knowledge about new generation languages
and architectures through both the theory and practice of graph rewriting. Dr. Glauert was chief designer
of the Dactl language and is involved in the Semagraph ESPRIT |l Basic Research Action.

Recent research grants held are:

SemaGraph: ESPRIT |l Basic Research Action. (Jul 89—Jun 92). Lead by UEA. In collaboration with
CWI Amsterdam, Nijmegen University, ICSTM and ENS Paris. UEA portion 240kECU.

European Declarative System, ESPRIT Il Technology Integration Project. (Jan 89-Dec 91). In
collaboration with ICL, Bull, Siemens, ECRC. UEA portion 500kECU.

The Dactl Interface for New Generation Computing. SERC/Alvey. (May 86—Apr 89). In collaboration
with ICL, ICSTM and Manchester University. £260Kk.

3 Programme

The objective of the proposed project is to explore the thesis that Extended Term Graph Rewriting
techniques are a suitable basis for implementing Multi-Paradigm languages with a declarative flavour,
yielding the expected benefit of providing an existence proof in terms of a usable implementation. It is
to be expected that results on sequential implementation will be forthcoming and the applicant is
confident that progress on parallel implementation techniques will be made.

The proposed programme of work breaks naturally into a number of phases which will run
consecutively, though with some overlap.

3.1 Identifying a Core Graph Rewriting Model

An essential first step is to identify a simple but powerful model of graph rewriting on which
implementation work may be based. With the applicant’s background, it is to be predicted that this
model will build on the Dactl notation. Unlike Dactl, the model would place considerable syntactic
constraints on the forms of rewriting rules allowed and the graph structures manipulated would not be as
free — it is intended to develop a proper notion of type. If possible, a fixed reduction strategy would be
associated with the model, rather than the fine-grain control markings of Dactl.

Pointers to the properties required in this model come from earlier implementation studies on functional
[Ken88, Ken9(], logic [GlaP88, GlaP91], and process [GlaL T91] languages. The MONSTR model used
by the FLAGSHIP project [Ban88, Ban89] can be seen as an early attempt to identify such a model. There
are also many features in common with Paragon [BolHK90, BolHK91] which was developed to address
some perceived shortcomings in existing rewrite notations which make it difficult to represent the
message passing and concurrency.

There is an emerging common core of features suggested by these studies so it is believed to be a
reasonably short term task to develop the model.

3.2 Sequentia Implementation Techniques for Multi-Paradigm Languages

A study of sequential implementation techniques will be made and an implementation produced of a
simple multi-paradigm language, focussing initially on functional and process paradigms.

For pure functional languages, sequential techniques based on graph rewriting are well advanced and will
be exploited wherever possible. Studies of the abstract machines on which implementations are based do

3

not always reveal the expected results [Kin90], however, since the true success of some implementations
depends on many subtle optimisations which are not always reported in the literature.

While direct evaluation of a graph rewriting model may involve large numbers of very small tasks, each
performing one rewrite, successful implementations elide long sequences of rewrites and minimise the
number of accesses to the graph heap. For functional implementations, suspension of tasks can be
avoided. This will not be possible entirely when considering non-deterministic languages which will
require at least pseudo-parallelism for implementation.

The existing implementations of the full Dactl language include a reference interpreter, an occam-based
compiler running on multiple transputers, and a sequential compiler generating C code [KinG91]. It is
intended to build on the latter implementation during this phase.

One target machine would be single-transputer systems as a step towards parallel experiments in later
phases.

3.3 Implementation Primitives for Concurrent Computation

The project will aim to exploit concurrency using processes with an intermediate granularity. These must
be large enough to amortise costs of process creation and communication, but not so large that non-
determinism is excluded and work distribution problems arise.

It will still be necessary to have very efficient process creation, communication, and access to remote
memory. This phase of the project will examine the core model, aiming to identify appropriate imple-
mentation primitives for parallel execution, making minor adjustments to the model if required.

Dally and Wills [Dal89] propose some concurrency primitives and recent work on message passing
architectures will be studied.

3.4 Experimental Parallel Implementation of Multi-Paradigm Languages

Using available parallel architecture, principally the Meiko Computing Surface at UEA, experiments will
be performed to implement the concurrency primitives. A parallel implementation will be constructed to
test the suitability of the approach. The project is not about new hardware design and will use current
commercial parallel machines as its target.

In the first instance, task granularity and work distribution will mirror the process structures of user
programs. This will have been reflected in the process networks used in the sequential implementation. It
is expected that any approach which would attempt to exploit more implicit parallelism — or discard
spurious explicit parallelism — would begin by transforming source programs.

3.5 Research Techniques
The project will be based in the School of Information Systems at the University of East Anglia. It will
involve a research assistant working under the direction of the applicant, Dr. John Glauert.

The project will form part of the work of the Declarative Systems Project and as such will benefit from
interaction with the work of Prof. Ronan Sleep and Dr. Richard Kennaway and Dr. Simon Brock on
other ESPRIT and SERC projects. This will be both in the area of theoretical research into graph
rewriting and practical expertise in implementation of novel architectures on Transputers.

The project will exploit the best compiler technology for sequential implementation of declarative
|languages.

The project will adopt the same approach to computing infrastructure as the rest of DSP, using
networked Macintosh Il workstations and word processing facilities connected to central Unix servers.
Access to the UEA Meiko Computing Surface will enable serious experimentation with multi-processor
implementations.

4 Resources.
The proposal is for a programme of work lasting 36 months.

4.1 Staff.

Support is requested for a postgraduate research worker at level RA 1A. The work involves a good deal
of theoretical and language design work requiring an experienced researcher able to take initiative.

4.2 Travel.

Travel funds are requested to enable research visits to other groups engaged in related work and for
attendance at specialist workshops. Current examples are the Dagstiihl Seminar on Compiler Technology
and Parallelism for Functional Languages (See [HanW91]) and International Workshops on the Parallel
Implementation of Functional Languages (See [Pla90, GlaH91]). It will also be very desirable to visit
ECRC which has an interest in the results of this work.

International conferences of significance for this work are: FPCA, the Lisp & Functional Programming
conference, and PARLE.

Funds are requested for one journey a year to Europe, and for a visit to the US during the lifetime of the
project for both the RA and principal applicant,.

4.3 Equipment.
Equipment requirements are dictated by the nature of the project, and by local infrastructure policy.

A networked Macintosh Il workstation, is requested for the use of the RA. It will require 8 to 16 MBytes
of main memory to support a declarative development environment such as New Jersey ML. The most
cost effective model cannot be determined at this stage as new products are on the point of announce-
ment. Indications suggest that a suitable system will cost around £6500.

Access will be possible via Ethernet to the UEA Meiko system and to standard network services such as
Email and News.

4.4 Other

Maintenance is requested for the equipment supporting this project calculated at 8% of purchase cost per
annum. Consumables and other charges, including laserwriter cartridges, magnetic media , and dial-up,
etc. have been costed at £340 per year per person.

5 Applications, Collaboration, and Exploitation

A multi-paradigm approach based on linking declarative and process languages makes it possible for
components of a complete software system to exploit the most appropriate paradigm for the purpose.
Use of declarative languages will be encouraged by the provision of an environment in which their limi-
tations could be overcome.

Since the model concerned would support concepts of process creation and communication, there is the
promise of effective distributed and parallel implementations. The algorithms expressed in the language
would allow dynamic process configurations to be created, extending the range of applications which
could benefit from parallel execution.

The applicant is engaged in collaboration with ECRC on the Facile project which is interested in some of
the issues addressed in this proposal.

References

[Aug84] L. Augustsson, A compiler for lazy ML, in: Proc. ACM Symposium on Lisp and Functional
Programming, pp 218-227, 1984.

[Ban88] R. Banach, & P. Watson, Dealing with State on Flagship: the MONSTR Computational Model,
Proceedings CONPAR 88, September 1988.

[Ban89] R. Banach, Dataflow Analysis of Term Graph Rewriting Systems, Proceedings PARLE’ 89, Volume I,
LNCS 366, pp 55-72, 1989.

[BarEG87] H.P. Barendregt, M.C.J.D. van Eekelen, JR.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, & M.R. Sleep,
Term graph rewriting, Proc. PARLE conference, LNCS 259, pp 141-158, 1987.

[BolHK90] D. Bolton, C. L. Hankin and P. H. J. Kelly, Parallel object-oriented descriptions of graph reduction
machines, Future Generation Computer Systems 6, pp 225-239, 1990.

[BolHK91] D. Bolton, C. L. Hankin and P. H. J. Kelly, An Operational Semantics for Paragon: A Design Notation
for Parallel Architectures, New Generation Computing, 9 pp 171-197, 1991

[BruEL87] T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, & M.J. Plasmeijer, Clean: a language for functional
graph rewriting, Proc. Third Int. Conf. on Functional Programming Languages and Computer
Architectures, Oregon, USA, LNCS 274, pp 364-384, 1987.

[Da89] W.J. Dally and D.S. Wills, Universal Mechanisms for Concurrency. Proc. PARLE’89. LNCS 365, pp 19-
33, 1989.

[DarFMO1]
[EngN86]
[GiaPM89)]
[GiaPM90]
[Glag0]
[GlaH91]

[GlaHK P88

[GlaK S90]

[GlaLT91]
[GlaPgs]
[GlaPa1]
[HUfMM85]

[HamP90]
[HanWo1]

[Joh84]
[Ken90]
[Ken8g]

[Kin90]
[KinGO1]

[Leto1]
[McBS87]
[McBS91]

[Mi190]
[MilPW89)]

[Pey87]
[Pey91]
GE

[PlaENO91]

[Wad71]

J. Darlington, A.J. Field, P.G. Harrison, D. Harper, G.K. Jouret, P.J. Kelly, K.M. Sephton, & D.W.
Sharp, Structured Parallel Functional Programming, in [GlaH91], 1991.

U. Engberg, & M. Nielsen, A calculus of communicating systems with label passing, Report DAIMI PB--
208, Computer Science Department, University of Aarhus, 1986.

A. Giacalone, P. Mishra, & S. Prasad, Facile: A Symmetric Integration of Concurrent and Functional
Programming, 1JPP, Vol 18, No 2, pp 121-160, 1989.

A. Giacalone, P. Mishra, & S. Prasad, Operational and Algebraic Semantics for Facile: A Symmetric
Integration of Concurrent and Functional Programming, in Proceedings of ICALP 90, LNCS 443, pp.
765-780, 1990.

JR.W. Glauert , Compiling Functional Languages Based On Graph Rewriting, in [Pla90], 1990.

H. Glaser, & P. Hartel, (editors), Proc. 3rd International Workshop on the Parallel Implementation of
Functional Languages, Technical Report Series, CSTR 91 91-07, Department of Electronics and Computer
Science, University of Southampton, June 1991.

JR.W. Glauert, K. Hammond, J.R. Kennaway, and G.A. Papadopoulos. Using Dactl to Implement
Declarative Languages. Proceedings CONPAR 88, September 1988.

JRW. Glauert, JR. Kennaway, & M.R. Sleep, Dactl: an experimental Graph Rewriting language, in
Proc. 4th International Workshop on Graph Grammars and Their Application to Computer Science,
Bremen, March 1990. LNCS, to appear, 1991.

JR.W. Glauert, L. Leth, & B. Thomsen, A New Trandation of Functions as Processes, University of East
Anglia, 1991.

JRW. Glauert & G.A. Papadopoulos, A Parallel Implementation of GHC, Proceedings, International
Conference on Fifth Generation Computer Systems 1988. ICOT, Tokyo, December 1988.

JR.W. Glauert & G.A. Papadopoulos, Unifying Concurrent Logic and Functional Languages in a Graph
Rewriting Framework, Proceedings, 3rd Panhellenic Computer Science Conference, Athens, May 1991.
J.-M. Hufflen, A. Marty, J.-Ch. Marty, & Ph. Schnoebelen, FP2: the language and its formal definition,
Report RR LIFIA 26, Laboratoire d’ Informatique Fondamentale et d’ Intelligence Artificielle, 1985.

K. Hammond, & S.L. Peyton Jones, Parallel Haskell: the GRIP implementation, in [Pla90], 1990.

C. Hankin, & R. Wilhelm, (editors), Functional Languages. Optimization for Parallelism, Dagstuhl-
Seminar-Report 3, Universitét des Saarlandes, Saarbriicken, Germany, 1991.

T. Johnsson, Efficient compilation of lazy evaluation, in: Proc. ACM Conference on Compiler
Construction, pp 58-69, 1984.

JR. Kennaway, Implementing Term Rewrite Languages in Dactl, Theo. Comp. Sci., v.72, pp 225-250,
1990

J.R. Kennaway, The correctness of an implementation of functional Dactl by parallel rewriting, UK IT 88
Conference Publication, I1EE, 1988.

I. King, The Efficiency and Generalisation of Various Abstract Machines, in [Pla90], 1990.

I. King I. and JR.W. Glauert, Generating Native Code for a Generalised Graph Rewriting Language,
University of East Anglia, 1991.

L. Leth, Functional Programs as Reconfigurable Networks of Communicating Processes, Ph.D Thesis,
Imperia College, London University, 1991.

D.L. McBurney & M.R. Sleep. Transputer-based experiments with the ZAPP architecture. Proc. PARLE
conference, LNCS 259, Springer Verlag 1987.

D.L. McBurney & M.R. Sleep, Graph Rewriting as a Computational Model, in: Concurrency: Theory,
Language and Architecture, ed Yonezawa A. and Ito T., LNCS 491, 1991.

R. Milner, Functions as Processes, Technical Report 1154, INRIA Sophia Antipolis, February 1990.

R. Milner, J. Parrow, & D. Walker, A Calculus of Mobile Processes, Parts | and |l, TR ECS-LFCS-89-
85, Edinburgh University, June 1989

S.L. Peyton Jones, The Implementation of Functional Languages, Prentice-Hall, London, 1987.

S.L. Peyton Jones, The spineless tagless G-machine: a second attempt, in [GlaH91], 1991.

M.J. Plasmeijer, (editor), Proc. 2nd International Workshop on Parallel Implementation of Functional
Languages, TR90-16, Univ. Nijmegen, Oct 1990.

M.J. Plasmeijer, M.C.J.D. van Eekelen, E.G.JM.H. Nocker, & JE.W. Smetsers, The Concurrent Clean
System — Functional Programming on the Macintosh, Proceedings of the 7th Int. Conf. of the Apple
European University Consortium, Paris 1991., Summarized in: Whedls for the Mind, an Apple University
Publication, Volume 5, Number 3, Fennite Publications Ltd, London, UK, 1991.

C.P. Wadsworth Semantics and pragmatics of the lambda-calculus, Ph.D. thesis, University of Oxford,
1971.

