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Abstract. In a previous paper, we introduced Stable Deterministic Residual Structures (SDRSs), Ab-
stract Reduction Systems with an axiomatized residual relation which model orthogonal term and graph
rewriting systems, and Deterministic Family Structures (DFSs), which are SDRSs with an axiomatized
notion of redex-family to capture known sharing concepts in the A-calculus and other orthogonal rewrite
systems. In this paper, we start to investigate ways of constructing DFSs from SDRSs. This is interest-
ing for at least the following two purposes: (1) to develop an algebraic theory of sharing for conflict-free
rewrite and transition systems in order understand what properties a sharing concept must possess
in order to imply a reasonable theory of optimal evaluation, and (2) to give an Event Structure style
semantics to conflict-free rewrite and transition systems with erasure. As a first step, which is already
quite complicated, we only consider non-duplicating systems, and show that every non-duplicating
SDRS is already a DFS if the zig-zag is taken for the family relation. (Zig-zag is simply the reflexive
and transitive closure of the residual relation on redexes with histories.) To achieve this, we needed to
develop an abstract extraction procedure, which was thought to require the tree structure of terms,
and to show that the family concepts defined via zig-zag and via extraction yield the same relation. As
a side result, we get a Prime Event Structure semantics for non-duplicating SDRSs. Various forms of
conflict-free Graph Rewriting Systems (or Graph Grammars) fall in the category SDRSs.

1 Introduction

In order to achieve optimal evaluation of A-terms, Lévy introduced a notion of redez-family to capture the
concept of redexes of the ‘same origin’, hoping that it would be possible to mimic reductions contracting
whole families in multi-steps by reduction of some graph representation in which every multi-step would
be represented by contraction of a single redex [Lév78, Lév80]. There was no other way — Barendregt et
al [BBKVT76] showed that there does not exist a one-step optimal recursive [-reduction strategy on A-
terms. Such an implementation has indeed been achieved by Lamping [Lam90] and Kathail [Kat90], reviving
interest in optimal graph reduction. Maranget [Mar91] generalized Lévy’s optimality theory to Orthogonal
Term Rewriting Systems (OTRSs), Gonthier et al [GAL92] simplified Lamping’s technique, and Asperti and
Laneve generalized both Lévy’s optimality theory and Gonthier’s implementation of it to Interaction Systems,
which cover most of the languages with a constructor-destructor discipline [AsLa93, AsLa96]. Recently,
the optimality theory has been generalized to the whole class of orthogonal Higher-order Rewrite Systems
(HORSS) [0O0s96].

Lévy introduced the family concept in three different ways: via a suitable notion of labelling, via extraction,
and as zig-zag. In each definition, a family is a class of objects of the form Pv, where P is a finite reduction
starting from a term ¢ and ending in s, and v is a redex in s. Here P is called the history of Puv; all histories
of redexes in the same family are co-initial, i.e., start at the same term ¢. In the labelling definition of
families, the initial term ¢ gets an initial labelling, and labels grow along the reduction. Two redexes with
co-initial histories are declared to be in the same family if they have the same label. The extraction process
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starting from a redex Pv consists of elimination from P of all redexes ‘not contributing’ to v, and results
in a reduction P’v’ such that P’ is standard (therefore unique in its permutation-equivalence class), and
Pv is a residual of P/, i.e., v is a residual of v/ under some reduction from the final term of P’ to that
of P. Two redexes (with histories) are defined to be in the same extraction-family if the extraction process
yields the same result for both redexes. Finally, the zig-zag relation is defined simply as the transitive and
reflexive closure of the residual relation on redexes with histories. Clearly, all the above family concepts are
equivalence relations, and Lévy showed that they all yield the same concept, in the A-calculus.

The same holds for all orthogonal HORSs R, if all three family concepts are defined in the refinement
of R which decomposes every original R-step into first-order or TRS-step and a number of substitution
steps [00s96]. However, the zig-zag family can be defined directly in R, and this yields a different fam-
ily concept [AsLa93]. Independently and much earlier, Kennaway and Sleep [KeS189] defined their concept
of labelling for orthogonal Combinatory Reduction Systems (CRSs), improving Klop’s original labelling
system for CRSs [K1o80], which cover orthogonal TRSs and Interaction Systems, and their labelling is dif-
ferent from both Maranget’s labelling for OTRSs [Mar91] and Asperti-Laneve’s labelling for Interaction
Systems [AsLa93].

This variety of family concepts, and development of alternative graph rewriting algorithms for optimal
implementation of orthogonal rewriting systems, such as Term Graph Rewriting [KKSV93], Jungle rewrit-
ing [HP91], DAG (Directed Acyclic Graph) rewriting [Mar91], and many others (in particular, covering cyclic
graph reduction as well), inspired by Wadsworth’s original work on graph-based implementation of the \-
calculus [Wad71], created the need to develop an abstract notion of family general enough to cover all the
existing notions, and deep enough to enable proof of normalization and optimality results. Such structures
were indeed introduced by the authors of this paper in [GIKh96] as Deterministic Family Structures (DFSs).
This became possible also due to recent developments of abstract reduction systems with axiomatized resid-
ual relation, such as Concurrent Transition Systems (CTSs) of Stark [Sta89] and Abstract Reduction Systems
of Gonthier et al [GLM92].

Our DFSs are defined as Deterministic Residual Structures (DRSs) with axiomatized family relation.
DRSs, in turn, are Abstract Reduction Systems with axiomatized residual relation, similar to CTSs [Sta89]
and ARSs [GLM92], but with the difference that, unlike CTSs, the residual relation can be duplicating in
DRSs, and unlike ARSs, there is no nesting relation on redexes defined or axiomatized in DRSs. (Therefore,
DRSs cover more rewrite and transition systems than conflict-free CTSs or ARSs.) CTSs have successfully
been used to give semantics to machine networks, while ARSs have been used to study more syntactic
properties of orthogonal rewrite systems, such as standardization. Despite its highly abstract nature, a
counterpart of Berry’s stability property [Ber79] enables one to prove the normalization theorem for all
DRSs, and not only w.r.t. normal forms, but in general for (regular) stable sets of ‘(partial) results’; all
interesting sets of final terms, such as head-normal forms, weak head normal forms, etc, fall in the category
of stable term-sets [GIKh96]. Moreover, a discrete theory of normalization can also be developed in Berry-
stable DRSs, enabling one to construct reductions permutation-equivalent to a particular finite or infinite
reduction, and to prove a version of the Standardization Theorem [KhGl96]. Further, as already mentioned,
in DFSs one can prove the optimality theorem, and DFSs can be interpreted as (deterministic or conflict-free)
Prime Event Structures (DPESs) [NPW81, Win88].

In this paper, we study the possibility of defining a family relation in stable DRSs. We will only consider
non-duplicating DRSs, because of its particularly important semantic applications, and will show that the
zig-zag relation is a family relation in the sense that it satisfies the family-axioms of DFSs. So every non-
duplicating stable DRSs is in fact a DFS with the zig-zag as the family relation. This is achieved by defining
an abstract extraction procedure and showing that zig-zag coincides with the extraction-family relation. For
the extraction-family concept, checking the DFS family axioms are easy. Since families in DFSs, ordered by
the contribution relation, form DPESs, our construction yields a translation of stable determinate CTSs into
deterministic stable Event structures, linking two widely accepted (operational and set-theoretic) models of
computation.

The technical contribution is the simplicity of our construction which avoids irrelevant syntactic com-
plications, such as those related to the top-down and left-to right nature of the conventional concept of



standardization. Actually, the extraction process was claimed to be syntactic in [Lév80] and [AsLa93]. 2

The paper is organized as follows. In next two sections, we recall definitions of DRSs and DFSs, and some
relevant standardization results for them. Section 4 gives a characterization of zig-zag relation via extraction,
used in Section 5 to prove that zig-zag is a family relation in every non-duplicating stable DRS. This is the
main result of this paper, and it is applied in Section 6 to define a translation of stable DCTSs into DPES.
Conclusions appear in Section 7.

2 Deterministic Residual and Family Structures

In this section we recall definition of Deterministic Residual Structures (DRSs), which are Abstract Reduc-
tion Systems (ARSs) satisfying certain properties concerning residuals, and Deterministic Family Structures
(DFSs) which are DRSs with axiomatized family relation on redexes with histories. The definition and some
results about ARSs can be found e.g., in [Klo92]. Our definition is slightly different, and follows that of
Hindley [Hin64].

Definition 2.1 An ARS is a triple A = (Ter,Red,—) where Ter is a set of terms, ranged over by t, s, o, e;
Red is a set of redezes (or redex occurrences), ranged over by u, v, w; and —: Red — (Ter x Ter) is a function
such that for any ¢ € Ter there is only a finite set of u € Red such that — (u) = (¢, s), written t—ss. This set
will be known as the redexes of term ¢, where u € ¢t denotes that u is a member of the redexes of t and U C ¢
denotes that U is a subset of the redexes. Note that — is a total function, so one can identify u with the
triple t—s. A reduction is a sequence t=5t5-3 . . .. Reductions are denoted by P, Q, N. We write P : t — s or

t 55 s if P denotes a reduction (sequence) from t to s, and write P : ¢ —» if P denotes a (finite or infinite)
reduction starting from ¢. |P| denotes the length of P. P + @ denotes the concatenation of P and Q. We
use U, V, W to denote sets of redexes of a term.

DRSs model orthogonal term as well as graph rewrite systems, both first and higher order, and including
the A-calculus and its sharing evaluation models, with the standard Church notion of residual [Lév78, HuLé91,
Klo80, Kat90, Lam90, Kha92, KKSV93, Nip93, Oo0s94, Raad6, Gue96]. Besides CTSs of Stark [Sta89],
and ARS of Gonthier et al. [GLM92], closely related, but more syntactically oriented, models are studied
in [O0s94, Mel96, Raa96].

Definition 2.2 (Deterministic Residual Structure) A Deterministic Residual Structure (DRS) is a pair
R = (4, /), where A is an ARS and / is a residual relation on redexes relating redexes in the source and
target term of every reduction t-5s € A, such that for v € t, the set v/u of residuals of v under u is a set
of redexes of s; a redex in s may be a residual of only one redex in ¢ under u, and w/u = . If v has more
than one u-residual, then u duplicates v. If v/u = (), then u erases v. A redex of s which is not a residual of
any v € t under u is said to be u-new or created by u. The set of residuals of a redex under any reduction is
defined by transitivity.

A development of a set U of redexes in a term ¢ is a reduction P : ¢ —» that only contracts residuals of
redexes from U; the development P is complete if U/P, the set of residuals under P of redexes from U, is
empty 0. Development of () is identified with the empty reduction. U will also denote a complete development
of U C t. The residual relation satisfies the following two axioms, called Finite Developments (FD) [GLM92]
and acyclicity (which appears as axiom (4) in [Sta89)]):

o [FD] All developments are terminating; all co-initial complete developments of the same set of redexes
end at the same term; and residuals of a redex under all complete co-initial developments of a set of redexes
are the same.

e [acyclicity] Let u,v € ¢, let u # v, and let u/v = (). Then v/u # .

We call a DRS R non-duplicating or affine, ADRS, if the residual relation in R is non-duplicating.

2 To quote Lévy [Lév80]: ‘We turn now to the hard part of this paper, which is to show that the family relation is
decidable. The trouble comes from the necessity of looking now inside A-expressions and from not being able to go
on with algebraic manipulations’.



Non-duplicating DRSs which we study here are essentially determinate CTSs, with no distinguished start
states. Having in mind possible generalization of our results to the non-affine case, we will still speak of affine
DRSs, rather than DCTSs.

Similarly to [HuLé91, Lév78, Lév80, Stal9], in a DRS R the residual relation on redexes is extended to
all co-initial reductions as follows: (P1 + P2)/Q = P1/Q + P»/(Q/Py1) and P/(Q1 + Q2) = (P/Q1)/Q2, and
that Lévy-equivalence or permutation-equivalence is defined as the smallest relation on co-initial reductions
satisfying: U+V/U =~ V4+U/V and Q =, Q' = P+Q+ N =~ P+ Q'+ N, where U and V are complete
developments of redex sets in the same term. Further, one defines P < Q iff P/Q = (, and can show that
P~ Qiff P14Qand Q< P;and P<LQ iff Q =y P+ N for some N. Below, P LI Q will denote P+ Q/P.
Intuitively, P ~1 @) means that P can be obtained from () by a number of permutations of adjacent steps,
therefore ‘QQ and P do the same work’; and P < () means that P does less work than @, the difference
being Q/P, so P+ Q/P =y, Q. The above relations can equivalently be defined also using Klop’s method of
commutative diagrams [Klo80, Bar84].

Definition 2.3 We call a DRS R stable (SDRS) if the following axiom is satisfied:
o [stability] If u, v € ¢ are different redexes, t%e, t—s, and u creates a redex w € e, then the redexes in
w/(v/u) are not u/v-residuals of redexes of s, i.e., they are created by u/v (see the diagram).

t e

3 u/v © w/(v/u)

The stability axiom, and more generally Lemma 2.1 below, states that a redex cannot arise from two
‘unrelated’ sources. The notion of 'unrelated’ is formalized by the notion of externality, which expresses the
absence of shared (residuals of) redexes. For syntactic systems externality is a natural concept relating to
overlap between components of terms involved in reduction steps.

Definition 2.4 ([GIKh96]) e Let u € U Ct and P : ¢t —» . We call P external to U (resp. u) if P does not
contract residuals of redexes in U (resp. residuals of u).

e Let Pty AN tiSti —» and Q : tg = s g% Sjgs_j_l,_l —» . We call P external to Q if for any 1, j,
u; /(Q;/P;) Nw; /(Pi/Q;) = 0 (see the diagram, where U; ; = u;/(Q;/FP;) and V; ; = v;/(P;/Q}))-

to t; tit1

Do o
Pi/Q; Ui,

T

Obviously, P is external to the set U iff it is external to any development of U, and is external to a
redex u iff it is external to the reduction contracting u. Note that a reduction external to one complete
development of U need not be external to all developments of U, and in general, externality is not invariant
under ~j,. For, consider a TRS R = {a — a/, f(z) — b, g(z) — ¢}, a term ¢ = f(g(a)), and reductions

P t&f(g(a'))iﬂ), Q:t5f(g(a))2f(c), and N : t% f(c). Then we have Q ~1 N, P is external to N, but
not to @; and P is not external to U = {a, g(a)}.




Lemma 2.1 (Stability Lemma) ([GIKh96]) Let P : ¢ — s be external to @ : t —» e, in a stable DRS,
and let P create redexes W C s. Then the residuals W/(Q/P) of redexes in W are created by P/Q, and
Q/P is external to W.

We now recall Deterministic Family structures (DFSs) which are DRSs where in addition a notion of
redex-family is axiomatized so that the essence of sharing is captured, and all the known family notions
(mentioned in the introduction) satisfy these axioms [GIKh96]. It is shown in [GIKh96] that any DFS is a
stable DRS.

Definition 2.5 (Deterministic Family Structure) A Deterministic Family Structure (DFS for short) F
is a triple F = (R, ~, <), where R is a DRS; ~ is an equivalence relation on redexes with histories; and <
is the contribution relation on co-initial families, defined as follows:

(1) For any co-initial reductions P and @, a redex Qu in the final term of @ (read as v with history Q)
is called a copy of a redex Pu, written Pu <, Qu, if P4 Q, i.e., P+ Q/P =~ @, and v is a Q/P-residual
of u; the zig-zag relation ~, is the symmetric and transitive closure of the copy relation [Lév80]. The family
relation ~ is an equivalence relation among redexes with histories containing ~,. A family is an equivalence
class of the family relation; families are ranged over by ¢, 1, . ... Fam( ) denotes the family of its argument.

(2) The relations ~ and < satisfy the following axioms:
initial] Let u,v € t and u # v, in R. Then Fam(D;u) # Fam(D:v).
contribution] ¢ < ¢’ iff for any Pu € ¢’, P contracts at least one redex in ¢.

creation] if e L5 t%s and u creates v € s, then Fam(Pu) — Fam((P + u)v).
termination] Any reduction that contracts redexes of a finite number of families is terminating.

3 Standardization

In this section, we recall some definitions and results from [KhGl96] concerning standardization of reductions
in non-duplicating (i.e., affine) stable DRSs, ASDRSs. We define P-needed, P-essential, and P-erased redexes,
for any reduction P, and list their (relative) properties used in this paper.

Definition 3.1 e Let P:¢ —» and u € t, in a DRS. We call u erased in P or P-erased if u/P = (). We say
that P discards u if P is external to u and erases it.

e We call u P-needed, written NEp(u,t), if there is no @ ~j P that is external to u, and call it P-
unneeded, UNp(u,t), otherwise. We call u P-essential, ESp(u,t), if there is no Q =~y P that discards w,
and call it P-inessential, IEp(u,t), otherwise.

We extend these concepts to reductions co-initial with those containing u as a redex of one of its terms.

elet@:t —»,P:t Pys ,and u € s. We say NEg(u,s), or more precisely NEg(P'u,s), if
NEg,p (u,s). We call P Q-needed if so is every redex contracted in P. We call P self-needed if it is P-
needed. The other concepts above are extended in the same way.

Note that P-neededness, P-erasure, and P-essentiality do not depend on the choice of a reduction in the
class (P), of reductions Lévy-equivalent to P, since u/P = u/Q if P =y, Q.

Lemma 3.1 Let u € t , in a DRS.
(1) If u is P-erased and P-essential, then it is P-needed.
(2) If u is P-needed, then it is P-essential.
(3) If P contracts a redex v, then v is P-needed iff it is P-essential.
(4) If P:t — s>o0, then v is P-needed.

Proposition 3.1 Let P:s —» te L , in a stable DRS.

(1) Let u create v € e, and let 4 be P-unneeded (resp. P-inessential). Then so is v.

(2) Let v € e be a u-residual of w € ¢, and let w be P-unneeded (resp. P-inessential). Then so is v.

(3) Let v € t be P-needed (resp. P-essential), and let v # u. Then v has at least one u-residual v/, and
it is the only u-residual of v, then v’ is P-needed (resp. P-essential).



Definition 3.2 Let P : ¢t — and Q< P. The P-needed variant of Q, written SEp(Q), is defined as follows:
let v € t be such that it is P-needed and its residual is contracted in @) first among P-needed residuals of
P-needed redexes in t. Then SEp(Q) = v+ SEp/,(Q/v). If there is no such a redex in t, then SEp(Q) = 0.
We call SEp(P) the self-needed variant of P and denote it by SE(P).

Obviously, a reduction P is self-needed iff SE(P) = P. The notion of self-essential reduction is the best
approximation to the outside-in left-to-right notion of standard reduction [Bar84, HuLé91, Klo80] for DRSs,
since we do not have any nesting relation imposed on redexes, unlike ARSs of [GLM92], and there is no
concept of ‘left’ or ‘right’ occurrences in DRSs. Furthermore, our concept of standardization captures the
essence of the usual one in many respects. In particular, in the extraction process which we study below,
self-essential reductions play the same role as outside-in left-to-right standard reductions in the extraction
processes of [Lév80, AsLa93, 00s96].

Definition 3.3 We call a reduction in a DRS standard if it is self-essential. We write P ~g Q if P =~ Q
and both P and @ are standard. For any standard P, we define (P)s = {Q|Q =g P}.

We will use the following Standardization Theorem from [KhG196].

Theorem 3.1 (Standardization) For any finite reduction P in a stable non-duplicating DRS, SE(P) is
a standard reduction Lévy-equivalent to P.

4 Equivalence of Zig-zag and Extraction

In this section, we introduce an abstract extraction algorithm and show that zig-zag related redexes (with
histories) have the same canonical representatives, up to an equivalence on histories. These canonical rep-
resentatives are obtained using our extraction algorithm, which leaves out all steps of histories that do not
‘contribute’ to the family.

Definition 4.1 Let P : ¢t — s in an ASDRS, and let v € s. We call Pv standard if so is P. We call Pv
canonical if it is standard and there is no @ = P such that the last step in @) does not create v.

Note that if P ~g P’, then Pv is canonical iff so is P'v. So canonical forms we speak of are actually
objects (P)gv, for standard finite reductions P.

Lemma 4.1 Let Q : ¢t L5 s%e and let u does not create v € e. Then there is a standard Q' ~1 Q such

that Q' : t D» s'“se, where P'u’ <, Pu (that is, P &~ P’ + P" and u = «//P") and «’ does not create v.

Proof We show that SE(Q) can be taken for @’. By Definition 3.2, SE(Q) is obtained from @ by a
sequence of transformations Q = Q1,Q2, ..., Q, = SE(Q) such that Q;;1 is obtained from Q; by permuting
the first @Q-needed step that has preceding Q-unneeded steps before those Q-unneeded steps (all Q; are
Lévy-equivalent). Since u is the last @-needed step in @ by Lemma 3.1.(4), any Q; with ¢ < n has the form

P; + u such that P; ~; P, and P,_; has the form P,_q : t Pyo i; s where P’ is -needed and P” is
Q-unneeded. By Proposition 3.1.(1), P” cannot create u, i.e., there is u’ € o such that u'/P"” = u, and v’ is
Q-needed by Proposition 3.1.(2). Since P”/u’ is Q-unneeded by Proposition 3.1.(2), and since the last step
of P'+u' 4+ P"/u' is Q-needed by Lemma 3.1.(4), P"”/u’ = (). Since v’ is Q-needed and P” is Q-unneeded,
P" is external to u' by Proposition 3.1.(3). Hence, by the Stability Lemma, u’' does not create v, and the
lemma follows since SE(Q) = P’ + v’ is standard by Theorem 3.1, and P'vw’ <, Pu since u = u'/P".
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Let (P)sv not be canonical. By Definition 4.1, there is @ : ¢ B e s such that Q ~p Pandvisa
u-residual of some v’ € e. By Lemma 4.1,  can be chosen standard. In @, u does not ‘contribute’ to v, and
in the search for a shortest reduction that creates a redex in the (zig-zag) family of Qu, contraction of u
can be omitted — P'v’ ~, Pv and |P’| < |P)|, since all standard Lévy-equivalent reductions have the same
(minimal) length [KhGl196]. Obviously, reductions creating a redex in some family in a quickest way must
be standard, since they are the shortest in their Lévy-equivalence classes. The transformation of Pv into
P'v is denoted by Pv—=P"v/, or just Pu—P’v'; — is the transitive and reflexive closure of —. The formal
definition is as follows:

Definition 4.2 Let @ : ¢ Py e%s be a standard variant of P, ie., a standard reduction permutation-
equivalent to P, in an ASDRS, and let v € s be a u-residual of v/ € e. Then we write Pv—P’v’, and call the
transformation an extraction step. (Note that, since @ is standard, so is P’ by Definition 3.1.)

Since in the above definition |P’| < |Q| < |P|, the relation — is trivially strongly normalizing, and
in order to proof that it is confluent (modulo ~g on histories), it is enough to prove that it is weakly
confluent: Qu” < Nw-=2Pw'’ implies Qu” -~ N*w*£-Pw’. We need a lemma first whose proof can be found in
the appendix.

Lemma 4.2 Let P+ u =g Q + v and let u # v. Then there are P'v' and Q'u’ such that P’ + v =g P,
Q +u =5 Q, P ~sg Q, Pv ~, Quand Qv ~, Pu,u=u'/v and v =v'/u’.

P’ v’ U

0 0 0

Proposition 4.1 Every redex Pv in an ASDRS has exactly one canonical form (Q’)sv’.

Proof It is enough to show that the extraction relation — is weakly confluent. So let Qu” <~ Nw-=Pw’
with u # v (since if 4 = v then there is nothing to prove). We will show that Qw”i’\N*w*}]—,Pw' for some
N*w*, v/, and v such that v = u//v" and v = v’ /u’. By Definition 4.2, we have from Qu"<-Nw-=Puw’ that
Q+ v =g N’ ~g P+ u, where N’ is a standard variant of N, and w” /v = w’'/u = w. By Lemma 4.2, we
have the following situation, where P’ + v’ =g P, Q' + v/ =g Q, P' =g Q', u = u'/v’, and v = v'/u’ (hence
PV ~, Qu, Qv ~, Pu).

P’ v u
Q’L 0 0 ) 0 L@

u

—»».—».911)'—»

y " v 2 L@
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Now, it follows immediately from [stability] that there is a redex w* in the final term of P’ (and Q') such
that w* /v’ = w’ and w*/u’ = w"”. Thus, for N* = P/, we have Qu" > N*w* - Pw' by Definition 4.2.

Theorem 4.1 In a non-duplicating stable DRS, Pu ~, Qu iff they have the same unique canonical form
(N)sw.

Proof By definition of ~,, Pu ~, Qv implies existence of Pyuy = Pu, Piui,...Pyu, = Qv such that
Poug >, Piuy 4, Pous >, ... Pyu,. By the Standardization Theorem, we can take P; to be standard.

Pyug
A

@

Pruy — Pyuy
A

T

P3uz

\

Pouy,

Since Pyug >, Pyug, there is Q1 such that Py =~y P + Q1 and ug = u1/Q1. Let Pju} be a canonical form of
Piuy @ Piug — Pju). Then there is P;* such that P; ~g Pj + P;. We show that P; is P{ 4+ P + Q1-needed,
i.e., Py-needed (since P| + Py + Q1 ~1 P). Suppose on the contrary that P; contracts a Py-unneeded redex.
Let w be the latest Pp-unneeded step in P]. By Proposition 3.1.(1), w does not create the next step in P; (if
w is not the last step in P]), therefore can be permuted with its next step. That w-step is again P;-unneeded
by Proposition 3.1.(2), and can be contracted after its next step, and so on. So we can assume that w is
the last step in Pj (Pj is chosen up to ~g). Since u} has a residual along Py + @1, it is Py-essential by
Definition 3.1. Since w is Pp-unneeded, it is Pp-inessential by Lemma 3.1.(3). Hence w does not create u)
by Proposition 3.1.(1). But this is impossible since Pju is canonical and w is the last step of P|. So we
have proven that P; is Pp-needed. This implies that the standardization procedure of Definition 3.2 does not
effect P] when applied to P| + P;f + @1, i.e., we can assume a standard P} =g Py such that Pj = P, + P}/
for some PJ/, and ug = u}/P}. Hence Pyug — Pjuj by the definition of —, and Pju} is a canonical form of
both Pyug and Pyu;. Similarly, since Pyuy <, Poug, we have that Pju} is a canonical form of Pous, and so
on. The theorem now follows from Proposition 4.1.

5 Affine Zig-zag Families

In this section we establish the main result of this paper — we show that, in ASDRSs, the zig-zag relation
forms a family relation, that is, it satisfies the family axioms of DFSs. We also give a characterization of
Lévy-equivalence via self-needed families.

Below, FAM(P) (resp. SFAM(P)) denotes the set of zig-zag classes whose member (resp. P-needed,
or equivalently, P-essential) redexes are contracted in P, in an ASDRS; and Fam(Qu) denotes the zig-zag
class of Qu. This is not in conflict with the notation in Definition 2.5, since we will show that zig-zag is a
family relation.

Lemma 5.1 Let P be a standard variant of Q). Then FAM (P) C FAM(Q).

Proof Let u be a redex contracted in P, say P = P’ + u + P”. Since P =~ @, u/(Q/P’) = (. But
since u is P-needed, it has at least one residual along @/P’ until contracted. Since Q/P’ only contracts
residuals of redexes contracted in @, there is a redex v contracted in Q, say Q@ = Q' +v + Q", such that



u/(Q'/P") =v/(P'/Q’), i.e., P'u ~, Q'v, and the lemma follows.

0 0 0

Lemma 5.2 If Pu# Pv, then Fam(Pu) # Fam(Pv).

Proof Suppose on the contrary that Fam(Pu) = Fam(Pv). Then they have the same canonical form by
Theorem 4.1, say Qw, and we have from the extraction procedure that there is Q" such that Q + Q' ~; P
and u = w/Q’' = v (since w has only one residual along Q') — contradiction.

Lemma 5.3 Let P and @ be standard co-initial finite reductions. Then P =, Q iff FAM (P) = FAM(Q).
Proof (=) Immediate from Lemma 5.1. (<) Suppose on the contrary that P #; @Q, and say P/Q # 0.
Then P contracts a redex u, say P = P’ + u + P”, such that u/(Q/P’) # (. Let v be a step in Q, i.e.,
Q = Q' +v+Q" (see the figure for Lemma 5.1). Then if v’ = u/(Q’/P’) and v' = v/(P’/Q’), we have v’ # v/,
thus (P'UQ")u # (P'UQ')v. Hence, by Lemma 5.2, Fam(P'u) = Fam((P'UQ")u') # Fam((P'UQ)V') =
Fam(Q'v), i.e., FAM(P) 3> Fam(u) ¢ FAM(Q) — a contradiction.

Lemma 5.4 Let P:ty —» . Then SFAM(P) = FAM(SE(P)).

Proof Let P : tg 5, tiSti Pi-; , and let w;,,u;,,... be all P-needed steps in P (i1 < i2 < ...). Then,
by Definition 3.2, SE(P) : to = so—%51—sy —» , where u;; is the first P](—needed step in P]( = P/(vo +
v1 + ...+ v;-1), and u;; is a residual of v; along P;. Thus Fam(v;) = Fam(u;;). And since SFAM (P) =
{Fam(u;)|j=0,1,...} and FAM(SE(P)) = {Fam(v;)|j = 0,1,...}, the lemma follows.
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Proposition 5.1 Let P and @ be co-initial finite reductions. Then P ~j, Q iff SFAM (P) = SFAM(Q).
Proof P ~;, Q iff (since P ~1, SE(P) and Q =1, SE(Q) by the Standardization Theorem) SE(P) ~1, SE(Q)
iff (by the Standardization Theorem and Lemma 5.3) FAM(SE(P)) = FAM(SE(Q)) iff (by Lemma 5.4)
SFAM(P) = SFAM(Q).

Lemma 5.5 Let Q* : ¢ Ly s%e and u create v € e. Then, for any canonical form Q'v' of Q*v, Q' contracts
a redex zig-zag related to Pu.

Proof We have by Lemma 4.1 that Q@ = SE(Q*) = P’ + v/, where Q =~ P’ + P” (for some Q-unneeded
P") and u = u//P". If Qu is not a canonical form, by Lemma 4.1 there is an extraction step Qu—2Qiv;
(ie., @ =5 Q1 +wy and v = vy/wy). Since Q1 + w1 ~s Q@ = P’ + v/, we have by Lemma 4.2 that
Q1 ~s P +uy such that Pyuy ~, P'u’ ~, Pu. So we have (P’ 4 u/)v"2(P; + u1)v; such that Pyu; ~, P'u/'.
Similarly, if (P; + u1)v; is not a canonical form, there is an extraction step (P; + ul)vlwi(Pg + ug2)ve such



that Pyug ~, Piu; ~, P'v/ ~, Pu, and so on. So a canonical form of Qv has the form (P, + um)vm
such that Pu ~, P,un,. Since, by Proposition 4.1, for any canonical form Q’v’ of Qv (and hence of Q*v),
Q' ~g P,, + u,, and v, = v, it follows by Lemma 5.3 that Q' contracts a redex in the family of Pu.

Lemma 5.6 Let Pv—=P’v'. Then FAM(P') C FAM(P).
Proof Pv-*P’v/ implies that P ~; P’ + w, and by Lemma 5.1, FAM (P') C FAM(P' 4+ w) C FAM(P).

Definition 5.1 Let ¢, ¢ be zig-zag classes. We write ¢/ —, ¢ iff for any Pu € ¢, P contracts a redex (with
history) in ¢'.

Lemma 5.7 Let Q : e - t-%s and let u create v € s. Then Fam(Pu) <, Fam(Qu).
Proof By Lemma 5.5, if Q'v' is a canonical form of Qu, then Fam(Pu) € FAM(Q’). Now it follows from
Lemmas 5.3 and 5.6 that for any Q*v* ~, Qu, Fam(Pu) € FAM(Q*), i.e., Fam(Pu) <, Fam(Qv).

Lemma 5.8 Let P : tg LN ti%t;i 1 — t,. Then k < m implies Fam(Pyug) # Fam(Pmvn,).

Proof By induction on the number of zig-zag classes < ,-contributing to Fam(Pyuy). Suppose on the
contrary that Fam(Pyur) = Fam(Py,vy,). Let Pluj, be a canonical form of Pyuy, i.e., there is Q) such that
P+ Q). =1 Pj, and ui, = u}/Q). So we have that Pry1 = Py +up =1 P, + Q) +ur =~ P} +u) + Q) /uj.
Since P}, contracts redexes in all contributor zig-zag classes of Fam(Pju}) = Fam(Pyui) = Fam(Ppun),
and since by the induction assumption no redexes in these classes can be contracted again, u,, is not created
by its preceding step in uj + Q. /u}, + Uk41+ ...+ Um—1, by Lemma 5.7. Similarly, its ancestor redex is not
a created redex, and so on. That is, u,, is a residual of some redex u/, in the final term of P}, different from
u},. Hence Fam(Pju},) = Fam(Pynumy) = Fam(Pju,,) and uj, # u,, which is not possible by Lemma 5.2 —
a contradiction.
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Theorem 5.1 Let R be a non-duplicating stable DRS. Then Fr = (R, ~,,<.) is a DFS.

Proof We need to show that Fr satisfies all family axioms. [contribution] is immediate by the definition of
.. Since for any u,v € t, §;u and ;v are canonical forms, u # v implies by Theorem 4.1 that Q;u 2, 0;v,
i.e., [initial] holds. [creation] is immediate from Lemma 5.7, and [termination] from Lemma 5.8.

6 An application

Recall that a Prime Event Structure (PES) [Win88] is a triple £ = (E, Con, <), where E is a set of events,
ranged over by e, ey,...; the consistency predicate Con is a non-empty set of subsets of E, denoted by
X,Y,...; and the causal dependency relation < is a partial order on FE, such that {e} € Con, Y C X €
Con=Y €Con, X e ConNTe' € Xe<e = XU{e} € Con, and {€'| e’ < e} is finite for any e € E.

We are only interested in deterministic structures, DPESs, where no event can prevent others from
occurring, and therefore the consistency predicate is the powerset of E, and will be omitted.? Configurations
(or states) of ES are left-closed subsets a, 3,... of E, i.e., subsets {a CEle€ EAe <e=¢ €a}. Itis
immediate from the definition of < that:

Theorem 6.1 ([GIKh96]) For any DFS F; = (R:, ~, <), where R; is a (sub)DRS whose term domain is
the graph of a term ¢ (i.e., the set of terms to which ¢ is reducible), Efit = (FAM(t), =) is a DPES, where
¢—1 means that ¢ — 1 or ¢ =1, and FAM (¢) is the set of families relative to ¢.

3 Determinism in ESs is defined differently in [Ren96].



Note that F; = (R:, ~, <) holds much more information than 5}% = (FAM(t),=), asin 5}% one can no
longer speak of inessentiality of an event for a configuration of events, or speak of equivalence of configurations
FAM(P) and FAM(Q) for permutation-equivalent reductions P and Q. For example, consider the DPES
5}% corresponding to the rewrite system R; with rules {I(z) — ¢, a — b} and with the graph of ¢t = I(a)

as the set of terms. Its events are I(a)->I(b) and I(a)lg)c (the steps I(b)lg)c and I(a)lg)c represent the

same event); and its configurations are o = {I(a)}, 8 = {a}, and v = {a,I(a)}. Then «a, 8 and v are
different configurations, while it is natural to identify o with =y, since the corresponding reductions are Lévy-
equivalent. Thus affine DFSs provide more faithful models for orthogonal rewrite systems than DPESs, and
at the same time can easily be interpreted as DPESs.

7 Conclusions and Future Work

We have shown that every non-duplicating stable DRS is in fact a DF'S with the zig-zag as the family relation.
The latter, when it is a comma-DFS, i.e., its term set is the graph of a single term, can be interpreted as a
Deterministic Prime Event Structure (DPES) by considering families as events and the contribution relation
on families as the causal dependency relation. Important examples of non-duplicating stable DRSs are
several forms of graph rewriting systems, and many authors have studied the correspondence between graph
rewriting systems and Prime Event Structures before [KKSV93, Sch94, CELMR94, CK95]. Our translation
is different, and seems conceptually more clear as it is for Abstract Rewrite Systems. And we construct
an affine DFS model (which is more powerful and informative than the DPES model) directly, unlike the
above approaches [Sch94, CELMR94] which construct a DPES model by constructing a corresponding trace
language first, and applying known results relating Mazurkiewicz traces with Event Structures [Bed87]. Our
translation is close in spirit to that in [KKSV93], but the latter construction uses syntax of orthogonal Term
Graph Rewriting Systems heavily, and our proofs are completely different.

There are three immediate directions to continue this work. First, the possibility of constructing DFSs
from duplicating stable DRSs must be investigated. In the general case, the [termination] axiom of DFSs
becomes a strong requirement, and extra axioms on stable DRSs may be needed to ensure it. We expect
that a similar extraction algorithm will be applicable, but proofs will become more complicated. Event
Structure semantics for orthogonal rewrite systems with duplicating residual relation are studied, among
others, in [LaMo092, Lan93], but the results there are limited because of the problems with erasure illustrated
by the example in Section 6.

Second, it is natural to extend DPESs with an axiomatized erasure relation or an axiomatized permutation-
equivalence relation to enable DPESs to give an adequate semantics to orthogonal rewrite systems, and to
cope with the example in the previous section. This is indeed possible, and in an forthcoming paper we show
that such refined event models are isomorphic to affine DFSs, therefore can serve as faithful event models
for orthogonal rewrite systems. (This approach, in particular, solves the problems with erasure discussed
in [Lan93], Chapter 8, and in [KKSV93]).

Finally, we mention that non-deterministic Residual Structures must be considered as well. For example,
normalization by neededness theory for non-orthogonal systems is studied in Boudol [Bou85, Mel96], and
constructions of Event Structures from non-orthogonal graph rewriting systems are studied, among others,
in [CELMRY94, CK95].
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8 Appendix: Proof of Lemma 4.2

We use the following two lemmas from [GIKh96], and three simple new lemmas in this proof.

Lemma 8.1 ([GIKh96]) Let P : ¢ — s be external to a complete development N of F C ¢, in a DRS, and
let @ :t — o, then P/Q is external to N/Q.

Lemma 8.2 ([KhGl196]) Let u € to £, t1., and let P be external to u, in a DRS. Then u %, P.

Lemma 8.3 Let u+ P ~g Q + v/, where v/ = u/Q and P = v + P’. Then u does not create v, and u
can be contracted after v, i.e., u +v ~p v* + u*, where v = v*/u and u* = u/v*. Further, v*/Q = @ and
u=ut/(Q/v").

Proof Let Q' = Q/u. Since u+ P is standard, so is P by Definition 3.3 and Definition 3.1, so v is P-needed,
and since P =~ Q', v is @Q-needed too, i.e, Q' contracts a residual v’ of v. Since )’ contracts residuals of
redexes contracted in ), @ contracts a redex v” whose residual is v'. So we have the following picture:

N
C
o

Now, since @ is external to u (since u has a @Q-residual v’ and the DRS is non-duplicating), we have
immediately by the Stability Lemma that both v and v" are residuals of some redex v* in the initial term.
Hence u + v & v* + u*, where v = v*/u and u* = u/v*. Since @ contracts a residual v of v*, v*/Q = 0.
Since @ is external to u, we have by Lemma 8.1 that Q* = Q/v* is external to u*. Since u is u + P-needed,
so is u* by Proposition 3.1.(3). Hence u* is Q* + u’-needed. Since @Q* is external to u* and Q* + ' contracts



a residual of u*, we have u' = u*/Q*.
)

Lemma 8.4 Let P+ u~g @+ v and let u #v. Then P #p Q.
Proof Suppose on the contrary that P =y Q. Then P + u ~g Q + v iff u ~, v. But, by [acyclicity], this is
only possible when u = v — a contradiction.

Lemma 8.5 Let P ~g ). Then any non-empty step in Klop’s diagram of P and ) in P-needed.
Proof Since every step in the diagram is a residual of a redex contracted in P or @, the lemma follows
immediately from Proposition 3.1.(3).

Proof of Lemma 4.2 Since P+u ~g Q +v, we have v =1, (P+u)/Q. By Lemma 8.2, (P+u)/Q contracts
a residual of v. We show that P/Q # 0.

Suppose on the contrary that P/Q = (). Then, by [acyclicity], v = u/(Q/P). Further, by Lemma 8.4, P %}, @,
hence P/Q = () implies Q/P # 0. But P + u ~1 Q + v implies (Q/P)/u = ). Since @ + v is standard, the
first (and any other) step of @ whose residual, say w, is contracted in Q/P is u-needed by Lemma 8.5. Hence
w/u = () implies u = w, and therefore Q/P = u and u/(Q/P) = 0, contrary to v = u/(Q/P). So P/Q # 0.
Since P is P+u-needed (recall that P+u is standard), so is P/Q, i.e., P/Q is v-needed. Hence, by [acyclicity],
the first (and the only) step of P/Q coincides with v, i..e., P/Q = v. Thus P contracts a redex v" whose
residual is v. So if P = P; +v" + P», then (Q +v)/Py = Q/P; + v, and we have v/ + P, + u =g Q/P1 +v
and v’ + Py 1, Q/P; (see the figure).




Now, by repeated application of Lemma 8.3, v/ + P, + u can be transformed into a reduction Py + v' + u
such that v’ + Py =g Pj+ v, v/ =" /Pj, and v =" /(Q/(P1 + Pj)).

0 0 0 0

Hence, if we take P’ = P; + P, we have that P’ +v' ~¢ P and P'v’' <, Qu. Existence of Q’u’ such that
Q'+ ~g5 Q and Qv <, Pu can be shown similarly. Since P> /(Q/(P;+v")) = 0, we have again by repeated
application of Lemma 8.3 that P'/Q ~1 P'/(Q' +u') =1 (P'/Q’)/v = 0. But P'/Q’ is external to u’ since
u' has a P/Q" ~p P'/Q" +v'/(Q'/P’)-residual (by Q'u’ <1, Pu).

0 0 0

Hence we have by Lemma 8.2 and Lemma 8.5 that P’/Q’ = (). The converse is proved similarly, so P’ =, Q’.
It follows that u = u//v" and v =o' /u’.
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