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In a previous paper, we introduced (SDRSs), Ab-
stract Reduction Systems with an axiomatized residual relation which model orthogonal term and graph
rewriting systems, and (DFSs), which are SDRSs with an axiomatized
notion of to capture known concepts in the -calculus and other orthogonal rewrite
systems. In this paper, we start to investigate ways of constructing DFSs from SDRSs. This is interest-
ing for at least the following two purposes: (1) to develop an theory of sharing for conflict-free
rewrite and transition systems in order understand what properties a sharing concept must possess
in order to imply a reasonable theory of optimal evaluation, and (2) to give an style
semantics to conflict-free rewrite and transition systems with . As a first step, which is already
quite complicated, we only consider non-duplicating systems, and show that every non-duplicating
SDRS is already a DFS if the is taken for the family relation. (Zig-zag is simply the reflexive
and transitive closure of the residual relation on redexes with histories.) To achieve this, we needed to
develop an abstract procedure, which was thought to require the tree structure of terms,
and to show that the family concepts defined via zig-zag and via extraction yield the same relation. As
a side result, we get a Prime Event Structure semantics for non-duplicating SDRSs. Various forms of
conflict-free Graph Rewriting Systems (or Graph Grammars) fall in the category SDRSs.

This work was supported by the Engineering and Physical Sciences Research Council of Great Britain under grant
GR/H 41300

Zurab Khasidashvili and John Glauert

In order to achieve optimal evaluation of -terms, Lévy introduced a notion of to capture the
concept of redexes of the ‘same origin’, hoping that it would be possible to mimic reductions contracting
whole families in multi-steps by reduction of some graph representation in which every multi-step would
be represented by contraction of a single redex [Lév78, Lév80]. There was no other way – Barendregt et
al [BBKV76] showed that there does not exist a one-step optimal recursive -reduction strategy on -
terms. Such an implementation has indeed been achieved by Lamping [Lam90] and Kathail [Kat90], reviving
interest in optimal graph reduction. Maranget [Mar91] generalized Lévy’s optimality theory to Orthogonal
Term Rewriting Systems (OTRSs), Gonthier et al [GAL92] simplified Lamping’s technique, and Asperti and
Laneve generalized both Lévy’s optimality theory and Gonthier’s implementation of it to Interaction Systems,
which cover most of the languages with a constructor-destructor discipline [AsLa93, AsLa96]. Recently,
the optimality theory has been generalized to the whole class of orthogonal Higher-order Rewrite Systems
(HORSs) [Oos96].

Lévy introduced the family concept in three different ways: via a suitable notion of , via ,
and as . In each definition, a family is a class of objects of the form , where is a finite reduction
starting from a term and ending in , and is a redex in . Here is called the of ; all histories
of redexes in the same family are co-initial, i.e., start at the same term . In the labelling definition of
families, the initial term gets an labelling, and labels grow along the reduction. Two redexes with
co-initial histories are declared to be in the same family if they have the same label. The extraction process
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starting from a redex consists of elimination from of all redexes ‘not contributing’ to , and results
in a reduction such that is standard (therefore unique in its permutation-equivalence class), and

is a residual of , i.e., is a residual of under some reduction from the final term of to that
of . Two redexes (with histories) are defined to be in the same extraction-family if the extraction process
yields the same result for both redexes. Finally, the zig-zag relation is defined simply as the transitive and
reflexive closure of the residual relation on redexes with histories. Clearly, all the above family concepts are
equivalence relations, and Lévy showed that they all yield the same concept, in the -calculus.

The same holds for all orthogonal HORSs , if all three family concepts are defined in the refinement
of which decomposes every original -step into first-order or TRS-step and a number of substitution
steps [Oos96]. However, the zig-zag family can be defined directly in , and this yields a different fam-
ily concept [AsLa93]. Independently and much earlier, Kennaway and Sleep [KeSl89] defined their concept
of labelling for orthogonal Combinatory Reduction Systems (CRSs), improving Klop’s original labelling
system for CRSs [Klo80], which cover orthogonal TRSs and Interaction Systems, and their labelling is dif-
ferent from both Maranget’s labelling for OTRSs [Mar91] and Asperti-Laneve’s labelling for Interaction
Systems [AsLa93].

This variety of family concepts, and development of alternative graph rewriting algorithms for optimal
implementation of orthogonal rewriting systems, such as Term Graph Rewriting [KKSV93], Jungle rewrit-
ing [HP91], DAG (Directed Acyclic Graph) rewriting [Mar91], and many others (in particular, covering cyclic
graph reduction as well), inspired by Wadsworth’s original work on graph-based implementation of the -
calculus [Wad71], created the need to develop an abstract notion of family general enough to cover all the
existing notions, and deep enough to enable proof of normalization and optimality results. Such structures
were indeed introduced by the authors of this paper in [GlKh96] as (DFSs).
This became possible also due to recent developments of abstract reduction systems with axiomatized resid-
ual relation, such as (CTSs) of Stark [Sta89] and
of Gonthier et al [GLM92].

Our DFSs are defined as (DRSs) with axiomatized family relation.
DRSs, in turn, are Abstract Reduction Systems with axiomatized residual relation, similar to CTSs [Sta89]
and ARSs [GLM92], but with the difference that, unlike CTSs, the residual relation can be duplicating in
DRSs, and unlike ARSs, there is no nesting relation on redexes defined or axiomatized in DRSs. (Therefore,
DRSs cover more rewrite and transition systems than conflict-free CTSs or ARSs.) CTSs have successfully
been used to give semantics to machine networks, while ARSs have been used to study more syntactic
properties of orthogonal rewrite systems, such as standardization. Despite its highly abstract nature, a
counterpart of Berry’s property [Ber79] enables one to prove the normalization theorem for all
DRSs, and not only w.r.t. normal forms, but in general for of ‘(partial) results’; all
interesting sets of final terms, such as head-normal forms, weak head normal forms, etc, fall in the category
of stable term-sets [GlKh96]. Moreover, a theory of normalization can also be developed in Berry-
stable DRSs, enabling one to construct reductions permutation-equivalent to a particular finite or infinite
reduction, and to prove a version of the Standardization Theorem [KhGl96]. Further, as already mentioned,
in DFSs one can prove the optimality theorem, and DFSs can be interpreted as ( or )
Prime Event Structures (DPESs) [NPW81, Win88].

In this paper, we study the possibility of defining a family relation in stable DRSs. We will only consider
non-duplicating DRSs, because of its particularly important semantic applications, and will show that the
zig-zag relation is a family relation in the sense that it satisfies the family-axioms of DFSs. So every non-
duplicating stable DRSs is in fact a DFS with the zig-zag as the family relation. This is achieved by defining
an abstract extraction procedure and showing that zig-zag coincides with the extraction-family relation. For
the extraction-family concept, checking the DFS family axioms are easy. Since families in DFSs, ordered by
the contribution relation, form DPESs, our construction yields a translation of stable determinate CTSs into
deterministic stable Event structures, linking two widely accepted (operational and set-theoretic) models of
computation.

The technical contribution is the simplicity of our construction which avoids irrelevant syntactic com-
plications, such as those related to the top-down and left-to right nature of the conventional concept of
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2 Deterministic Residual and Family Structures

Definition 2.1

Definition 2.2 (Deterministic Residual Structure)
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To quote Lévy [Lév80]: ‘We turn now to the hard part of this paper, which is to show that the family relation is
decidable. The trouble comes from the of looking now inside -expressions and from not being able to go
on with algebraic manipulations’.

Deterministic Residual Structures Abstract Reduc-
tion Systems Deterministic Family Structures

family
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total
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standardization. Actually, the extraction process was claimed to be syntactic in [Lév80] and [AsLa93].
The paper is organized as follows. In next two sections, we recall definitions of DRSs and DFSs, and some

relevant standardization results for them. Section 4 gives a characterization of zig-zag relation via extraction,
used in Section 5 to prove that zig-zag is a family relation in every non-duplicating stable DRS. This is the
main result of this paper, and it is applied in Section 6 to define a translation of stable DCTSs into DPES.
Conclusions appear in Section 7.

In this section we recall definition of (DRSs), which are
(ARSs) satisfying certain properties concerning residuals, and

(DFSs) which are DRSs with axiomatized relation on redexes with histories. The definition and some
results about ARSs can be found e.g., in [Klo92]. Our definition is slightly different, and follows that of
Hindley [Hin64].

An ARS is a triple = ( , , ) where is a set of , ranged over by ;
is a set of (or ), ranged over by ; and : ( ) is a function

such that for any there is only a finite set of such that ( ) = ( ), written . This set
will be known as the redexes of term , where denotes that is a member of the redexes of and
denotes that is a subset of the redexes. Note that is a function, so one can identify with the
triple . A is a sequence . Reductions are denoted by . We write : or

if denotes a reduction (sequence) from to , and write : if denotes a (finite or infinite)
reduction starting from . denotes the length of . + denotes the concatenation of and . We
use to denote sets of redexes of a term.

DRSs model orthogonal term as well as graph rewrite systems, both first and higher order, and including
the -calculus and its sharing evaluation models, with the standard Church notion of residual [Lév78, HuLé91,
Klo80, Kat90, Lam90, Kha92, KKSV93, Nip93, Oos94, Raa96, Gue96]. Besides CTSs of Stark [Sta89],
and ARS of Gonthier et al. [GLM92], closely related, but more syntactically oriented, models are studied
in [Oos94, Mel96, Raa96].

A (DRS) is a pair
= ( ), where is an ARS and is a relation on redexes relating redexes in the source and

target term of every reduction , such that for , the set of is a set
of redexes of ; a redex in may be a residual of only one redex in under , and = . If has more
than one -residual, then . If = , then . A redex of which is not a residual of
any under is said to be or by . The set of residuals of a redex under any reduction is
defined by transitivity.

A of a set of redexes in a term is a reduction : that only contracts residuals of
redexes from ; the development is if , the set of residuals under of redexes from , is
empty . Development of is identified with the empty reduction. will also denote a complete development
of . The residual relation satisfies the following two axioms, called [GLM92]
and (which appears as axiom (4) in [Sta89]):

[FD] All developments are terminating; all co-initial complete developments of the same set of redexes
end at the same term; and residuals of a redex under all complete co-initial developments of a set of redexes
are the same.

[acyclicity] Let , let = , and let = . Then = .
We call a DRS or , ADRS, if the residual relation in is non-duplicating.
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Non-duplicating DRSs which we study here are essentially determinate CTSs, with no distinguished start
states. Having in mind possible generalization of our results to the non-affine case, we will still speak of affine
DRSs, rather than DCTSs.

Similarly to [HuLé91, Lév78, Lév80, Sta89], in a DRS the residual relation on redexes is extended to
all co-initial reductions as follows: ( + ) = + ( ) and ( + ) = ( ) , and
that or is defined as the smallest relation on co-initial reductions
satisfying: + + and = + + + + , where and are complete
developments of redex sets in the same term. Further, one defines iff = , and can show that

iff and ; and iff + for some . Below, will denote + .
Intuitively, means that can be obtained from by a number of permutations of adjacent steps,
therefore ‘ and do the same work’; and means that does less work than , the difference
being , so + . The above relations can equivalently be defined also using Klop’s method of
commutative diagrams [Klo80, Bar84].

We call a DRS (SDRS) if the following axiom is satisfied:

[stability] If are different redexes, , , and creates a redex , then the redexes in
( ) are not -residuals of redexes of , i.e., they are created by (see the diagram).

The stability axiom, and more generally Lemma 2.1 below, states that a redex cannot arise from two
‘unrelated’ sources. The notion of ’unrelated’ is formalized by the notion of , which expresses the
absence of shared (residuals of) redexes. For syntactic systems externality is a natural concept relating to
overlap between components of terms involved in reduction steps.

([GlKh96]) Let and : . We call to (resp. ) if does not
contract residuals of redexes in (resp. residuals of ).

Let : and : = . We call to if for any ,
( ) ( ) = (see the diagram, where = ( ) and = ( )).

Obviously, is external to the set iff it is external to any development of , and is external to a
redex iff it is external to the reduction contracting . Note that a reduction external to one complete
development of need not be external to all developments of , and in general, externality is not invariant
under . For, consider a TRS = ( ) ( ) , a term = ( ( )), and reductions

: ( ( )) , : ( ( )) ( ), and : ( ). Then we have , is external to , but
not to ; and is not external to = ( ) .
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Lemma 2.1 (Stability Lemma)

Definition 2.5 (Deterministic Family Structure)

Definition 3.1

Lemma 3.1

Proposition 3.1

Deterministic Family structures
redex-family

Deterministic Family Structure
histories

contribution
with history

copy
zig-zag family

family

-needed -essential -erased

erased -erased
discards

-needed -
unneeded -essential

-inessential

-needed self-needed
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Q/P W
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P Q Qv Q v Q
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φ, ψ, . . . F am
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u, v t u v R Fam u Fam v
φ ↪ φ Pu φ P φ

e t s u v s Fam Pu ↪ Fam P u v

P P P
P

P t u t u P P u/P
P u P u

u P NE u, t Q P u P
UN u, t u P ES u, t Q P u
P IE u, t

u

Q t P t s u s NE u, s NE P u, s
NE u, s P Q P P P

P P P
P P u/P u/Q P Q

u t
u P P P
u P P
P v v P P

P t s o v P

P s t e
u v e u P P v
v e u w t w P P v
v t P P v u v u v
u v v P P

([GlKh96]) Let : be external to : , in a stable DRS,
and let create redexes . Then the residuals ( ) of redexes in are created by , and

is external to .

We now recall (DFSs) which are DRSs where in addition a notion of
is axiomatized so that the essence of sharing is captured, and all the known family notions

(mentioned in the introduction) satisfy these axioms [GlKh96]. It is shown in [GlKh96] that any DFS is a
stable DRS.

A (DFS for short)
is a triple = ( ), where is a DRS; is an equivalence relation on redexes with ; and
is the relation on co-initial families, defined as follows:

(1) For any co-initial reductions and , a redex in the final term of (read as )
is called a of a redex , written , if , i.e., + , and is a -residual
of ; the relation is the symmetric and transitive closure of the copy relation [Lév80]. The
relation is an equivalence relation among redexes with histories containing . A is an equivalence
class of the family relation; families are ranged over by . ( ) denotes the family of its argument.

(2) The relations and satisfy the following axioms:
[initial] Let and = , in . Then ( ) = ( ).
[contribution] iff for any , contracts at least one redex in .

[creation] if and creates , then ( ) (( + ) ).
[termination] Any reduction that contracts redexes of a finite number of families is terminating.

In this section, we recall some definitions and results from [KhGl96] concerning standardization of reductions
in non-duplicating (i.e., affine) stable DRSs, ASDRSs. We define , , and redexes,
for any reduction , and list their (relative) properties used in this paper.

Let : and , in a DRS. We call in or if = . We say
that if is external to and erases it.

We call , written ( ), if there is no that is external to , and call it
, ( ), otherwise. We call , ( ), if there is no that discards ,

and call it , ( ), otherwise.
We extend these concepts to reductions co-initial with those containing as a redex of one of its terms.

Let : , : , and . We say ( ), or more precisely ( ), if
( ). We call if so is every redex contracted in . We call if it is -

needed. The other concepts above are extended in the same way.

Note that -neededness, -erasure, and -essentiality do not depend on the choice of a reduction in the
class of reductions Lévy-equivalent to , since = if .

Let , in a DRS.
(1) If is -erased and -essential, then it is -needed.
(2) If is -needed, then it is -essential.
(3) If contracts a redex , then is -needed iff it is -essential.

(4) If : , then is -needed.

Let : , in a stable DRS.
(1) Let create , and let be -unneeded (resp. -inessential). Then so is .
(2) Let be a -residual of , and let be -unneeded (resp. -inessential). Then so is .
(3) Let be -needed (resp. -essential), and let = . Then has at least one -residual , and

it is the only -residual of , then is -needed (resp. -essential).
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Definition 3.2

Definition 3.3

Theorem 3.1 (Standardization)

Definition 4.1

Lemma 4.1

Proof

P t Q P P Q SE Q
v t P Q P

P t SE Q v SE Q/v t SE Q
SE P P SE P

P SE P P

P Q P Q
P Q P P Q Q P

P SE P
P
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Q P Q v

P P Pv P v
P v P

Q t s e u v e Q Q

Q t s e P u Pu P P P u u /P u v
SE Q Q SE Q Q

Q Q ,Q , . . . , Q SE Q Q Q
Q Q Q Q

u Q Q Q i < n

P u P P P P t o s P Q P
Q P u u o u /P u u
Q P /u Q
P u P /u Q P /u u Q P Q

P u u v
SE Q P u P u Pu u u /P

t
P

o
P

s
u

e v

v e

u

e v

u
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Let : and . The , written ( ), is defined as follows:
let be such that it is -needed and its residual is contracted in first among -needed residuals of

-needed redexes in . Then ( ) = + ( ). If there is no such a redex in , then ( ) = .
We call ( ) the and denote it by ( ).

Obviously, a reduction is self-needed iff ( ) = . The notion of self-essential reduction is the best
approximation to the outside-in left-to-right notion of standard reduction [Bar84, HuLé91, Klo80] for DRSs,
since we do not have any nesting relation imposed on redexes, unlike ARSs of [GLM92], and there is no
concept of ‘left’ or ‘right’ occurrences in DRSs. Furthermore, our concept of standardization captures the
essence of the usual one in many respects. In particular, in the extraction process which we study below,
self-essential reductions play the same role as outside-in left-to-right standard reductions in the extraction
processes of [Lév80, AsLa93, Oos96].

We call a reduction in a DRS if it is self-essential. We write if
and both and are standard. For any standard , we define = .

We will use the following Standardization Theorem from [KhGl96].

For any finite reduction in a stable non-duplicating DRS, ( ) is
a standard reduction Lévy-equivalent to .

In this section, we introduce an abstract extraction algorithm and show that zig-zag related redexes (with
histories) have the same canonical representatives, up to an equivalence on histories. These canonical rep-
resentatives are obtained using our extraction algorithm, which leaves out all steps of histories that do not
‘contribute’ to the family.

Let : in an ASDRS, and let . We call if so is . We call
if it is standard and there is no such that the last step in does not create .

Note that if , then is canonical iff so is . So canonical forms we speak of are actually
objects , for standard finite reductions .

Let : and let does not create . Then there is a standard such

that : , where (that is, + and = ) and does not create .
We show that ( ) can be taken for . By Definition 3.2, ( ) is obtained from by a

sequence of transformations = = ( ) such that is obtained from by permuting
the first -needed step that has preceding -unneeded steps before those -unneeded steps (all are
Lévy-equivalent). Since is the last -needed step in by Lemma 3.1.(4), any with has the form

+ such that , and has the form : where is -needed and is
-unneeded. By Proposition 3.1.(1), cannot create , i.e., there is such that = , and is
-needed by Proposition 3.1.(2). Since is -unneeded by Proposition 3.1.(2), and since the last step

of + + is -needed by Lemma 3.1.(4), = . Since is -needed and is -unneeded,
is external to by Proposition 3.1.(3). Hence, by the Stability Lemma, does not create , and the

lemma follows since ( ) = + is standard by Theorem 3.1, and since = .
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Let not be canonical. By Definition 4.1, there is : such that and is a
-residual of some . By Lemma 4.1, can be chosen standard. In , does not ‘contribute’ to , and

in the search for a shortest reduction that creates a redex in the (zig-zag) family of , contraction of
can be omitted – and , since all standard Lévy-equivalent reductions have the same
(minimal) length [KhGl96]. Obviously, reductions creating a redex in some family in a quickest way must
be standard, since they are the shortest in their Lévy-equivalence classes. The transformation of into

is denoted by , or just ; is the transitive and reflexive closure of . The formal
definition is as follows:

Let : be a of , i.e., a standard reduction permutation-
equivalent to , in an ASDRS, and let be a -residual of . Then we write , and call the
transformation an step. (Note that, since is standard, so is by Definition 3.1.)

Since in the above definition , the relation is trivially strongly normalizing, and
in order to proof that it is confluent (modulo on histories), it is enough to prove that it is weakly

confluent: implies . We need a lemma first whose proof can be found in
the appendix.

Let + + and let = . Then there are and such that + ,
+ , , and , = and = .

Every redex in an ASDRS has exactly one canonical form .

It is enough to show that the extraction relation is weakly confluent. So let

with = (since if = then there is nothing to prove). We will show that for some

, , and such that = and = . By Definition 4.2, we have from that
+ + , where is a standard variant of , and = = . By Lemma 4.2, we

have the following situation, where + , + , , = , and = (hence
, ).
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Now, it follows immediately from [stability] that there is a redex in the final term of (and ) such

that = and = . Thus, for = , we have by Definition 4.2.

In a non-duplicating stable DRS, iff they have the same unique canonical form
.

By definition of , implies existence of = = such that
. By the Standardization Theorem, we can take to be standard.

Since , there is such that + and = . Let be a canonical form of
: . Then there is such that + . We show that is + + -needed,

i.e., -needed (since + + ). Suppose on the contrary that contracts a -unneeded redex.
Let be the latest -unneeded step in . By Proposition 3.1.(1), does not create the next step in (if

is not the last step in ), therefore can be permuted with its next step. That -step is again -unneeded
by Proposition 3.1.(2), and can be contracted after its next step, and so on. So we can assume that is
the last step in ( is chosen up to ). Since has a residual along + , it is -essential by
Definition 3.1. Since is -unneeded, it is -inessential by Lemma 3.1.(3). Hence does not create
by Proposition 3.1.(1). But this is impossible since is canonical and is the last step of . So we
have proven that is -needed. This implies that the standardization procedure of Definition 3.2 does not
effect when applied to + + , i.e., we can assume a standard such that = +
for some , and = . Hence by the definition of , and is a canonical form of
both and . Similarly, since , we have that is a canonical form of , and so
on. The theorem now follows from Proposition 4.1.

In this section we establish the main result of this paper – we show that, in ASDRSs, the zig-zag relation
forms a family relation, that is, it satisfies the family axioms of DFSs. We also give a characterization of
Lévy-equivalence via self-needed families.

Below, ( ) (resp. ( )) denotes the set of zig-zag classes whose member (resp. -needed,
or equivalently, -essential) redexes are contracted in , in an ASDRS; and ( ) denotes the zig-zag
class of . This is not in conflict with the notation in Definition 2.5, since we will show that zig-zag is a
family relation.

Let be a standard variant of . Then ( ) ( ).

Let be a redex contracted in , say = + + . Since , ( ) = . But
since is -needed, it has at least one residual along until contracted. Since only contracts
residuals of redexes contracted in , there is a redex contracted in , say = + + , such that



+1

1 2
0 1

1

1

2

i i i

j

j j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

0

0 +1 1 2

0 0 1 2 0

1 1

0 0 +1
+1

0

+1
+1

+1 +1
+1

+1

1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 2 2

z

L

L

L

P
i
u

i
P

i i
v v

i j j

j i j j j i

i j

i
i

i
i

i

j i
i

i
i

j

j

j

i

i

i
i

j

L

L L L L

P u

L
w

S S

S z z
w

z
w

-- - --

?? --
?? -

?? --
??

? -- ? --
?? --

??

? --
?? --

?? --
??

-- - --

??
--

??
- --

?
--

?
--

??
--

'

∅

∅

∅ ∅

∅ ∅ ∅

∅

6 6

≈

≈
⇒ ⇐ 6≈ 6 ∅

6 ∅
6

t 6 t t 6 t
3 6∈

→→

→→ → →→

→ → →→

{ | } { | }

∅

∅
∅

≈
≈ ≈ ≈ ≈

→→ → ∈

≈

≈ ≈

≈ ' ' '

Lemma 5.2
Proof

Lemma 5.3
Proof

Lemma 5.4

Proof

Proposition 5.1
Proof

Lemma 5.5

Proof

′ ′ ′ ′ ′ ′

′ ′′

′

∗

′ ′

′ ′

′ ′′ ′

′ ′′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′

′ ′

−
′

∗
′

∗
′

∗
′

∗ ′ ′ ∗ ′

∗ ′ ′ ′ ′′

′′ ′ ′′

′ ′

′ ′ ′ ′ ′ ′

u/ Q /P v/ P /Q P u Q v

P u P

Q
w

v w

Q

Pu Pv Fam Pu Fam Pv
Fam Pu Fam Pv

Qw Q Q Q P
u w/Q v w Q

P Q P Q FAM P FAM Q
P Q P/Q

P u P P u P u/ Q/P v Q
Q Q v Q u u/ Q /P v v/ P /Q u v

P Q u P Q v Fam P u Fam P Q u Fam P Q v
Fam Q v FAM P Fam u FAM Q

P t SFAM P FAM SE P

P t t t u , u , . . . P P i < i < . . .

SE P t s s s u P P P/ v
v . . . v u v P Fam v Fam u SFAM P
Fam u j , , . . . FAM SE P Fam v j , , . . .

t s
P

t
u

t
P

P P

s t
u

t
P

P

s

v

t

u

t
P

P

P Q P Q SFAM P SFAM Q
P Q P SE P Q SE Q SE P SE Q

FAM SE P FAM SE Q
SFAM P SFAM Q

Q t s e u v e Q v Q v Q
Pu

Q SE Q P u Q P P Q

P u u /P Qv Qv⇀Q v
Q Q w v v /w Q w Q P u

Q P u P u P u Pu P u v⇀ P u v P u P u

P u v P u v ⇀ P u v

( ) = ( ), i.e., , and the lemma follows.

If = , then ( ) = ( ).
Suppose on the contrary that ( ) = ( ). Then they have the same canonical form by

Theorem 4.1, say , and we have from the extraction procedure that there is such that +
and = = (since has only one residual along ) – contradiction.

Let and be standard co-initial finite reductions. Then iff ( ) = ( ).
( ) Immediate from Lemma 5.1. ( ) Suppose on the contrary that , and say = .

Then contracts a redex , say = + + , such that ( ) = . Let be a step in , i.e.,
= + + (see the figure for Lemma 5.1). Then if = ( ) and = ( ), we have = ,

thus ( ) = ( ) . Hence, by Lemma 5.2, ( ) = (( ) ) = (( ) ) =
( ), i.e., ( ) ( ) ( ) – a contradiction.

Let : . Then ( ) = ( ( )).

Let : , and let be all -needed steps in ( ). Then,

by Definition 3.2, ( ) : = , where is the first -needed step in = ( +
+ + ), and is a residual of along . Thus ( ) = ( ). And since ( ) =

( ) = 0 1 and ( ( )) = ( ) = 0 1 , the lemma follows.

= =

Let and be co-initial finite reductions. Then iff ( ) = ( ).
iff (since ( ) and ( ) by the Standardization Theorem) ( ) ( )

iff (by the Standardization Theorem and Lemma 5.3) ( ( )) = ( ( )) iff (by Lemma 5.4)
( ) = ( ).

Let : and create . Then, for any canonical form of , contracts
a redex zig-zag related to .

We have by Lemma 4.1 that = ( ) = + , where + (for some -unneeded

) and = . If is not a canonical form, by Lemma 4.1 there is an extraction step
(i.e., + and = ). Since + = + , we have by Lemma 4.2 that

+ such that . So we have ( + ) ( + ) such that .

Similarly, if ( + ) is not a canonical form, there is an extraction step ( + ) ( + ) such
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that , and so on. So a canonical form of has the form ( + )
such that . Since, by Proposition 4.1, for any canonical form of (and hence of ),

+ and = , it follows by Lemma 5.3 that contracts a redex in the family of .

Let . Then ( ) ( ).

implies that + , and by Lemma 5.1, ( ) ( + ) ( ).

Let be zig-zag classes. We write iff for any , contracts a redex (with
history) in .

Let : and let create . Then ( ) ( ).
By Lemma 5.5, if is a canonical form of , then ( ) ( ). Now it follows from

Lemmas 5.3 and 5.6 that for any , ( ) ( ), i.e., ( ) ( ).

Let : . Then implies ( ) = ( ).
By induction on the number of zig-zag classes -contributing to ( ). Suppose on the

contrary that ( ) = ( ). Let be a canonical form of , i.e., there is such that
+ , and = . So we have that = + + + + + .

Since contracts redexes in all contributor zig-zag classes of ( ) = ( ) = ( ),
and since by the induction assumption no redexes in these classes can be contracted again, is not created
by its preceding step in + + + + , by Lemma 5.7. Similarly, its ancestor redex is not
a created redex, and so on. That is, is a residual of some redex in the final term of , different from

. Hence ( ) = ( ) = ( ) and = , which is not possible by Lemma 5.2 –
a contradiction.

Let be a non-duplicating stable DRS. Then = ( ) is a DFS.
We need to show that satisfies all family axioms. [contribution] is immediate by the definition of

. Since for any , and are canonical forms, = implies by Theorem 4.1 that ,
i.e., [initial] holds. [creation] is immediate from Lemma 5.7, and [termination] from Lemma 5.8.

Recall that a Event Structure (PES) [Win88] is a triple = ( ), where is a set of ,
ranged over by ; the is a non-empty set of subsets of , denoted by

; and the is a partial order on , such that ,
, , and is finite for any .

We are only interested in structures, DPESs, where no event can prevent others from
occurring, and therefore the consistency predicate is the powerset of , and will be omitted.
(or ) of are of , i.e., subsets . It is
immediate from the definition of that:

([GlKh96]) For any DFS = ( ), where is a (sub)DRS whose term domain is
the graph of a term (i.e., the set of terms to which is reducible), = ( ( ) ) is a DPES, where

means that or = , and ( ) is the set of families relative to .
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equivalent. Thus affine DFSs provide more faithful models for orthogonal rewrite systems than DPESs, and
at the same time can easily be interpreted as DPESs.

We have shown that every non-duplicating stable DRS is in fact a DFS with the zig-zag as the family relation.
The latter, when it is a comma-DFS, i.e., its term set is the graph of a single term, can be interpreted as a
Deterministic Prime Event Structure (DPES) by considering families as events and the contribution relation
on families as the causal dependency relation. Important examples of non-duplicating stable DRSs are
several forms of graph rewriting systems, and many authors have studied the correspondence between graph
rewriting systems and Prime Event Structures before [KKSV93, Sch94, CELMR94, CK95]. Our translation
is different, and seems conceptually more clear as it is for Abstract Rewrite Systems. And we construct
an affine DFS model (which is more powerful and informative than the DPES model) , unlike the
above approaches [Sch94, CELMR94] which construct a DPES model by constructing a corresponding trace
language first, and applying known results relating Mazurkiewicz traces with Event Structures [Bed87]. Our
translation is close in spirit to that in [KKSV93], but the latter construction uses syntax of orthogonal Term
Graph Rewriting Systems heavily, and our proofs are completely different.

There are three immediate directions to continue this work. First, the possibility of constructing DFSs
from duplicating stable DRSs must be investigated. In the general case, the [termination] axiom of DFSs
becomes a strong requirement, and extra axioms on stable DRSs may be needed to ensure it. We expect
that a similar extraction algorithm will be applicable, but proofs will become more complicated. Event
Structure semantics for orthogonal rewrite systems with duplicating residual relation are studied, among
others, in [LaMo92, Lan93], but the results there are limited because of the problems with erasure illustrated
by the example in Section 6.

Second, it is natural to extend DPESs with an axiomatized relation or an axiomatized
relation to enable DPESs to give an adequate semantics to orthogonal rewrite systems, and to

cope with the example in the previous section. This is indeed possible, and in an forthcoming paper we show
that such refined event models are isomorphic to affine DFSs, therefore can serve as faithful event models
for orthogonal rewrite systems. (This approach, in particular, solves the problems with erasure discussed
in [Lan93], Chapter 8, and in [KKSV93]).

Finally, we mention that non-deterministic Residual Structures must be considered as well. For example,
normalization by neededness theory for non-orthogonal systems is studied in Boudol [Bou85, Mel96], and
constructions of Event Structures from non-orthogonal graph rewriting systems are studied, among others,
in [CELMR94, CK95].



λ

λ

λ

λ

th

th

th

rd

st

[BBKV76] Barendregt H.P., Bergstra J., Klop J.W., Volken H. Degrees, reductions and representability in the -
calculus. Report 22, University of Utrecht, 1976.

[Bed87] Bednarczyk M. A. Categories of asynchronous systems. PhD Thesis, University of Sussex, Brighton, 1987.
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8 Appendix: Proof of Lemma 4.2
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Lemma 8.2
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We use the following two lemmas from [GlKh96], and three simple new lemmas in this proof.

([GlKh96]) Let : be external to a complete development of , in a DRS, and
let : , then is external to .

([KhGl96]) Let , and let be external to , in a DRS. Then .

Let + + , where = and = + . Then does not create , and
can be contracted after , i.e., + + , where = and = . Further, = and

= ( ).

Let = . Since + is standard, so is by Definition 3.3 and Definition 3.1, so is -needed,
and since , is -needed too, i.e, contracts a residual of . Since contracts residuals of
redexes contracted in , contracts a redex whose residual is . So we have the following picture:

Now, since is external to (since has a -residual and the DRS is non-duplicating), we have
immediately by the Stability Lemma that both and are residuals of some redex in the initial term.
Hence + + , where = and = . Since contracts a residual of , = .
Since is external to , we have by Lemma 8.1 that = is external to . Since is + -needed,
so is by Proposition 3.1.(3). Hence is + -needed. Since is external to and + contracts
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a residual of , we have = .

Let + + and let = . Then .

Suppose on the contrary that . Then + + iff . But, by [acyclicity], this is
only possible when = – a contradiction.

Let . Then any non-empty step in Klop’s diagram of and in -needed.

Since every step in the diagram is a residual of a redex contracted in or , the lemma follows
immediately from Proposition 3.1.(3).

Since + + , we have ( + ) . By Lemma 8.2, ( + ) contracts
a residual of . We show that = .

Suppose on the contrary that = . Then, by [acyclicity], = ( ). Further, by Lemma 8.4, ,
hence = implies = . But + + implies ( ) = . Since + is standard, the
first (and any other) step of whose residual, say , is contracted in is -needed by Lemma 8.5. Hence

= implies = , and therefore = and ( ) = , contrary to = ( ). So = .
Since is + -needed (recall that + is standard), so is , i.e., is -needed. Hence, by [acyclicity],
the first (and the only) step of coincides with , i..e., = . Thus contracts a redex whose
residual is . So if = + + , then ( + ) = + , and we have + + +
and + (see the figure).
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Now, by repeated application of Lemma 8.3, + + can be transformed into a reduction + +
such that + + , = , and = ( ( + )).

Hence, if we take = + , we have that + and . Existence of such that
+ and can be shown similarly. Since ( ( + )) = , we have again by repeated

application of Lemma 8.3 that ( + ) ( ) = . But is external to since
has a + ( )-residual (by ).

Hence we have by Lemma 8.2 and Lemma 8.5 that = . The converse is proved similarly, so .
It follows that = and = .


