Parallel Implementation through Object Graph
Rewriting

John Glauert

jrwg@sys.uea.ac.uk
School of Information Systems
University of East Anglia
Norwich NR4 7TJ, UK
Tel: +44 603 592671
Fax: +44 603 507720

Abstract. The Object Graph Rewriting (OGRe) model is an abstract
machine which combines ideas from graph rewriting and process calculi.
OGRe has been designed for implementing multi-paradigm languages
such as Facile, which combines functional and concurrent programming.
Simple objects, with state given by term structures, respond to messages,
also represented as terms. New objects may be created and new messages
sent, while the original object either remains unaffected or changes state.
The model is inherently concurrent, but fine-grained, so distributed im-
plementation is not necessarily beneficial.

We introduce OGRe with some simple examples and explain how primi-
tives are added which can trigger concurrent execution when appropriate.

1 Introduction and Background

Designers of multi-paradigm languages need to find a common semantic frame-
work in which to unite the paradigms available in the language. At the imple-
mentation level it is necessary to consider the characteristics of the computa-
tional models concerned. For example: in conventional languages, dataflow, and
strict functional languages computation proceeds immediately; lazy functional
languages require a demand to say that a computation is needed; computations
in concurrent logic languages may block waiting for instantiation of shared vari-
ables.

The present work arose out of a study of implementation techniques for
Facile [7], a multi-paradigm programming language which combines functional
and concurrent programming in a symmetric fashion. Existing practical imple-
mentations of the language [8] use Standard ML to provide the functional part
of the language, with concurrency primitives introduced through a library of
new system functions. In this implementation the process features of Facile are
mapped to light-weight threads, and are therefore more expensive to use than
the functional features.

In its pure form, Facile enhances the A—calculus with primitives for process
spawning and channel-based communication in the style of CCS [14]. Using the
m—calculus [17] and its polyadic form [16], Milner shows that a A—expression may



be translated to a process network which simulates the A—expression [15]. Similar
work was done by Leth [11].

Building on such process translations of the A—expression new translations
were developed to map both the functional and concurrent features of Facile into
networks of small processes. This provides a uniform representation of all features
of the language, so that the relative cost of using the concurrent features of Facile
is much reduced. The ultimate goal is to exploit the inherent concurrency of the
process networks in an implementation on a parallel machine.

A number of options were considered when selecting the underlying process
calculus. One approach was to use process notations close to the Polyadic m—
Calculus [16] in which communication is name or channel-based. Translations
such as those of Milner may be employed as reported in [5] and [4]. In these
models the names can be thought of as independent entities which act as brokers,
arranging communications between processes. Similar ideas appear in [19].

However, when the translation schemes mentioned above are analysed we
find that: the channels used are closely associated with a particular process; this
process is the only one to receive messages from the channel; and furthermore,
the process receives messages from no other channel. Finally, no process needs
to synchronise on the reception, by a remote process, of messages it has sent.

Exploiting these facts, a model was developed in which communicating agents
use asynchronous process-based (or location-based point-to-point) communica-
tion. This contrasts with the synchronous channel-based (or name-based) com-
munication of CCS, and the m—calculus. The essence of this process calculus is
captured by a rewriting model Object Graph Rewriting (OGRe) which can be
seen as a very minimal version of Paragon [1]. Although the first application of
OGRe has been in the implementation of Facile, the model is general and can
be used to implement a number of other computational models rather directly.
The characteristics of the model have been chosen carefully in order to allow a
very simple implementation of OGRe on existing hardware.

In the next section we introduce the Object Graph Rewriting model of com-
putation. Section 3 provides an outline of the way in which the model may be
used to model a number of programming language styles. Section 4 discusses
the existing implementation of OGRe and potential for future exploitation of
the model. It is argued that the design of OGRe makes it possible to generate
an efficient pseudo-parallel implementation on sequential machines or to pro-
vide medium- or fine-grain parallel processes for hardware architectures able to
exploit low level concurrency.

2 OGRe: A Small Process Language

The Object Graph Rewriting (OGRe) language models a computation by a set
of named processes which exchange messages. Pattern-directed rewriting rules
determine the way in which a process responds to the arrival of a message.
Computation proceeds by picking a message and the process to which it is
directed, and replacing them by new processes and messages as specified by a



matching rewrite rule.

Each OGRe process has a name taken from an unbounded set of process
names such that each newly created process has a distinct name.

An OGRe system has a finite set of state term symbols, used to construct
process states, and a finite set of data term symbols, used to construct messages,
and also subterms of process states and messages. The symbol sets are disjoint.
Each symbol has a fixed arity which determines the number of arguments of
terms which are created. Term arguments may also include process names and
primitive data values, such as integers.

OGRe rules may also use primitive operation symbols (disjoint from other
symbols) for representing basic functions over primitive data values. Rules also
use variables which are bound during pattern matching to process names, data
terms, or primitive data values.

2.1 OGRe Processes

An example of a process declaration is m : LSubL(p, Int(15)) where m is the
name of the process. The process state is given by the term LSubL(p, Int(15))
with a state term symbol and zero or more arguments. Arguments may be process
names, primitive data values and data terms. In the example above, the process
has state term symbol LSubL and two arguments. The first, p, is a process name
and the second, Int(15) is a data term with a primitive data value as argument.

2.2 OGRe Messages

An example of a message specification is a! R(Int(2)). Messages are directed to
a named process and have contents defined by a data term. In the example, the
target process is named a and the data term of the message has symbol R and
a single argument Int(2) which represents a boxed integer value.

2.3 OGRe Rules

OGRe computation is determined by pattern-directed rewriting rules. The pat-
tern for a rule has a pattern for the state term of a process, and a pattern for
the data term for a message directed to that process. The pattern contains a
variable that will be bound to the name of the root process, and may contain
other variables which can match process names, data values, or data terms in
the process state or message.

The right hand side of an OGRe rule always contains a declaration for the
root process named in the pattern. Often, for functional processes, the state
is unchanged, but in rules for mutable processes the arguments and even the
symbol of the state term may be changed.

No variable may appear more than once in the pattern, except for the name
of the root process which is also the target of the message. A state term may
not consist of just a variable. All variables naming processes declared in the



body must be unique. The variable naming the root process must be included,
but all other variables in the pattern may only be used as arguments to terms.
Variables naming the result of applying primitive functions must be unique. All
variables occurring only in the body must name results of primitive functions,
or processes declared in the body.

e : Start, e! POMTrigger —
p: PrintL, m : LSubL(p, Int(15)), a: RMul(m),
a! L(Int(6)), a! R(Int(2)), e: Start;
r: RMul(d), v L(l) —
r: RMulL(d,l);
r: RMul(d), v R(l) —
r: RMulR(d, l);
r: RMulL(d, Int(a)), r! R(Int(b)) —
¢ = PMul(a,b), r: Done, d! R(Int(c));
r: RMulR(d, Int(a)), r! L(Int(b)) —
¢ = PMul(a,b), r : Done, d! R(Int(c));
r: LSubL(d, Int(a)), r! R(Int(b)) —
¢ = PSub(a,b), r : Done, d! L(Int(c));
r: PrintL, r! L(v) —
p: Print, r: Done, p!Unit(v);

Fig. 1. OGRe dataflow rules for an arithmetic expression

Figure 1 gives a set of OGRe rules which model a computation by dataflow.
In dataflow, an operator waits for the arrival of a number of tokens carrying
data values. The operator then computes a result and sends it on to a further
operator. In a model of dataflow in OGRe, operation nodes become processes
and data tokens become messages.

In line with the tagged dataflow model of the Manchester Dataflow Ma-
chine [6], we will label tokens as left or right arguments using symbols L and
R. When processes representing nodes are created, they will take an argument
indicating the node to receive the result. The state symbol of the process indi-
cates which argument of the successor node will be formed by the result token.
Hence a process with state RMul(p) creates a result token which will become
the right-hand argument for process p.



The first rule

e: Start, e! POMTrigger —
p: PrintL, m : LSubL(p, Int(15)), a : RMul(m),
a! L(Int(6)), a! R(Int(2)), e: Start;

will always match the initial configuration of an OGRe computation. In this case
it creates three new processes and two new messages, both in this case directed
to the same process. The state of the root process, Start, is unchanged as the
process is functional.

The rules for RMwul, RMulL and RMulR model dataflow nodes which multi-
ply their arguments and send their result to a destination node as the right-hand
argument. The two RMul rules take in the first argument and change the process
state to hold the first argument and await the second. The auxiliary rules RMulL
and RMulR await right, or left-hand arguments respectively. They compute a
result, send it on, and become a Done process.

The processes are mutable since the first argument to arrive must be captured
and will affect the behaviour when the second arrives. Dataflow nodes which take
a literal argument can be modelled by auxiliary nodes with suitable arguments
as in the process m : LSubL(p, Int(15)) which awaits an argument and will
subtract it from 15. This corresponds to an intermediate state which would arise
if a process m : LSub(p) received a message m! L(Int(15)) where LSub is defined
by analogy with RMul.

The rule for RMulL

r: RMulL(d, Int(a)), ! R(Int(b)) —
¢ = PMul(a,b), v : Done, d! R(Int(c));

illustrates the final form of element which can appear on the right hand side of
a rule: ¢ = PMul(a,b) represents a primitive function to multiply data values
for incorporation in new processes and messages.

2.4 OGRe Rewriting

OGRe computation involves a series of rewrites corresponding to the reception
of messages by processes. Each rewrite consumes a message, but may create
new messages and processes. Messages correspond to tasks to be performed, and
when no further messages exist, computation ceases.

When a process receives a message, the state term of the process and the data
term forming the message are matched against the patterns of the OGRe rules.
When a match is found, the message is absorbed, the state of the process may be
changed, and new process and messages may be generated. Rule application may
also apply primitive functions, such as the arithmetic operations on integers.

A process is only involved in computation if it receives messages. If a process
is not the destination of an existing message, and its name is not the argument



of a state term or data term in some other process or message, then the process
can never receive messages and may be garbage collected.

The sequence of execution for the dataflow computation is shown in Figure 2
which computes 15 — (6 2) and sends the result to a function Print. The result
of the multiplication will become the right-hand argument of the subtraction
node. The result of the subtraction becomes the left-hand (and only) argument
of the print function.

e : Start, e! POMTrigger

— p: PrintL, m : LSubL(p, Int(15)), a: RMul(m),
a! L(Int(6)), a! R(Int(2))

— p: PrintL, m : LSubL(p, Int(15)), a : RMulL(m, Int(6)),
a! R(Int(2))

— p: PrintL, m : LSubL(p, Int(15)), a : Done
m! R(Int(12))

— p: PrintL, m : Done
p! L(Int(3))

— p: Done, q: Print
q ! Unit(Int(3))

Fig. 2. Evaluation of a dataflow example

The reader can check that the result would be the same if the right-hand
input to @ had been considered first. As tokens move through the graph the
unreferenced Done processes are garbage collected.

2.5 Further OGRe Constraints

Whenever the execution configuration contains a message it is possible to rewrite
the configuration by considering the contents of the message and the state of the
process to which it is directed. An OGRe rewriting rule matches if the state of
the configuration process is an instance of the state of the process in the rule
pattern, and the contents of the configuration message in is an instance of the
contents of the message in the rule pattern. It may be that more than one rule
matches in this way, in which case the only admissible rule is the earliest in
the ordered set of rules. We place the very strong condition on the rule system
that whenever a message is addressed to a process, either in the initial term, or
following some rewriting steps, there must be an admissible rule for the message



and its target process. This condition avoids the need to queue messages in an
implementation.

When the admissible rule has been identified, rewriting takes place as fol-
lows: To avoid potential name clashes we make an isomorphic copy of the rule
with no process names in common with the execution configuration. We then
substitute the name of the configuration process for the name of pattern process
throughout the rule and apply to the whole rule the substitution which makes
the configuration process and message match the pattern. The rule body may
contain primitive operations, and we require that they should have appropriate
arguments. The primitive operations are applied to their arguments and replaced
by the corresponding results. The final step is to remove the process and mes-
sage from the configuration and add the body. A new instance of the process
will always be present, and will often be an exact copy of the original.

OGRe rewriting continues by repeatedly replacing process—message pairs un-
til all messages are eliminated. Concurrent rewrites may be performed as long
as a given process state takes part in only one rewrite at a time. It is possible to
garbage collect a process whose name does not appear in the state of any other
process nor in the address or contents of any message.

As has been mentioned, symbols labelling state and data terms are distinct.
Symbols have fixed arity. Further, we associate a type with symbols so that a
particular argument must always refer to either a process name, a data term,
or primitive data. This enables us to check that all messages will be directed to
processes able to receive them.

3 OGRe Applications

In this section we illustrate the power of OGRe by showing how a number of
models of computation may be represented in a direct way.

3.1 Modelling Dataflow

The example in the previous section illustrated a model for dataflow in OGRe.
The example contained no parallelism, but it is clear that in general there might
be many token messages travelling between nodes, and hence many possible
concurrent rewritings. The number of tokens must increase when a result is
needed by several successors, and a duplication node is used.

In Figure 3, we give the rule for duplicating tokens and an example of how
it could be used to form the square of a number. Similar rules LLDup, RLDup,
and RRDup would be needed in other circumstances.

3.2 Modelling Communication Channels

The OGRe model is based on asynchronous direct communication between pro-
cesses. There are no intervening channels as in CCS, or the Polyadic 7—Calculus.
However, channel-based communication can be modelled by OGRe processes. In



e : Start, e! POMTrigger —
p: PrintL, m : LMul(p), d : LRDup(m,m),
d! L(Int(6)), e : Start;

p: LRDup(d,e), p! L(z) —
d!L(z), e! R(x), p: Done;

Fig. 3. Duplication of dataflow tokens

Figure 4, a channel is represented by a process which co-ordinates communi-
cation between producing and consuming processes. A producer sends a Put
message to the channel, with the data as argument. A consumer sends a Get
message with the identity of the process to receive the data. Data is queued
until a consumer is known. Unsatisfied requests are queued explicitly until a
producer provides data.

o

: Chan(VQ(v,q)), c! Get(r) —
r1Data(v), ¢ : Chan(q);

: Chan(q), c! Get(r) —
¢ : Chan(RQ(r,q));

: Chan(RQ(r,q)), ¢! Put(v) —
r1Data(v), ¢ : Chan(q);

: Chan(q), ¢! Put(v) —
c: Chan(VQ(v, q));

o

o

o

Fig. 4. Rules for Asynchronous Communication

The model in Figure 4 supports asynchronous communication since the pro-
ducer receives no notification that data has been consumed. Unsatisfied messages
are stacked, so there is no fairness about this particular model. Surplus data val-
ues form a stack, V'@, of available values, while surplus producer names form a
stack, RQ, of requests. Observe the order in which requests are satisfied in the
example execution in Figure 5. The initial state of the channel holds an empty
queue, FQ. The two Put actions stack values so the Get actions receive values
in the reverse order.

It should be clear that the model for asynchronous channels could be modified



: Chan(EQ)

— c: Chan(VQ(3, EQ)), c!Put(4), c!Get(x), c!Get(y), c!Get(z)
—c: Chan(VQ(4,VQ(3, EQ))), clGet(x), c!Get(y), c!Get(z)
— c: Chan(VQ(3, EQ)), clGet(y), c!Get(z), z!Data(4)
— ¢ : Chan(EQ), c!Get(z), x!Data(4), y!Data(3)

— ¢ : Chan(RQ(

Fig. 5. Asynchronous Communication

to implement semaphores. No actual data values need be communicated, or
stored.

c¢: Chan(VQ(v,s,q)), c! Get(r) —

r! Data(v), s!Sync, ¢: Chan(q);
c¢: Chan(q), c!Get(r) —

c¢: Chan(RQ(r,q));
¢: Chan(RQ(r,q)), ¢! Put(v,s) —

r! Data(v), s!Sync, ¢: Chan(q);
c¢: Chan(q), ¢! Put(v,s) —

¢: Chan(VQ(v, s, q));

Fig. 6. Rules for Synchronous Communication

Synchronous communication is possible if we arrange that a notification mes-
sage, Sync, is sent to the producing process when the communication is com-
pleted. The producer must include the identity of the process to receive synchro-
nisation when a data value is sent. Further computation by the producer can be
blocked until the communication is completed as shown in Figure 6. Note how
an unsatisfied request blocks a thread of control as the channel process changes
state but does not generate further activity. When a communication completes,
a new thread is activated as indicated by the two messages generated, one of
which resumes the suspended thread of control.



3.3 Modelling State and Logic Variables

The channel model above uses a process to hold the state of the channel as a
list of data values or requests. A simple von Neumann storage cell can be imple-
mented with Set and Read operations as in Figure 7. The Set is acknowledged in
order to provide serialisation. We return the old contents to provide test-and-set
functionality.

c¢: Cell(v), ¢! Set(n,r) —

r! Data(v), c: Cell(n);
¢: Cell(v), ¢! Read(r) —

r! Data(v), c: Cell(v);

Fig. 7. A model for von Neumann cells in OGRe

Figure 8 shows that by adding slightly more sophisticated behaviour, we can
model a logic variable in the framework of concurrent logic programming [18].
The model suggested is for illustration only, as the properties of such variables
vary from language to language. We will assume that an attempt may be made to
Bind an unbound variable, UV ar. This will fail if the variable is already bound.
A variable may be Read, which will lead to blocking of the computation if the
variable is unbound. There is also an extralogical IsVar test for examining the
state of the variable. An unbound variable holds a list of suspended readers. The
initial state of an unbound variable is UV ar(E). The rules for Free are used to
release suspended readers. In order to process the rest of the list, the process
sends a further message to itself.

3.4 Modelling Facile

The main application of OGRe has been in the implementation of Facile. The
OGRe model results in a very low-level translation of Facile features in which
potential implementation data-structures become visible. For example, Facile
channels can be represented as objects which are manipulated in exactly the
same way as in the Chemical Abstract Machine [2] proposed for Facile in [12].
The channel representation is closely related to the synchronous channel model
in Section 3.2.

Use of process spawning introduces potential concurrency and channels may
be used to synchronise and communicate between spawned processes. Otherwise,
Facile functions execute strictly sequentially, adopting the same semantics as ML.
The translation of the functional subset of Facile is a development of the work



c¢:UVar(q), c! Read(r) —
¢: UVar(Q(r,q));
¢: BVar(v), ¢! Read(r) —
r! Data(v), ¢: BVar(v);
c:UVar(q), ¢! Bind(d,r) —
r1Succ, f: Free(q,d), f!Go, c: BVar(d);
¢: BVar(v), ¢! Bind(d,r) —
r1 Fail, c: BVar(v);
c:UVar(q), c!IsVar(r) —
r1Succ, ¢: UVar(q);
c: BVar(v), c!IsVar(r) —
r! Fail, ¢: BVar(v);

f: Free(Q(r,q),d), f!Go—

f!Go, r! Data(d), f: Free(q,d);
f: Free(E,d), f!Go—

f : Done;

Fig. 8. A model for logical variables in OGRe

reported in [5] and [4]. Within this subset, every rewrite generates precisely one
new message so that there is always a single thread of control.

The translation to OGRe is not very direct, involving several OGRe rewrites
per function call. However, there is considerable scope for optimisation by sym-
bolic evaluation. In particular, the translations produce code with all primitive
values boxed, but optimisation will achieve unboxing in many situations.

4 OGRe Implementation

We will summarise the current state of implementation of OGRe and outline
potential for future work. A translator has been written in SML which will
convert a A—expression to OGRe. The input may either be a text file or an SML
program by using the SML compiler to generate its internal lambda form. The
translator is able to interpret OGRe code or may generate corresponding C for
compilation.



4.1 Memory Organisation

State and data terms are represented by consecutive memory words containing a
symbol followed by arguments. Since OGRe symbols are typed, we can, without
loss of generality, insist that all primitive data arguments precede process names
and data terms (both of which are represented by machine pointers). This sim-
plifies garbage collection as every term contains one or more data words (there
is a symbol at least) followed by zero or more pointers.

Symbols for state terms map to positive integers, distinguishing them from
data symbols which use negative integers.

4.2 Rule Matching

The current C code provides a reasonably efficient simulation of the fine-grain
concurrency of OGRe execution. Code for rules is compiled into a switch state-
ment, and selected according to the state symbol of the process receiving a
message.

A task queue is maintained of messages to be processed and the code for the
symbol of the topmost target process is executed. Matching proceeds by testing
for data symbols as required and building up a table referencing processes and
data values bound to pattern variables. When matching succeeds, new processes
may be created with state arguments derived from values matched to pattern
variables. Messages may be created and queued for further consideration.

Often a rule will generate exactly one new message. This sequential case
is optimised so that no manipulation of the queue is required. If more than
one message is generated, messages are pushed onto the task queue. If no new
messages are generated, the task queue is popped and the next message selected.
Execution ceases when the queue becomes empty.

The effect of this is to maintain sequential threads where possible. In the
Facile translation, only rules for the concurrency features change the number
of messages; the functional part generates code which always produces one new
message per rewrite. Generating no messages corresponds to waiting for com-
munication, or process termination. Generating extra messages corresponds to
completion of communication, or process creation.

4.3 Parallel OGRe Machine

By making a small number of changes to the OGRe implementation we have de-
veloped the Parallel OGRe Machine (POM). It is an extension of the sequential
model discussed above so that if none of its features are used, execution is as
before.

We note that the threaded execution discussed above is still of interest with
or without a parallel dimension since it allows scope for optimisation and hiding
of latency.

We can make some observations about the representation of OGRe processes
and data. Firstly, only state terms can be updated by rewriting — all data terms



are immutable. (Although this might seem restrictive, mutable arrays, for ex-
ample, can simply be represented by processes). Secondly, there is no way to
create cycles in data terms, except via process states. Data terms can be DAGs.
Thirdly, identical functional processes can be shared, or copied and unshared,
without changing the meaning of an OGRe program. This is, of course, not the
case for mutable processes.

This means that we could safely export functional processes from one pro-
cessor to another. When copying process arguments we can regard them as
tree-structured. Copying must stop at process names unless we can be sure that
the process concerned is functional itself.

4.4 Remote Pointers

The strategy adopted, when a term is transferred from one processor to another,
is to transfer all arguments which are primitive data values and data terms, but
processes named in arguments are left where they are. (All that an OGRe rewrite
can do with a process name is to copy it or send a message to it. The rewrite
can tell nothing about the location or state of the process).

When a term is transferred to a remote machine, any process names it ref-
erences must be replaced by a remote pointer, which is a reference back to the
original process. Each POM processor will have a table referencing processes
which have remote pointers to them. A remote pointer is a pair (Q, o) where Q
is an identifier for the processor and o is the offset in the table on the processor.

The table is needed so that the garbage collector can move nodes around
within a processor: the table offset remains unchanged, so the remote processor
can still refer to the node by the (@, o) pair.

If a processor, @, has a process, n, known by remote pointer (Q, o) then on
another processor, P, there will be a relay process m. Messages sent to m on P are
forwarded to n on Q. The relay process m has the form m : POMRelay(Q, o)
where both @) and o are data values as shown in Figure 9.

m!Task(r,Int(3)) o

—1» n:Server

m:POMRelay(Q,0)

r:Print

Fig. 9. Message to Remote Pointer



4.5 Sending Messages to Remote Processes

The message to be transmitted is sent using normal OGRe processing to a node
with function POMRelay(Q, 0). The code for this is implemented specially,
but just appears with the OGRe rules in the switch statement for the program.
It will pack the contents of the message (possibly a large term) and send it
to the remote processor, @, indicating the message is for the node at offset o.
The receiving processor simply unpacks the message and directs it to the node
pointed to by the table entry at offset o.

To pack a message it is sufficient to record the number of data items, then
the number of pointer entries, then the data values, and then recursively pack
each of the subterms given by pointer values.

If a pointer refers to a data node then we pack the node recursively. If the
pointer, r, refers to a process state, then a remote pointer to that process must
be created. We allocate a slot, ¢, in the table on the local processor, P, and
place a pointer to r in the slot. To represent the remote pointer we pack the
information for POMRelay (P, ). If we assume that P and ¢ take an integer
each, the representation might be: [3,0, POM Relay, P, i]. When this is unpacked
at the receiving node it will create a process which is ready to receive messages
and pass them back via the remote pointer to node r.

n!Task(s,Int(3))

—1» n:Server

i s:POMRelay(P,i)

r:Print e \

Fig. 10. Message Transferred to Remote Processor

The receiving processor simply unpacks the message, building a tree structure
of nodes, and makes a local task to send it to the node indicated by the slot
contents as shown in Figure 10.

4.6 Process Spawning

So far we have not explained how processes can be exported to remote processors.
We adopt the convention that processes for export are represented by a functional
process state which can receive a special message POMTrigger which takes no
arguments. We assume that all POM processors are loaded up with the full code
for the rewrite system.



The fact that POMTrigger takes no arguments does not impose restrictions.
If a task taking arguments is to be exportable, it can be rewritten to capture
the message, create a new process with the original process arguments plus the
message as an extra argument, and send POMTrigger to it.

When transferring work to remote processors we must also consider load
balancing. Not every exportable process need be exported. Instead, it could be
handled by the local processor. We will discuss ZAPP [13] style process schedul-
ing later.

Tasks are associated with messages, and exportable tasks with POMTrigger
messages. The queue of local tasks is used to hold normal messages while a new
queue of exportable tasks is used for locally-generated POMTrigger messages.

If the local queue becomes empty, tasks can be moved from the exportable
queue to the local queue. The task is not exported, but is executed locally using
exactly the same code. On a single processor all exportable processes are handled
locally with almost no penalty associated with the fact that they could have been
exported.

On a multiprocessor POM machine, tasks from the exportable queue may be
transferred to remote processors: the POMTrigger message is removed from the
exportable queue; the destination process for the message is packed, generating
POMRelay nodes for references back to the local processor, and sent to the
remote processor. In this case, the root node will be a process state, but is packed
nevertheless.

At the receiving processor, the message is unpacked and a POMTrigger
message is placed in the local message queue directed to the newly unpacked
process state. Since the imported task is in the local queue, it cannot get exported
again.

In practice, the process description can be a message sent to a standard
POMSpawn process on the remote processor. This is a built-in function like
POMRelay, and is accessible from a standard slot in each local processor table.
The mechanism for handling spawned processes is therefore exactly the same
as for external messages: the message carries a destination slot; the receiving
processor unpacks the message and sends it to the node indicated by the slot
(by placing a task in the local message queue).

In the case of spawned tasks, the process description arrives as a message
sent to POMSpawn which has the unorthodox behaviour of setting up a task
which delivers a local POMTrigger message to its own “message”.

Note that all the messages sent between POM processors can be handled
this way: a small set of standard slot locations are reserved for the functions
required, and the necessary code is generated in the switch statement used for
all OGRe rules.

4.7 ZAPP Scheduling

The Zero Assignment Parallel Processor model of Burton and Sleep [13] has a
long history, and is rediscovered on a regular basis.



The aspects of the model of interest to us at present are as follows. ZAPP
processors try to keep busy, so they only export work when then have enough
to keep them going. When they are busy they do not look for work from other
processors. Hence work is only moved around when there are processors with
little work to do. Processors act according to their local level of work. There
is no attempt to balance global load in the machine, but this happens as a
consequence of local actions.

Each ZAPP processor maintains a list of local or fixed tasks, and a list of
exportable tasks. If the overall number of tasks is less than some limit lim 4
then the processor sends a message to neighbouring processes to request work.
When tasks are imported, they are placed in the local queue, so they will not be
moved again. The processor only sends demands for more work after work has
been received and only if the number of tasks is below lim 4.

When a processor receives a request for work, it checks to see if it has an
exportable task and if the number of tasks is greater than some limit limp. If
so, it will send back a task from its exportable queue. Otherwise, it stores the
request in case limp is exceeded in future.

Let us assume that the number of tasks is generally growing in the system.
All processors will request work from their neighbours when they start up. Only
the starting processor has a task to perform, but will keep hold of it and new
tasks spawned until limp is reached. It will then send excess exportable tasks
to its neighbours which will keep requesting more until they reach lim,4. Only
when they reach limp will they respond to requests from their neighbours. Once
all the processors have more than lim,4 tasks, they will stop exchanging tasks.

Often, ZAPP processors have a limited connection topology (say a ring, or
grid of processors). Hence the number of neighbours is limited but communica-
tion with those neighbours is very quick. With PVM working over TCP/IP, as
used in the initial POM implementation, all messages are very slow so all remote
processors can be considered to be neighbours.

The current implementation of POM uses PVM to exchange messages be-
tween processors. For more efficient handling of messages, it would be interesting
to investigate the Active Messages [3] approach. The design decisions of OGRe
have been carefully chosen to remove the need for extensive locking, or queuing
of messages, since all processes should be ready to handle every message they
will be sent.

5 Conclusions

We have presented a model for Object Graph Rewriting. OGRe aims to be care-
fully designed low level intermediate code for implementation of a range of pro-
gramming languages. The first application of the model is the implementation of
Facile in such a way that the cost of concurrent and functional styles are kept in
balance. The aim is to achieve good performance on sequential machines, though
without discounting parallel implementation.



The Parallel OGRe Machine uses the same execution mechanism as on se-
quential machines, but certain messages are handled differently, causing distri-
bution of work and remote transmission of data.

My thanks to Jeong-Ho Lee who has worked on many of the details of the
POM machine design, and to Ian Whittley, who has performed much of the
implementation work.

References

1. P. Anderson, D. Bolton & P. Kelly: Paragon Specifications: Structure, Analysis and
Implementation,

Proceedings PARLE’92. LNCS 605. (1992)

2. G. Berry & G. Boudol: The Chemical Abstract Machine, Proc. POPL 90, p 81-94.
(1990)

3. T. v Eicken, D.E. Culler, S.C. Goldstein & K.E. Schauser, Active Messages: a Mech-
anism for Integrated Communication and Computation, International Symposium
on Computer Architecture '92, ACM. (1992)

4. JR.W. Glauert: Asynchronous Mobile Processes and Graph Rewriting, Proc.
PARLE’92. LNCS 605. June 1992. pp. 63-78. (1992)

5. JJR.W. Glauert, L. Leth & B. Thomsen: A New Translation of Functions as Pro-
cesses, SemaGraph "91 Symposium. (1991)

6. J.R. Gurd, C.C. Kirkham, & I. Watson: The Manchester Prototype Dataflow Com-
puter, Comm. ACM, Vol. 28, No. 1, pp. 34-52. (1985)

7. A. Giacalone, P. Mishra, & S. Prasad: Facile: A Symmetric Integration of Concur-
rent and Functional Programming, IJPP, Vol 18, No 2, p 121-160. (1989)

8. A. Kramer & F. Cosquer: Distributing Facile, MAGIC Note 12, ECRC. (1991)

9. F. Knabe: A distributed protocol for the generalized select command, MAGIC Note
11, ECRC. (1991)

10. Kuo, T.-M.: Magic Facile version 0.3, MAGIC Note 22, ECRC. (1992)

11. L. Leth: Functional Programs as Reconfigurable Networks of Communicating Pro-
cesses,

Ph.D. Thesis, ICSTM. (1991)

12. L. Leth & B. Thomsen: Some Facile Chemistry, ECRC Technical Report ECRC-
92-14. (1992)

13. D.L. McBurney& M.R. Sleep: Transputer-based experiments with the ZAPP archi-
tecture, Proc. PARLE conference, LNCS 258. (1987)

14. R. Milner: A Calculus of Communicating Systems, Springer LNCS 92. (1980)

15. R. Milner: Functions as Processes, Automata, Languages, and Programming.
Springer LNCS 443. (1990) Also: Technical Report INRIA Sophia Antipolis. (1989)

16. R. Milner: The Polyadic m—Calculus: A Tutorial, Technical Report ECS-LFCS-91-
180, Edinburgh University. (1991)

17. R. Milner, J. Parrow, & D. Walker: A Calculus of Mobile Processes, Parts 1 and
II, Technical Report ECS-LFCS-89-85, Edinburgh University. (1989)

18. E.Y. Shapiro: The Family of Concurrent Logic Programming Languages, Comput-
ing Surveys, Vol. 21 (3), pp. 412-510. (1989)

19. M.J. Wise: Message Brokers and Communicating Prolog Processes, Proceedings
PARLE’92. LNCS 605. pp. 535-549. (1992)

This article was processed using the ITEX macro package with LLNCS style



