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Abstract

Honda and Tokoro provide a formal system for communicating systems developed from
Milner’s m—calculus. Unlike other formalisms, their work is based on asynchronous commu-
nication primitives.

This paper proposes some minor but practically significant extensions to a model based
on asynchronous communication and shows how the resulting system may be mapped very
directly onto a graph rewriting system.

While the model based on asynchronous communication permits the most direct trans-
lation, a related model using synchronous communication may be implemented in a similar
manner.

1 Introduction

The calculus of communicating systems of Milner [18] has provided a fertile theory for the study
of concurrent process networks. CCS can describe regular systems, but cannot express systems
with an arbitrary dynamic structure.

1.1 Synchronous and Asynchronous Process Calculi

There have been two main approaches to extending CCS to model process networks which can
evolve dynamically. One approach supports higher-order processes which may be communicated
as values. An example is the language CHOCS of Thomsen [21]. Another approach allows the
communication of link names which then act as references to processes. The early work by
Engberg and Nielsen on ECCS [7] provided the foundation for the m—calculus [20] and LCCS
developed by Leth [17]. Influenced by the Chemical Abstract Machine of Berry and Boudol
[4], Milner has recast parts of the m—calculus allowing an elegant representation of functions as
process networks [19]. The subset language omits both matching and summation, and provides
a replication construct in place of recursively defined agents.

While all these calculi are based on a synchronous model of communication, Honda and Tokoro
base an object-oriented formalism on asynchronous communication [14]. They develop an asyn-
chronous concept of bisimulation and provide a mapping from the language of Milner [19] to
their asynchronous form. This mapping, and other uses of the asynchronous formalism, rely
on techniques for sequentialisation of events. One contribution of the current paper is to show
that great simplifications can be made to these techniques if the messages communicated over
links are allowed to be tuples rather than single values.
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1.2 Practical Application of Process Calculi

A number of studies have been made of the relationship between process notations and func-
tional programming. Early work by Kennaway and Sleep used the LNET model [15] and Thom-
sen used the higher-order processes of CHOCS [21, 22]. Milner [19], and Leth [17], show how
an arbitrary lambda expression may be converted to a network of processes whose behaviour
simulates reduction of the original A—expression. Such work has been primarily motivated by
a desire to explore the theoretical relationship between the formalisms, rather than to provide
an efficient implementation of the Lambda Calculus.

There is increasing interest in using concepts from process calculi as the basis for practical im-
plementations of concurrent programming languages. The language Facile [8] aims to integrate
functional and process styles. Concurrency primitives have been proposed for Standard ML [5].
The author is collaborating with the Facile project at ECRC to study implementation tech-
niques for such integrated languages. Early work considers encoding the functional components
of a program as a network of processes so that the complete language may be converted to
process form. [13] describes a new translation of the A—Calculus into a process notation which
has advantages over those proposed by Milner or Leth as it supports a mixture of lazy and eager
evaluation strategies using techniques similar to [6]. While Milner and Leth consider only the
pure A—Calculus, it is shown how constant data values and their operations may be included in
the translations.

In this paper we explore the relationship with asynchronous communication models and show
that with such a model, process networks may be translated very naturally into a generalised
graph rewriting system (GRS). A translation to the practical GRS language Dactl [9] is pre-
sented.

2 A Process Notation

The process notation described in this section has features corresponding to those of ECCS [7],
the m—Calculus [20] and LCCS [17]. All may be regarded as extensions to CCS allowing the
communication of link names and hence allow dynamic process networks to be generated.

In common with [14], however, we adopt an asynchronous communication model and concen-
trate on features corresponding to the subset of the 7—Calculus used in [19]. We will name the
asynchronous language ACPL for Asynchronous-Communication Process Language. It has a
synchronous counterpart named SCPL.

2.1 Syntax of ACPL

The forms of agent, or process, allowed are equivalent to those of [14] but using the syntax of
LCCS. In the syntax below, P and () are agents, A an agent identifier, z a link, and y a value
or link name:

Asynchronous Output zly
Send value y on link z.

Input x?y. P
Receive a value on link x and bind the value to y in subsequent behaviour P.

Restriction P\z
z is the name of a link which may only be used within P. For many purposes this may
be seen as the declaration of the link z.



Parallel Composition (P|Q)
P and @Q continue concurrently and may interact via shared links. Binary composition
is illustrated but an arbitrary number of agents may be composed including zero which
gives inaction.

Agent Definition P:A(zy,...,2,) =Q
A is an agent identifier of arity n which may be used in P. x1, ..., x, are distinct names
and may be free names in (). () may contain agent identifiers, including A, and free names
from P.

Defined Agent Ay, -y Yn)
A corresponding agent definition of the form A(zy,...,x,) = @ must be in scope. The

defined agent behaves like Q{y1/21,...,Yn/Tn}.

Hence parallel composition and repetition is supported, but not summation (choice). ? and \
are name binding constructs yielding the obvious notion of free and bound names.

We will allow communication of tuples of values as atomic events:

Asynchronous Tupled Output =z!(q,r)
Send pair of values ¢ and r on link x.

Tupled Input x?(q,r). P
Receive a pair of values on link z. Bind the first value to ¢ and the second to r in
subsequent behaviour P.

Such a pair of input values may be bound to a single name, as long as the name is only used as
an output value later. All our examples will involve communication of pairs of values, although
our model would permit communication of arbitrary tuples. There is an issue of how to type
messages and links, but we do not persue it here.

Note that in this notation output actions are always followed by inaction as in [14]. Hence other
techniques are required to make subsequent computation depend on reception of a message by
another agent.

2.2 Syntax of SCPL

The synchronous notation differs only in the notation for output actions:

Synchronous Output zly. P
Send value y on link x and continue with behaviour P.

Synchronous Tupled Output z!(q,r). P
Send pair of values ¢ and r on link x and continue with behaviour P.

The operational semantics of the notations will not not discussed in detail here since [14] and
[19] provide a sound basis.

2.3 Sequentialisation and Tupled Communication

Under synchronous as well as asynchronous calculi there is a need for care when multiple values
are to be be exchanged between agents. In an example from [20] agent P is to communicate



the pair of values (u,v) to either agent @ or R. We may express communication of a pair of
values directly in ACPL by:

(PIQIR) :
P = zl(u,v):
Q= x?(yaz) 'Ql:
R = 27(y,2). R’

Since the pair of values (u,v) is transmitted as an indivisible action, either @) receives the pair,
or R does. This considerably simplifies the code needed by other models as will be seen.

If we are restricted to communicating single values we might think of writing;:

(PIQ[R) :
P =zlu.xzlv:
Q =2x%.272.Q" :
R = z?y.272. R

However, it is possible that u might be received by @ and v by R, or vice versa. Note that this
is a program in SCPL.

To solve this problem, Milner et al develop the concept of molecular actions in which a tempo-
rary private channel is used as a capability to ensure that a single agent receives both values:

(P|QIR) :
P = (zlt|tlu.th)\t:
Q = x75.5%.572.Q" :
R = 27s.5%.572. R

s is not free in Q' or R'.

Under an asynchronous communication regime, we cannot use output actions to guard further
actions, but sequentialisation is possible. As in [20], Honda and Tokoro communicate a private
channel to the recipient. However, in their solution to the problem, the recipient sends back a
series of link names on which the pair of data values (u,v) will be transmitted:

(PIQIR) :
P = (z!t|t?a. (alu|t?b.blv) )\t :
Q = x7?s.(sle|c?y. (sle|c?2.Q"))\c:

Only Q is shown, R being similar. s and ¢ are not free in )’. Note that sequentialisation is
achieved within ACPL and hence without using output actions as guards.

2.4 Output Guards using Asynchronous Communication

In all the examples above we have assumed that the process P is inactive after the pair of
values has been transmitted, as required by ACPL. The use of molecular actions in the style of
[20] required the use of output guards, but the scheme of [14] shows that such guards can be
avoided.

However, the synchronous languages do permit output guards so it is of interest to see if ACPL
can model the same behaviour. We will consider messages consisting of a single value, u, bound



to y in the recipients. Using SCPL the example will be:

(PIQIR) :
P =zlu.P:
Q =2x7.Q :

Honda and Tokoro show that it is indeed possible to model this behaviour with an asynchronous
language. In essence, their translation adds an extra acknowledgement link name to the values
transmitted in a message. The recipient sends a dummy value to this channel when all values
in the message have been received. The sender guards its future behaviour with an input guard
receiving on the acknowledgement link:

(PlQIR) :
P = (2!(u,r)|r?2. P')\r:
Q = ?(y, k). (Kld\d| Q") :

r and z are not free in P’. k is not free in Q'.

ACPL allows transmission of tuples, so the code above is sufficient. [14] communicate simple
values, so the translation is a good deal more involved. The code requires the transmission of
a pair of values which would be encoded as follows:

(PIQIR) :
P = (z!t|t?a. (alu|t?b.blr) |r?2z. P))\r\t:
Q = x7?s.(slc|c?y. (sle|c?k. (Kld\d|Q")))\c:

It should be clear that a model supporting communication of tuples allows a much more concise
solution to these problems in both synchronous and asynchronous forms. Such a model is
also more practical since fewer communications are required. With tupled communication the
number of messages exchanged is 1 in the synchronous case and 2 in the asynchronous case.
Communicating a pair of simple values takes 3 message exchanges for a molecular action in the
synchronous case and 8 in the asynchronous case (not illustrated).

As the number of values to be communicated increases, the savings of the tupled style get larger.
Of course, the message size increases when using tupled communication, but under typical
implementation schemes, messages have to be quite substantial before the cost of transmitting
the data values becomes comparable with setup cost.

3 Translation of Lazy A\—Calculus

As an example we will build on [19] which provides encodings of the A—Calculus in the 7—
Calculus. Only closed terms are considered. The encodings do not reduce the bodies of ab-
stractions. This is not a problem when considering the application of these techniques to
functional programming where functional normal forms are not usually of interest.

The encodings simulate particular reduction strategies. We will consider the encoding of the
lazy A—Calculus [1] which only performs S-reduction on the outermost redex on the left-spine, in
other words, normal-order reduction takes place. The pure A—Calculus is not of great practical
use. Constants, such as boolean and integer data values, and operations on them must be added
to make a practical functional language.



3.1 An Extension to Milner’s Lazy A—-Calculus Scheme

The translation scheme is parameterised by the name of a link which will provide a characteristic
handle on the process network for the translated expression. In the scheme below, x is a variable,
c is an integer constant, M and N are A—expressions, and Inc is the operator returning the
successor of its argument:

v = zlu

u u?v.vle

u?(z,v) . [M],

u ([M]o [ (!t u) [ R: R = t?w. ([N]w| R))\E)\v
[Inc(M)], = ([M]a](als|s?m.u?v. vl (m+1))\s)\a

=
>
&
Zz 5
|=’|:’|::’|:’|:’
|

An abstraction expects to receive a pair providing a link for its argument and a link to form
the handle on the result of the application. The code for an application sends such values to
the function which will receive the pair when it has become an application. Evaluation of the
argument does not proceed until the application requests the argument by giving it an argument
link w via the ¢t channel. The argument, but not the function, may be used several times and
hence a recursive defined agent is used.

Constants must be modelled by process networks which behave correctly within the translation
scheme. Abstractions and variables wait to be given the names of links on which to commu-
nicate, while applications evolve until they simulate abstractions. As a data value may be an
argument, it must behave in the same way as an abstraction. Processes representing constants
will expect to be sent the name of a link and will respond with the value along the link. An
Inc operator requests the value of its argument by giving it a result channel s and receiving the
value m. It then acts exactly like the translation of a constant, awaiting its own result channel
on u and returning the value m + 1 as required.

3.2 An Example Translation

We will consider translation of a very simple expression:

[(Ax.Inc(z)) 3], = (f?(z,q).(zla]|(als|s?m.q?v.v!(m+1))\s)\a
AR
|R: R=t?w. (w?v.v!3|R))\f\t

A )—expression acting as a program is expected to reduce to a constant, rather than an ab-
straction. To extract the value from a program, P, we would produce a network of the form:

([P]u| Read(u) )\u : Read(w) = (wlec|ctv.Print(v))\c

and Print will display the final result.

4 Process Notation and Graph Rewriting

Process networks in the asynchronous style described in [14] and in ACPL may be easily trans-
lated into generalised graph rewriting systems. The discussion below uses the practical graph
rewriting language Dactl [9]. Dactl provides a notation for describing computational objects in



terms of directed graphs and for describing programs in terms of pattern-directed graph trans-
formation rules. Although the syntax is different, the model of graph rewriting is the same as
in LEAN [3]. A restricted form of this rewriting model underlies Term Graph Rewriting [2].

Dactl may be used as a vehicle for comparing implementation techniques and computational
strategies since it provides fine control of the rewriting process. Also, since it has a well-defined
operational semantics, it may be used as an intermediate code for language implementation.

Studies using Dactl have shown that implementations of a range of declarative languages may be
made using graph rewriting as a common computational model [10]. In addition to translation
of functional programming and term rewriting languages [16], which are traditionally associated
with graph rewriting, Dactl has been used successfully to translate full GHC on which is based
the kernel language adopted by the Japanese Fifth Generation Computer Systems project [11].

Graph rewriting also shows promise for supporting the integration of different programming
styles. [12] reports early work on integration of functional and concurrent logic languages, while
the work reported in [13] and this paper arises from a study of the integration of functional and
process-based programming.

4.1 The Graph Rewriting Language Dactl

The nodes of a Dactl graph are labelled with a symbol which indicates that the node plays the
role of an operator at the root of a rule application, a data constructor, or an overwritable. The
role of operators and constructors will be familiar. The novel feature is the use of overwritable
nodes which may be modified as a side-effect of rule application. This enables Dactl to express
many more computations than the conventional graph rewriting used to implement functional
languages. Overwritables may model von Neumann storage cells, semaphores, and the logic
variable. Overwritable nodes will be used in this paper to model the contents of communication
channels.

Each node has a distinct identifier. From a node leads a sequence of arcs to successor nodes.
Arcs point from an operator node to its arguments, or from a data constructor to its sub-terms.
A Dactl graph may be represented by listing the definitions of the nodes giving their identifier,
symbol, and a sequence of identifiers for the successor nodes. Repetition of identifiers is used
to indicate sharing in a graph:

a: Append[ ¢ ¢ 1,
c: Cons[ on ],
o: 1,

n: Nil

Symbols are integers or identifiers starting in upper-case, while node identifiers start in lower-
case. A node definition may replace one of the occurrences of the node identifier, and redundant
identifiers may be removed allowing the equivalent shorthand form:

a: Append[ c:Cons[ 1 Nil ] c ]

Dactl rules contain a pattern to be matched and a body, or contractum, to replace the occurrence
of the pattern in the graph, or redex. Patterns are Dactl graphs but may contain node identifiers
lacking a definition which will match an arbitrary node.

The contractum of a rule contains new graph structure to be built, which may reference nodes
matched by the pattern, and one or more redirections, which indicate that the source of the
redirection should be overwritten by the target. In classic term rewriting rules there will always



be a redirection overwriting the root of the redex with the root of the contractum. In such rules
the pattern and contractum are separated by the symbol =>. This is shorthand for a form with
an explicit overwrite using —> as separator.

Computation under the Dactl model proceeds by identifying a subgraph matching the pattern
of a rewriting rule and replacing it by the contractum of the rule. If more than one rule matches,
an arbitrary choice may be made about which rule to apply; fairness is not assumed. To control
the order of evaluation, attempts to match the rules against the graph only begin at active
nodes. Such nodes are marked with a * in the representation of a Dactl graph. The pattern of
a rule contains no such markings, since the matching process is insensitive to markings, but the
contractum may use markings to nominate further nodes at which rewriting may take place. If
multiple active nodes arise they may be considered in any order, or even in parallel if there is
no conflict between possible rewritings.

Nodes may also be created suspended waiting for notification that a successor has been rewritten
to a stable form. This enables a rule to create a dataflow graph in which certain nodes are
active and will produce results which awaken parent nodes once all arguments are available.
Suspension is indicated by one or more # markings. Each notification removes one suspension,
the node becoming active when the last suspension is removed. Notification takes place when an
active node is considered for rewriting, but no rule matches. This is typically because the node
in question is a constructor or overwritable. Arcs which will form notification paths are marked
with *. The following examples show some rules with markings and the execution sequence for
functional versions of append, and a version using the logic variable.

RULE

{1} FunApp[Cons[u x] y] => #Cons[u ~“*FunApp[x yl];
{2} FunApp([Nil y] => xy;

{3} FunApplpl p2] => #FunApp[“*pl p2];

The example is a strict function which rewrites to a data constructor node, Cons, which is
suspended waiting for completion of a recursive invocation of the function before notifying the
parents of the original node. The final rule applies if the first argument is not yet in the form
of a list. The argument is activated and the FunApp application will be reconsidered when the
argument has been rewritten.

Using explicit redirections we could write the first rule as follows:
{1} r:FunApp(Cons[u x] y] -> c:#Cons[u ~*FunApp[x yl], r:=c;

We will illustrate evaluation of a Dactl graph using an example with sharing, indicating the
rule applied at each step, or a hyphen when no rule matches and notification occurs:

*FunApp[ c:Cons[ o:1 n:Nil ] c ]
=>{1} #Cons[ o:1 “s:*FunApp[n:Nil c:Cons[o n]] ]
=>{2} #Cons[ o0:1 “c:*Cons[o n:Nil] ]
=>{-} #*Cons[ o:1 c:Cons[o n:Nil] 1]
=>{-} Cons[ o0:1 c:Cons[o n:Nil] ]

The computation terminates when no active nodes remain.

The following rules illustrate a version of append from logic programming. Here the result of the
rewrite indicates success or failure of a predicate and results are communicated by instantiation
of shared variables.



RULE

{1} LogApp[Cons[u x] y r:Var] => *LogApp[x y w:Var], r:=+Cons[u w];
{2} LOgApp[Nll y r:Varl] => *SUCCEED, T:=%y;

{3} LogApplp:Var q r:Var] => #LogApp[“p q rl;

The result of the first rule depends on the success of a recursive use of the predicate. The variable
r is bound to a Cons node whose second argument is a new variable which will be instantiated by
the recursive call. The Cons node is made active in order to notify any computation suspended
waiting for the variable to be instantiated. The final rule illustrates the case when the critical
first argument is not instantiated. The call suspends waiting for some other computation to
instantiate the variable (using one of the first two rules, for example).

We illustrate these rules in action with two calls to LogApp which share a variable:

*LogApp [Nil Cons[1 Nil] v:Var], *LogAppl[v Cons[2 Nil] w:Var]
=>{3} *LogApp[Nil Cons[1 Nil] v:Var], #LogApp[~v Cons[2 Nil] w:Var]
=>{2} *SUCCEED, v:*Cons[1 Nil], #LogApp[~v Cons[2 Nil] w:Var]
=>{-} *SUCCEED, *LogApp[v:Cons[1 Nil] Cons[2 Nil] w:Var]
=>{1} *SUCCEED, w:*Cons[1 x], *LogApp[Nil Cons[2 Nil] x:Var]
=>{2} *SUCCEED, w:*Cons[1 x], x:*Cons[2 Nil], *SUCCEED
=...

In the first step, the right-hand LogApp predicate finds a variable and suspends until it is
instantiated. The second step instantiates the variable as a side-effect. The third step finds no
match on the list value assigned to variable v, and reactivates the suspended LogApp predicate.

As afinal illustration, we consider the modelling of buffered communication channels. A channel
will consist of an overwritable Chan whose argument is a list acting as a stack of available values.
To output to the channel, a rule simply overwrites the channel to contain a list prefixed with the
new value. To input from a channel, a rule must test for available input. If the channel contains
the empty list, the operation is suspended until input is available. Otherwise the channel is
rewritten containing the tail of the original list.

Some example rules in this style are:

RULE

{1} Putl[c:Chan[v] d] -> c:= *Chan[Cons[d v]];

{2} Getl[c:Chan[Cons[d v]]] -> *Useld], c:=*Chanl[v];
{3} Getl[c] -> #Get["c];

In the illustration of the rules in action below the first attempt to read from the channel
suspends on finding the empty channel Chan[Nil]. Note the final state with the channel empty
again:

*xGet[c], *Putl[c 2], c:Chan[n:Nil]
=>{3} #Get["c], *Put[c 2], c:Chan[n:Nill
=>{1} #Get["c], c:*Chan[Cons[2 n:Nil]]
=>{-} *Getl[c], c:Chan[Cons[2 n:Nil]]
=>{2} *Usel[2], c:Chan[n:Nil]
=>...



4.2 Translating ACPL Networks to Standard Form

Before describing the translation of a ACPL process network to a GRS, it will be shown that
any network may be expressed in a standard form which makes heavy use of defined agents. If
A stands for an agent identifier then we will define a sub-language of ACPL in which the only
forms allowed are:

Pu=aly|a?y. A|(A]---|A)|A|P\z|P: A=P

Furthermore, we only permit the agent definitions to be at the outermost level (no agent defini-
tions within agent definitions), and they may contain no free variables. Any ACPL expression
can be converted to this form as will be shown below. Equivalent forms of the translation of
the example Az.Inc(z)) 3 are shown for illustration: The original program is:

((f2z,q)- (xla|als|s?m.q?v.vi(m+1))\s\a
ALK
|R: R = ttw. (w?.v!3|R)
AVAV:

| Read(u)

Nu :
Read(w) = (w!c|c?v. Print(v) )\c

Adding additional agent definitions to satisfy the reduced syntax, and also using an agent
definition Put for all output operations:

(Q: Q=
(A: A= f?x,q). B: B= (Put(z,a)| Put(a,s)|C :
C = s™m.D: D= qM. Put(v,(m+1)))\s\a
| Put(f, (t,v))
|R: R=tMw.E: E= (F: F = w?. Put(v,3) | R)
AVAV:
| Read(u)
Nu :
Read(w) = ( Put(w,c) |G : G = ct. Print(v) )\c:
Put(z,v) = zlv

Adding parameters to avoid free variables:

P:P=
(Qu) : Qu) =
(A(f): A(f) f2(z,q). B(z,q): B(z,q) = (Put(z,a)| Put(a,s)|C(s,q):
C(s,q) = D(g,m) : D(g,m) = q?. Put(v, (m+1)))\s\a

| Put(f, (t, u))
| R(t) : R(t) = t?w.E(w,1) :
E(w,t) = (F(w ) F(w) = w?v.Put(v,3) | R(t))
AVAV;
| Read(u)

10



Nu
Read(w) = ( Put(w,c)|G(c): G(c) = c?v. Print(v) )\c:
Put(z,v) : Put(z,v) = zlv

All definitions can now be pulled to the top level:

P = (Q(u) | Read(u))\u:
Q(U) (ACS) | Put(f, (t,u) [ R(t) )\f\E:
A(f) = (@, q). B(z,q) :
B(z,q) = (Put(z,a)| Put(a,s)|C(s,q))\s\a:
C(s,q) = s?m.D(q,m):
D(q,m) = q™. Put(v,(m+1)):

t) = tw. E(w,t):

w,t) = (F(w)|R(t)):

F(w) = w?v. Put(v,3):
Read(w) = ( Put(w,c)|G(c))\c:
G(c) = c?v. Print(v) :

Put(z,v) = zlv

4.3 Translating ACPL Networks to Graph Rewriting Systems

It will be seen that ACPL programs in standard form have a very simple format. It is possible
to convert agent definitions in standard form directly to Dactl rules. We will give the translated
Dactl code and then describe the translation:

RULE
INITIAL -> *Q[u], *Read[u], u: NewChan;
QLul -> *A[f], *Put[f Pair[t ul], *R[t], f: NewChan, t: NewChan;
A[f:Chan[Cons[Pair[x q] r]]l] -> *B[x q], f:=+Chan[r];
A[f:Chan[Nil]l] -> #A["f];
Blx q] -> *Put[x al, *Put[a s], *C[s ql, s: NewChan, a: NewChan;
C[s:Chan[Cons[m r]] q] -> *D[q m], s:=+Chan[r];
Cls:Chan[Nil] q] —> #C["s ql;
D[q:Chan[Cons[v r]] m] -> #Put[v "*IAdd[m 1]], q:=*Chan[r];
D[q:Chan[Nil] m] -> #D["q m];
R[t:Chan[Cons[w r]]] -> *E[w t], t:=*Chan[r];
R[t:Chan[Nil]] -> #R["t];
Elw t] -> *F[w], *R[t];
Fl[w:Chan[Cons[v r]]] -> *Put[v 3], w:=+Chanl[r];
Flw:Chan[Nill] -> #F["w];
Read[w] -> *Put[w c], *G[c], c: NewChan;
G[c:Chan[Cons[v r]]] -> *Print[v], c:=*Chan[r];
G[c:Chan[Nill]l -> #G["c];

All Dactl programs start with a graph containing a single node with the symbol INITIAL, which
replaces P above. Processes generally correspond to GRS terms. The * marks an active process
or rewritable term. Parallel composition, used by Q, B, F, and Read is very straightforward
and appears as little more than a change of syntax. Restriction, used in @}, B, and Read

11



corresponds to declaration of new links denoted by the term NewChan. Links are represented
by the overwritable symbol Chan which contains a stack of messages which have been sent on
the link. IAdd is the primitive function for adding integers.

All output actions use the primitive Put introduced earlier. To output a pair, the Pair con-
structor is used, as in Q. Processes guarded by input actions become two rules: the first matches
a non-empty channel, binds the value received, and rewrites the channel having extracted the
value; the second applies if the channel is empty and blocks until input is available. When a
pair is input, (for example in A), the pattern matches a pair of values for use in the body of the
action.

A new channel is defined as the following pattern:

PATTERN
NewChan = Chan[Nil];

The processes Put and Print are defined as follows:

RULE
Put[c:Chan[v] d] -> ¢ := *Chan[Cons[d v]];
Print[v] -> *PrintF["Result: %d" vl;

Put just inserts the new message at the head of the stack of messages held by the link.

The overall style of execution contrasts strongly with the more conventional Term Graph Rewrit-
ing [2] approach. Instead of representing an expression as a single rooted term, this style rep-
resents sub-expressions as independent unrooted terms linked by shared references to nodes
representing channels. Execution corresponds more to the actions of the Chemical Abstract
Machine [4] than a traditional graph reduction machine.

A translator has been written in ML which takes A—expressions and converts them to an internal
form of ACPL. The process network is converted to standard form, as described above, and is
mapped to Dactl. The Dactl code may be executed using an interpreter or compiler developed
at UEA. The example above is as produced by the translator, with machine-generated identifiers
replaced by more readable ones.

The mapping from A—expressions to ACPL used here is based on extensions to the Lazy scheme
n [19]. The translator also implements a new scheme reported in [13].

4.4 Translating SCPL Networks to Graph Rewriting Systems

It has been shown that communication in the synchronous language can be modelled in the
asynchronous language by sending an acknowledgement channel. Using the earlier example we
can provide a translation to Dactl.

The SCPL network:
S() = (P(v,2)|Q(z) )\x:
P(u,z) = zlu. P':
Q(z) = 27y.Q'(y)
can be modelled by the ACPL network:
S() = (P(v,2)|Q(z) )\x:
P(u,z) = (2)(u, k)| k?2. P")\k :
Q(z) = 2?(y, k). (Kl2\z| Q'(y))
Translating the ACPL program yields Dactl rules such as:
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RULE
Slvl -> *P[v x], *Q[x], x:NewChan;
P[u x] -> *Put[x Pair[u k]], *A[k], k:NewChan;
Alk:Chan[Cons[z r]]] -> *P’, k:=*Chan[r];
Alk:Chan[Nil]]l -> #A["k];
Q[x:Chan[Cons[Pair[y k] r]]l] ->

*Q’ [y], x:=*Chan[r], *Putl[k z], z:NewChan;

Q[x:Chan[Nil]] -> #Q["x];

Hence the communication mechanism can be used in the normal way. However, optimisations
can be made if it is known that a link is being used purely for synchronisation:

e No special value z needs to be communicated on the synchronisation channel &
e The synchronisation channel will be used only once so need not be rewritten once used

e A simpler overwritable structure will suffice in place of a complete link

The Dactl code can be simplified to the form below. The synchronisation value takes the initial
value Wait when created by P and is overwritten by Free when the message is received by Q:

RULE
Slvl -> #P[v x], *Q[x], x:NewChan;
P[lu x] -> *Put[x Pair[u k]], *A[k], k:Wait;
A[k:Free] —> *P7;
Alk:Wait] -> #A["k];
Q[x:Chan[Cons[Pair[y k:Wait] r]]] -> *Q’[y], x:=*Chan[r], k:=+Free;
Q[x:Chan([Nill] -> #Q["x]1;

Further, should it be desired, a mixture of synchronous (acknowledged) and asynchronous
(unacknowledged) communications can be used. In this case the Dactl code receiving a message
would distinguish between classes of values in the message queue.

The final example below involves a process P which uses synchronous communication and R
which waits for no acknowledgement. Instead of using the constructor Cons to build the message
stack, we use either ACons for asynchronous messages or SCons for synchronous messages. For
this example specialised rules are used for output.

S = (P(z)|Qx) | R(z) )\z :
P(z) = z!2. Print(3) :

Q(z) = 2?y.(Q(x) | Print(y) ) :
R(z) = (z!4| Print(5) )

RULE

S -> xP[x], *Q[x], *R[x], x:NewChan;
P[x:Chan[s]] -> x:=*Chan[SCons[2 s k:Wait]], *A[k];
Alk:Free] -> *Print[3];
Alk:Wait] -> #A["k];
R[x:Chan[s]] -> x:=*Chan[ACons[4 s]], *Print[ 5];
Q[x:Chan[SCons[y r k:Wait]]] ->

*Q[x], x:=+Chan(r], k:=+Free, *Printl[y];
Q[x:Chan[ACons[y r]]] -> *Q[x], x:=*Chan[r], *Printl[y];
Q[x:Chan([Nil]] -> #Q["x];
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5 Conclusions

This paper has explored some practical extensions to the theory of process calculi with asyn-
chronous communication in the style of [14].

Although the process language is rich enough to support all the facilities used in [19], the
language lacks the choice (sum) operators and hence avoids the need to retract communication
offers. It also adopts a different approach to the repetition construct proposed there. [14] show
how the repetition construct might be expressed in ACPL, but the Dactl translation would
compute indefinitely, generating increasing numbers of copies of the repeated process through
internal actions. Instead, we use recursively defined agents as in earlier models and rely on
such processes having dependencies on external actions to prevent an explosion of the process
network.

We have not explored data-dependent matching constructs at this stage. [14] provide a theoret-
ically elegant approach to selections, but we feel that a more direct approach will be required
for our rather practical purposes. The match construct of the m—calculus may be suitable.

It has been shown that the language ACPL based on asynchronous communication principles
may be mapped to a graph rewriting notation. This opens up the question of whether graph
rewriting might lead to a suitable low-level implementation route for such process notations,
and for programming languages integrating functional and process styles. It is also shown
that the requirements of synchronous communication may be satisfied with comparatively little
overhead.
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