Parallel Implementation of Functional Languages
Using Small Processes

John Glauert*

School of Information Systems
University of East Anglia
Norwich NR4 7TJ, UK
Jrwg@sys.uea.ac.uk

Parallel Implementation Workshop, Aachen, September 1992

Abstract

We report work in progress on the implementation of languages that integrate concurrent
and functional programming styles.

A translation scheme is presented for mapping such languages into process networks using
a simple notation based on communication between named processes. The translation of
functional code is sequential, but parallelism arises from use of concurrency constructs in
the source language.

Early implementation experiments have used graph rewriting techniques, although work
on a more direct implementation is in progress.

1 Introduction and Background

This paper reports work done at ECRC in close collaboration with Bent Thomsen and Lone
Leth. The work has focussed on techniques for implementing the Facile language [GPM89] which
enhances the A—calculus with primitives for process spawning and channel-based communication
in the style of CCS [Mil80].

Recent work by Milner using the m—calculus [MPW89] and its polyadic form [Mil91] shows
that a A—expression may be translated to a process network in the polyadic m—calculus which
simulates the A—expression [Mil90]. Similar work was done by Leth [Leth91].

The approach taken by the Facile group at ECRC has been to develop translations of both the
functional and concurrent features of Facile into networks of small processes. In such networks
there is a uniform representation of all features of the language. The ultimate goal is to exploit
the inherent concurrency of the process networks in an implementation on a parallel machine.

Our first approach used process notations that are close to the Polyadic 7—Calculus [Mil91] in
which communication is channel-based. This work is reported in [GLT91] and [Gla92]. In such
models the channels can be thought of as independent entities which act as brokers, arranging
communications between processes. Similar ideas appear in [Wis92].

However, it turned out that in most cases a channel used in the translations was closely associ-
ated with a particular process which was the only process to receive messages from the channel.
Further, the process would not receive messages from any other channel.

*Work done on sabbatical at ECRC, Munich

This led us to investigate a model of communicating agents using process-based, or point-to-
point, communication. This is in contrast to the channel-based communication of CCS, and
the m—calculus. The model can be seen as a very minimal version of Paragon [ABK92|, with
a very direct correspondence to the graph-rewriting framework in which Paragon has been
presented. Later we present a mapping from the new notation to the graph-rewriting language
Dactl [GKS91].

The process-communication model results in a very low-level translation of Facile features in
which potential implementation data-structures become visible. For example, Facile channels
can be represented as objects which are manipulated in exactly the same way as in the Chemical
Abstract Machine [BeBo90] proposed for Facile in [LT92].

2 A Source Language

For the purpose of investigation we have used a very small language in which we can represent
all the features of core Facile along with facilities for handling constants and operators as in
ML.

2.1 Source Language Syntax

The language is the A—calculus with constants and pairing. The trivial value and pairing
operator could have been considered as normal constants.

e == z|Ar.elee|c|()]| (ee)

¢ stands for a constant and x for a variable.

The features of Facile are encoded in our source language as special constants in very much the
same way as in the sequential and distributed implementations based on SML [Kuo92, KC91,
Kna91]. The functionality is hidden in the definition of the constants channel, send, receive,
and spawn.

The function channel takes a trivial value and returns a new channel value. Every invocation
of channel returns a distinct channel value.

The function send takes a pair containing a channel and a value to be sent on the channel. A
trivial value is returned when the output action has succeeded. The function has the effect of
the SML/Facile code (fn(z,y) => zly)

receive takes a channel as argument and returns a value received as the result of an input
action. It has the effect (fnz => z7?).

The essence of Facile behaviour expressions, the scripts of processes, is provided by using
delay closures, functions of type () — (). spawn takes such a function and returns a trivial
value having created a process which runs in parallel. The spawned process executes the
behaviour expression by applying its representation function to the trivial value, terminating if
the application terminates.

Although the original Facile language provides more programming flexibility, it is sufficient for
our implementation experiments to concentrate on the four primitives described above.

2.2 Source Language Semantics

Although the language treated in this paper is slightly different from the original Facile language,
it is clear that there is a direct correspondence between expressions in this language and in the
original. Hence we may use the semantics found in [GPM89]. We will assume that programs
are always closed terms.

It is worth recalling the reduction relation for the A—calculus sublanguage of Facile. The lan-
guage is given by:

e u= z|Ar.el|ee

v o= Az.e
v is the class of weak head-normal forms for closed terms.

1 ! 1
APPL: — 7€ APPR,: - & ¢

o ol o BETA,: (Ax.e)v—elv/z]

ve —wve

We will call the reduction relation defined as the least relation satisfying these rules the sequen-
tial strategy. To reduce an application, first the operator will be reduced to weak head-normal
form then the operand, and only when both are abstractions will the limited beta-reduction
rule be applied. No reduction is performed under As so only a weak head-normal form will be
produced.

The sequential strategy is very close to the call-by-value strategy given by the rules:

"
APPL: S7¢ APPR: £ BETA, : (Az.e)v—elv/z]
ee —ele ee »ee

This is a non-deterministic strategy since operator and operand may be reduced in either order
before beta-reduction.

For the pure A—calculus both of these strategies converge for the same set of terms, but for Facile
as in SML, it is convenient to use the sequential strategy in order to be able to reason about
any side effect resulting from evaluation. The lack of implicit concurrency in the expression
part of Facile contrasts with the explicit concurrency provided by the process part.

It would be possible to exploit safe implicit concurrency, where the evaluation order of operator
and operand does not affect the observable behaviour of an expression. The approach we have
explored is to decorate the hidden apply operators in expressions in the manner of [Bur84].
Sequential application, denoted by @, is reduced according to APPR, while call-by-value
application, @,, uses APPR. The other rules apply to both forms. The combination gives a
reduction relation for expressions with a mixture of application styles.

To complete the discussion we note that our earlier work [GLT91] proposed the combination of
the normal-order strategy of the Lazy-A—Calculus [Abr88] and an eager strategy. The first has
just APPL and the general BET A rule:

APPL: 7 BETA: (\.e)é — eld/a]
: eel—)eﬂel : xXr.e)e e|e/xr

The eager strategy adds APPR:

" / "
APPL: °7¢ APPR: S 7% BETA: (\.e)é —eld/a]
ee —ee ee >ee

The normal-order strategy is sequential and, as is well known, is strongly normalising for terms
with a weak head-normal form. The relation specified by the eager strategy contains the same
normal forms, but it is a larger relation, allowing speculative evaluation of operands. There
may be infinite reduction sequences even for terms with normal forms. We may combine
these strategies using @,, and @, for normal-order and eager application operators respectively;
APPR only applies when the application operator is Q..

Many approaches to parallel implementation of functional programming languages can be seen
as combinations of these strategies, with the addition of concurrent reduction which corresponds
to use of consistent multi-step stategies. Call-by-value reduction mixed with normal-order
reduction may change convergence properties and does not support pipelining. Mixing normal-
order and eager evaluation retains convergence properties as long as the choice of reduction
steps is fair. In either case if the reductions other than the normal-order step are “needed”,
convergence will be maintained. This corresponds to only varying the reduction strategy in the
presence of strict arguments.

3 A Simple Process Notation

In this section we introduce a very simple and highly restrictive process model based on com-
munication with named processes. The model has adequate expressive power for our purpose
of translating a language such as Facile, but might not seem attractive for general purpose use.

3.1 Informal Description of the Process Model
The process model manipulates a world of terms forming a many-sorted algebraic structure:

e Terms are built up from primitive data values, including a domain of process names, and
constructor symbols with fixed arities.

e A process has a name and is associated with a term which holds all the process state.

o Messages are terms which are directed to named processes.

Process names are almost pointers to terms, hence the representation of a process network is
only a step away from a directed-graph representation.

The following examples are taken from a more complete example later and illustrate the creation
of a process with name [whose name is known to the new process k. The initial state of [is a
term involving subterms d and i not shown here. A message containing a numeric value is sent
to the process k.

1: Od,i), k: F(l), k!Unit(3) 1)

The behaviour of processes is determined by pattern-directed rules which describe what happens
when a message is received by a process:

e Patterns are left-linear open terms, hence they may contain variable names, but such
names may not be repeated.

e Matching of rules is based on two patterns. The sets of variable names in the two patterns
are disjoint. Neither pattern may be a solitary variable, hence every pattern has at least
a root symbol.

e The first pattern of a rule matches the state of the process, the other matches the incoming
message. Pattern variables are bound to corresponding subterms during matching.

e Every message sent to a process must match exactly one rule.

e Actions are performed when a rule is matched, substituting values of bound variables in
the normal way. Rules contain no free variables.

The following example shows the rule which will be used by processes k above:

F()?Unit(m) — (p: E(l,m)|p!Unit(4))

The condition that a process must handle every incoming message avoids the implication that
an implementation might need to store messages and retry them later if the process state
changes. An alternative semantics would be for unmatched messages to be discarded. Also,
the requirement that exactly one rule is matched avoids the need to specify the semantics of
overlapping rules. It is clear that pattern matching could be translated into nested matching
operations revealing any potential non-determinism.

When a message is received:

e A process may create new terms.
e A process may create new processes and has access to their names.
e A process may send messages to processes it can name.

e A process may copy the name of a process it can name. Hence it can send such names to
other processes.

e A process may change its own state. The process name subsequently refers to the new
state.

Note that a process may not inspect the state of another process; it may only send it messages or
pass on its name. Messages must be handled completely by their target process before another
message is considered.

3.2 Syntax and Informal Semantics of the Process Model

In the proposed syntax, lower-case identifiers are bound variable names. Other identifiers are
constructor symbols. The most general form for a rule is a pair of patterns, followed by actions
to be performed if a process whose state matches the first pattern receives a message matching
the second pattern:

ProcState ? M sgPattern — (Action|---| Action) := NewState

The actions are zero or more process creations, zero or more message creations, and an optional
revised state for the process. The syntax p! M sg denotes sending a message to a named process,
while p : InitState creates a process with an initial state, as illustrated above.

Processes might be better called actors or objects since they only act when messages are sent
to them. When a message arrives at a process exactly one rule should match. We have required
that the message is handled completely by a process before another message is considered.
This is very conservative: if a process involves no state change there should be no need for such
serialisation; if a process does involve a state change then once all new terms and processes

referenced in the new state have been created, and the state has been changed, then other
messages could be handled.

Notionally, at least, the actions all occur simultaneously. However, in practice there are some
dependencies:

e Any new processes and terms are built.
e The process state is changed if required.

e Sending of any messages is initiated.

Clearly it would be meaningless for any messages sent as a result of invoking a rule to be
processed before processes and terms they reference have been created.

3.3 An Example of the Process Model

As an example we will address the hardest case which occurs in the translation of the source lan-
guage given earlier. This concerns communication which is the only language feature requiring
synchronisation.

The chosen representation of a Facile channel is exactly like that in the Facile Chemical Abstract
Machine of [LT92]. The state of a channel holds a queue of pending output offers and a queue
of pending input requests. At least one of the queues will be empty.

A channel receives input and output requests and either satisfies the request or queues it. Re-
quests contain continuations in the form of process names. Hence a receiver sends an In(r)
message with the identity of the process to handle the received message. Senders send Out(v, s)
where v is the value to be output and s a process to receive acknowledgement that the commu-
nication has succeeded.

Messages are sent to both sender and receiver when a communication is closed.

Chan(ig, NOQ) ? In(r
Chan(NIQ,o0q) ? Out(v, s
Chan(iq, 0Q(oq,v,s)) ? In(r
Chan(IQ(ig,r),0q) 7 Out(v, s

) Chan(IQ(ig,7), NOQ)

) = Chan(NIQ,0Q(oq,v,s)
) — (rlv|s!Triv) := Chan(ig,oq)

) — (rlv|s!Triv) := Chan(iq,oq)

When a process representing a new channel is created, the initial state has both queues empty:

ch: Chan(NIQ,NOQ)

It is synchronisation of concurrent computations which requires state changes. None of the
rules generated for the A—calculus part of Facile needs to involve a change in process state.

4 A Translation Scheme for Facile

The translation is based on the syntax of a term. The translation of a syntactic form takes
a parameter which will be the name of the process to which a result is to be sent. In the
translation, we will make use of a function fv() which yields a list of the free variables in a
A—expression.

4.1 Translation of the Source Language

The translation of a syntactic construct creates some actions which will form part of the body
of a rule, and may also introduce new constructor symbols and associated rules:

[Me.e], = u!Unit(y)

'y
Y (f
leeTu = [elala: Au, fv(€))
(u,
(u,

[(e;eN]u = [elala:

[x]. = u!Unit(z)
[c]Ju = wu!Unit(c)
[0 = uw!Triv

Y(fo(Az. e))
where ()\:1: e)) ? Doub(b,x) - ([e]s)
where A
and B

fo(€)) ? Unit(y) - (b: B(u,y)|[€Ts)
)7Umt() - (y!Doub(u, z))

A(u,
where A(fv() ? Unit(y) - (b: Bu,y)|[e]y)
and B(u,y) ? Unit(z) - (u!Doub(y, z))

All the constructor names introduced are distinct. All the process names are distinct and are
different from all the variables used in the source A—expression, with the exception of x in the
translation of an abstraction which stands for itself.

The translation of the various constant functions for arithmetic and the operators of Facile is

as follows:

[succ]y,
[mul],
[channel],,
[send],
[receive],

[spawn],

w!Unit(f)| f: Suce

where Succ ? Doub(b,z) - (b!Unit(z+1))

w!Unit(f)| f: Mul

where Mul ? Doub(b, Pair(x,y)) - (b!Unit(zxy))

w!Unit(f)| f: Channel

where Channel ? Doub(b, Triv) - (b!Unit(c)|c: Chan(NIQ,NOQ))
w!Unit(f)| f: Send

where Send ? Doub(b, Pair(c,v)) - (c!Out(v,s))

w!lUnit(f)| f: Receive

where Receive ? Doub(b,c) - (c!In(b))

w!Unit(f)| f: Spawn

where Spawn ? Doub(b,p) - (b!Unit(Triv)|p! Doub(Triv,s)|s: Sink)
and Sink ? Unit(Triv) - ()

The rules for Chan were given earlier.

It should be noted that the types are not really correct here; a typed source language is required,
as before. However, the constructors used correctly reflect the arities of the terms.

4.2 An Example of a Translated Expression

The following is the translation of the expression (Mul(3,4), ()) under the new scheme:

Start ? Triv — (d: B(a)|c: D(d)|c!Unit(b)|b: Mul|a: Print)

g: PairB|g!Trip(a,e, f))
h: A(a,e)|h!Unit(Triv))

! Doub(d, j))

C(d,i) | k: F(l)|k!'Unit(3))

o: PairB|o!Trip(l,m,n))
p: E(l,m)|p!Unit(4))
b!Unit(zxy))
u! Unit(Pair(z,y)))

Mul ? Doub(b, Pazr(a: y
PairB ? Trip(u, x,y

~—

N A R

(
(
(i
(L:
(
(
(
(

We illustrate the first few steps of the elaboration of a program which starts with an initial
process with state Start being sent the message Triv:

s: Start, s!Triv (2)
— a: Print, d: B(a), b: Mul, c: D(d), ¢!Unit(b) (3)
— a: Print, d: B(a), b: Mul, 1: C(d,b), k: F(l), k!Unit(3) 4)
— a: Print, d: B(a), b: Mul, 1: C(d,b), p: E(1,3), p!Unit(4) (5)
— a: Print, d: B(a), b: Mul, 1: C(d,b), o: PairB, o!Trip(l,3,4) (6)
— a: Print, d: B(a), b: Mul, 1: C(d,b), l!Unit(Pair(3,4)) (7)
— a: Print, d: B(a), b: Mul, b! Doub(d, Pair(z,y)) (8)
— a: Print, d: B(a), d!Unit(12) 9)

The values 3 and 4 are gathered together to form a pair by step 6. This pair is sent to the Mul
process which sends on the product to the process given by the first argument to Doub.

5 Implementation of the Process Model by Graph Rewriting

An implementation of the process model, and hence of Facile programs translated into the
model, can be made using graph rewriting techniques.

The model is based on very similar principles to Paragon [ABK92]. Indeed we could have used
a subset of the syntax of Paragon, although our model is much simpler overall.

It is also possible to map the process model to a graph rewriting system in the extended graph
rewriting language Dactl [GKS91]. An system has been written in SML which translates source
programs into an internal form of the process notation, and also generates an executable Dactl
program. The examples in this paper are taken straight from the output of the system.

Creation of a process maps to creation of a named graph term. Sending a message to a process
involves creating an active graph term with the symbol Call and subterms representing the
destination process and the message to be sent. Apart from a small number of utility rules, all
the rules are for the symbol Call.

The rules for communication, using the symbol Chan, are the only ones involving a change of
state. These rules, in the utility module AProcs, overwrite the contents of the destination
process state.

Below is the module for the Dactl translation of the earlier example, followed by the utility
module used by all programs, with apologies to those unfamiliar with the language.

MODULE Facile;

IMPORTS AProcs;
SYMBOL OVERWRITABLE Start_; A; B; C; D; E; F;

RULE
INITIAL -> *Call_[Start_ Triv_];
Call_[h_:Start_ Triv_] ->
d:Blal, c:D[d], *Call_[c Unit_[bl]l, b:Mul_, a:Print_;

Call_[h_:Ala e] Unit_[f]] -> g:PairB_, *Call_[g Trip_[a e £f1];

Call_[h_:B[a] Unit_[e] 1 -> h:A[a e], *Call_[h Unit_[Triv_]1];

Call_[h_:C[d i] Unit_[j]] -> *Call_[i Doub_[d j11;

Call_[h_:D[d] Unit_[i] 1 -> 1:C[d il, k:F[1], *Call_[k Unit_[3]];

Call_[h_:E[1 m] Unit_[n]] -> o:PairB_, *Call_[o Trip_[1 m nl];

Call_[h_:F[1] Unit_[m]] -> p:E[1 m], *Call_[p Unit_[4]1];
ENDMODULE Facile;

MODULE AProcs;
IMPORTS 0S_Core; Arithmetic;

SYMBOL CREATABLE PUBLIC CREATABLE Triv_; Unit_; Doub_; Trip_; Print_;
SYMBOL CREATABLE PUBLIC CREATABLE Channel_; Send_; Receive_; Spawn_;
SYMBOL CREATABLE PUBLIC CREATABLE Pair_; Succ_; Add_; Sub_; Mul_; Div_;
SYMBOL CREATABLE PUBLIC CREATABLE PairB_; AddB_; SubB_; MulB_; DivB_;
PATTERN PUBLIC SuccB_ = Succ_;

SYMBOL REWRITABLE PUBLIC REWRITABLE Call_;

SYMBOL REWRITABLE Print; Sink;

SYMBOL OVERWRITABLE Chan;

SYMBOL CREATABLE NIQ; IQ; NOQ; 0Q; In; Out; Terminate;

RULE
Call_[PairB_ Trip_[u x y]] -> *Call_[u Unit_[Pair_[x yl] 1;

Call_[c: Chan[iq:NIQ oq] Out[v s] 1 -> ¢ := Chanliq 0Q[oq v s]1;
Call_[c: Chan[IQ[iq r] oql Outl[v s] 1 ->
*Call_[r Unit_[v]], *Call_[s Unit_[Triv_]], c := Chan[iq oq];
Call_[c: Chanliq 0q:NOQ] In[r]] -> ¢ := Chan[IQ[iq r] oq];
Call_[c: Chan[iq 0Qloq v s]] In[r] 1 —>
*Call_[r Unit_[v]], *Call_[s Unit_[Triv_]], c := Chan[iq oq];

O

O

Call_[Channel_ Doub_[u Triv_]] -> *Call_[u Unit_[Chan[NIQ NOQ]] 1;
Call_[Send_ Doub_[s Pair_[c v]] 1 -> *Call_[c Outlv s] 1;
Call_[Receive_ Doub_[r c]] -> *Call_[c In[r]l];
Call_[Spawn_ Doub_[u p]] ->

*Call_[u Unit_[Triv_]], s: Sink, *Call_[p Doub_[Triv_ sl];
Call_[Sink Unit_[Triv_]] -> *Terminate;

Call_[Succ_ Doub_[u n]] -> #Call_[u “#Unit_["*IAdd[n 1]] 1;
Call_[Add_ Doub_[u Pair_[x y]]] -> #Call_[u “#Unit_["*IAdd[x yl] 1;

Call_[Sub_ Doub_[u Pair_[x y]]] -> #Call_[u “#Unit_["*ISublx yl] 1;
Call_[Mul_ Doub_[u Pair_[x y]]] -> #Call_[u “#Unit_["*IMullx yl] 1;
Call_[Div_ Doub_[u Pair_[x y]]] -> #Call_[u “#Unit_["*IDiv[x yl] 1;

Call_[AddB_ Trip_[u x y] 1 -> #Call_[u ~#Unit_["*IAdd[x y11 1;
Call_[SubB_ Trip_[u x y] 1 -> #Call_[u ~“#Unit_["*ISub[x yl]l 1;
Call_[MulB_ Trip_[u x y] 1 -> #Call_[u ~“#Unit_["*IMullx yl] 1;
Call_[DivB_ Trip_[u x y] 1 -> #Call_[u ~“#Unit_["*IDiv[x yl] 1;

Call_[Print_ Unit_[v]] -> *SEQ[PrintF["Result: "] Print[v]];
Print[Pair_[1 r]] =>
*SEQ[PrintF[" ("] Print[1] PrintF[","] Print[r] PrintF[")"]];
Print[Triv_] => #PrintF["(O"];
Print[n:INT] => *PrintF["Jd" n];
ENDMODULE AProcs;

6 Direct Implementation of the Process Model

The next stage of the work aims to produce an efficient sequential implementation of a func-
tional language with the features of Facile using this model. Later work will address parallel
implementation as well.

6.1 Optimisation

Many of the rules in the automatically generated code create a process and immediately send
it a message. Since most of the rules generated only match a single pattern each, it is possible
to expand them out and build rules with larger numbers of actions.

Most of the code is inherently sequential, so it will reduce to something corresponding to normal
expression evaluation using a continuation-passing style.

6.2 Processing Messages

The rules are like very primitive methods in an object-oriented model. Hence the processing of a
message is like a procedure call. The pattern of process state term and the message determines
what code is executed. All the state of a process is in its term representation. There is no
environment to worry about.

If the actions of a rule generate no messages, a thread of control terminates. See the first two
rules for Chan and the rule Sink.

If the actions of a rule generate one message, a sequential thread continues. The new message
can be prepared and control may jump to the code indicated by the symbol of the target process.

If the actions of a rule generate multiple messages, additional threads of control are required.
This applies to the last two rules for Chan and code for spawn. A stack-based implementation
on a single processor would have the effect of remembering the work to be done, and returning
to it when the current thread completes (possibly because an attempted communication blocks).
The advantage is that no record of the thread needs to be placed on some form of run queue.
With a parallel machine, the problem is that this potential work is not available for evaluation
on other processors.

10

There is no need to use a stack at all if messages representing new threads are created as heap
objects and linked into a rudimentary run queue. The number of actions generating multiple
messages is expected to be a small proportion of all messages, so the cost of creating these very
simple thread descriptors may be acceptable even on a sequential machine.

7 Conclusions

The ideas presented here represent work which is still very much in progress, although early
indications are that for straightforward functional code it will be possible to produce an imple-
mentation comparable with existing high-quality compilers.

The benefit of the technique should be that there will be little penalty for using the process fa-
cilities of a language like Facile. By comparison, with existing implementations of the language,
process spawning is only beneficial if large grains of computation are available.

The implementation model used appears to match well with recent techniques for programming
multiprocessors [ECGS92]. Hence there is the promise of an effective parallel implementation
in future.

References

[ABK92] P. Anderson, D. Bolton & P. Kelly: Paragon Specifications: Structure, Analysis and
Implementation, Proc PARLE’92. LNCS 605. June 1992. (1992)

[Abr88] S. Abramsky: The Lazy Lambda Calculus, Chapter 4 in D. Turner (ed.), Research
Topics in Functional Programming, pp. 65-116, Addison Wesley, 1988.

[BeBo90] G. Berry & G. Boudol: The Chemical Abstract Machine, Proc. POPL 90, p 81-94.
(1990)

[Bur84] F.W. Burton: Annotations to Control Parallelism and Reduction Order in the Dis-
tributed Evaluation of Functional Programs, TOPLAS, Vol 6, No 2, p159-174. (1984)

[ECGS92] T. v Eicken, D.E. Culler, S.C. Goldstein & K.E. Schauser, Active Messages: a Mech-
anism for Integrated Communication and Computation, International Symposium on
Computer Architecture 92, ACM. (1992).

[GKS91] J.R.W. Glauert, J.R. Kennaway, & M.R. Sleep: Dactl: An Experimental Graph
Rewriting Language, Proc. 4th International Workshop on Graph Grammars, Bre-
men, 1990. Springer LNCS 532. (1991)

[Gla92] J.R.W. Glauert: Asynchronous Mobile Processes and Graph Rewriting, Proc
PARLE’92. LNCS 605. June 1992. (1992)

[GLT91] J.R.W. Glauert, L. Leth & B. Thomsen: A New Translation of Functions as Pro-
cesses, SemaGraph 91 Symposium, December 1991. (1991)

[GPM89] A. Giacalone, P. Mishra, & S. Prasad: Facile: A Symmetric Integration of Concur-
rent and Functional Programming, IJPP, Vol 18, No 2, p121-160. (1989)

[KC91] A. Kramer & F. Cosquer: Distributing Facile, MAGIC Note 12, ECRC. October
1991. (1991)

11

[Kna91]

[Kuo92]
[Leth91]

[LT92]

[Mi180]

[Mi190]

[Mil91]

[MPW89]

[Wis92]

F. Knabe: A distributed protocol for the generalized select command, MAGIC Note
11, ECRC. July 1991. (1991)

Kuo, T.-M.: Magic Facile version 0.3, MAGIC Note 22, ECRC. March 1992. (1992)

L. Leth: Functional Programs as Reconfigurable Networks of Communicating Pro-
cesses, Ph.D. Thesis, ICSTM. (1991)

L. Leth & B. Thomsen: Some Facile Chemistry, ECRC Technical Report ECRC-
92-14. May 1992. (1992)

R. Milner: A Calculus of Communicating Systems, Springer LNCS 92. (1980)

R. Milner: Functions as Processes, Automata, Languages, and Programming.
Springer LNCS 443. (1990) Also: Technical Report INRIA Sophia Antipolis, June
1989.

R. Milner: The Polyadic m—Calculus: A Tutorial, Technical Report ECS-LFCS-91-
180, Edinburgh University, October 1991. (1991)

R. Milner, J. Parrow, & D. Walker: A Calculus of Mobile Processes, Parts I and II,
Technical Report ECS-LFCS-89-85, Edinburgh University, June 1989. (1989)

M. Wise: Message Brokers, Proc PARLE’92. LNCS 605. June 1992. (1992)

12

