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Honda and Tokoro provide a formal system for communicating systems developed from
Milner’s –calculus. Unlike other formalisms, their work is based on asynchronous commu-
nication primitives.

This paper proposes some minor but practically significant extensions to a model based
on asynchronous communication and shows how the resulting system may be mapped very
directly onto a graph rewriting system.

While the model based on asynchronous communication permits the most direct trans-
lation, a related model using synchronous communication may be implemented in a similar
manner.

The calculus of communicating systems of Milner [18] has provided a fertile theory for the study

of concurrent process networks. CCS can describe regular systems, but cannot express systems
with an arbitrary dynamic structure.

There have been two main approaches to extending CCS to model process networks which can
evolve dynamically. One approach supports higher-order processes which may be communicated

as values. An example is the language CHOCS of Thomsen [21]. Another approach allows the
communication of link names which then act as references to processes. The early work by

Engberg and Nielsen on ECCS [7] provided the foundation for the –calculus [20] and LCCS
developed by Leth [17]. Influenced by the Chemical Abstract Machine of Berry and Boudol
[4], Milner has recast parts of the –calculus allowing an elegant representation of functions as

process networks [19]. The subset language omits both matching and summation, and provides
a replication construct in place of recursively defined agents.

While all these calculi are based on a synchronous model of communication, Honda and Tokoro

base an object-oriented formalism on asynchronous communication [14]. They develop an asyn-
chronous concept of bisimulation and provide a mapping from the language of Milner [19] to

their asynchronous form. This mapping, and other uses of the asynchronous formalism, rely
on techniques for sequentialisation of events. One contribution of the current paper is to show

that great simplifications can be made to these techniques if the messages communicated over
links are allowed to be tuples rather than single values.
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2 A Process Notation
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1.2 Practical Application of Process Calculi

2.1 Syntax of ACPL

A number of studies have been made of the relationship between process notations and func-

tional programming. Early work by Kennaway and Sleep used the LNET model [15] and Thom-
sen used the higher-order processes of CHOCS [21, 22]. Milner [19], and Leth [17], show how

an arbitrary lambda expression may be converted to a network of processes whose behaviour
simulates reduction of the original –expression. Such work has been primarily motivated by

a desire to explore the theoretical relationship between the formalisms, rather than to provide
an efficient implementation of the Lambda Calculus.

There is increasing interest in using concepts from process calculi as the basis for practical im-
plementations of concurrent programming languages. The language Facile [8] aims to integrate

functional and process styles. Concurrency primitives have been proposed for Standard ML [5].
The author is collaborating with the Facile project at ECRC to study implementation tech-
niques for such integrated languages. Early work considers encoding the functional components

of a program as a network of processes so that the complete language may be converted to
process form. [13] describes a new translation of the –Calculus into a process notation which

has advantages over those proposed by Milner or Leth as it supports a mixture of lazy and eager
evaluation strategies using techniques similar to [6]. While Milner and Leth consider only the

pure –Calculus, it is shown how constant data values and their operations may be included in
the translations.

In this paper we explore the relationship with asynchronous communication models and show
that with such a model, process networks may be translated very naturally into a generalised

graph rewriting system (GRS). A translation to the practical GRS language Dactl [9] is pre-
sented.

The process notation described in this section has features corresponding to those of ECCS [7],

the –Calculus [20] and LCCS [17]. All may be regarded as extensions to CCS allowing the
communication of link names and hence allow dynamic process networks to be generated.

In common with [14], however, we adopt an asynchronous communication model and concen-
trate on features corresponding to the subset of the –Calculus used in [19]. We will name the
asynchronous language ACPL for Asynchronous-Communication Process Language. It has a

synchronous counterpart named SCPL.

The forms of agent, or process, allowed are equivalent to those of [14] but using the syntax of
LCCS. In the syntax below, and are agents, an agent identifier, a link, and a value

or link name:

!

Send value on link .

?
Receive a value on link and bind the value to in subsequent behaviour .

is the name of a link which may only be used within . For many purposes this may
be seen as the declaration of the link .
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2.2 Syntax of SCPL

2.3 Sequentialisation and Tupled Communication

P Q

P Q

P A x , . . . , x Q

A P x , . . . , x

Q Q A

P

A y , . . . , y

A x , . . . , x Q

Q y /x , . . . , y /x

x q, r

q r x

x q, r . P

x q r

P

x y. P

y x P

x q, r . P

q r x P

P

Parallel Composition

Agent Definition

Defined Agent

Asynchronous Tupled Output

Tupled Input

Synchronous Output

Synchronous Tupled Output

( )
and continue concurrently and may interact via shared links. Binary composition

is illustrated but an arbitrary number of agents may be composed including zero which
gives inaction.

: ( ) =
is an agent identifier of arity n which may be used in . are distinct names

and may be free names in . may contain agent identifiers, including , and free names
from .

( )
A corresponding agent definition of the form ( ) = must be in scope. The

defined agent behaves like .

Hence parallel composition and repetition is supported, but not summation (choice). ? and
are name binding constructs yielding the obvious notion of free and bound names.

We will allow communication of tuples of values as atomic events:

!( )

Send pair of values and on link .

?( )

Receive a pair of values on link . Bind the first value to and the second to in
subsequent behaviour .

Such a pair of input values may be bound to a single name, as long as the name is only used as

an output value later. All our examples will involve communication of pairs of values, although
our model would permit communication of arbitrary tuples. There is an issue of how to type
messages and links, but we do not persue it here.

Note that in this notation output actions are always followed by inaction as in [14]. Hence other
techniques are required to make subsequent computation depend on reception of a message by

another agent.

The synchronous notation differs only in the notation for output actions:

!
Send value on link and continue with behaviour .

!( )

Send pair of values and on link and continue with behaviour .

The operational semantics of the notations will not not discussed in detail here since [14] and

[19] provide a sound basis.

Under synchronous as well as asynchronous calculi there is a need for care when multiple values
are to be be exchanged between agents. In an example from [20] agent is to communicate
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either or

et al molecular actions

2.4 Output Guards using Asynchronous Communication

u, v Q R

P Q R

P x u, v

Q x y, z . Q

R x y, z . R

u, v Q

R

P Q R

P x u . x v

Q x y . x z . Q

R x y . x z . R

u Q v R

P Q R

P x t t u . t v t

Q x s . s y . s z . Q

R x s . s y . s z . R

s Q R

u, v

P Q R

P x t t a. a u t b. b v t

Q x s. s c c y. s c c z. Q c

Q R s c Q

P

u

the pair of values ( ) to agent . We may express communication of a pair of
values directly in ACPL by:

( ) :

= !( ) :

= ?( ) :

= ?( )

Since the pair of values ( ) is transmitted as an indivisible action, either receives the pair,

or does. This considerably simplifies the code needed by other models as will be seen.

If we are restricted to communicating single values we might think of writing:

( ) :

= ! ! :

= ? ? :

= ? ?

However, it is possible that might be received by and by , or vice versa. Note that this
is a program in SCPL.

To solve this problem, Milner develop the concept of in which a tempo-
rary private channel is used as a capability to ensure that a single agent receives both values:

( ) :

= ( ! ! ! ) :

= ? ? ? :

= ? ? ?

is not free in or .

Under an asynchronous communication regime, we cannot use output actions to guard further

actions, but sequentialisation is possible. As in [20], Honda and Tokoro communicate a private
channel to the recipient. However, in their solution to the problem, the recipient sends back a

series of link names on which the pair of data values ( ) will be transmitted:

( ) :

= ( ! ? ( ! ? ! ) ) :

= ? ( ! ? ( ! ? ) ) :

Only is shown, being similar. and are not free in . Note that sequentialisation is
achieved within ACPL and hence without using output actions as guards.

In all the examples above we have assumed that the process is inactive after the pair of
values has been transmitted, as required by ACPL. The use of molecular actions in the style of

[20] required the use of output guards, but the scheme of [14] shows that such guards can be
avoided.

However, the synchronous languages do permit output guards so it is of interest to see if ACPL

can model the same behaviour. We will consider messages consisting of a single value, , bound
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3 Translation of Lazy –Calculus

y

P Q R

P x u . P

Q x y . Q

P Q R

P x u, r r z. P r

Q x y, k . k d d Q

r z P k Q

P Q R

P x t t a. a u t b. b r r z. P r t

Q x s. s c c y. s c c k. k d d Q c

λ π

λ β

λ

to in the recipients. Using SCPL the example will be:

( ) :

= ! :

= ? :

Honda and Tokoro show that it is indeed possible to model this behaviour with an asynchronous
language. In essence, their translation adds an extra acknowledgement link name to the values

transmitted in a message. The recipient sends a dummy value to this channel when all values
in the message have been received. The sender guards its future behaviour with an input guard
receiving on the acknowledgement link:

( ) :

= ( !( ) ? ) :

= ?( ) ( ! ) :

and are not free in . is not free in .

ACPL allows transmission of tuples, so the code above is sufficient. [14] communicate simple
values, so the translation is a good deal more involved. The code requires the transmission of

a pair of values which would be encoded as follows:

( ) :

= ( ! ? ( ! ? ! ) ? ) :

= ? ( ! ? ( ! ? ( ! ) ) ) :

It should be clear that a model supporting communication of tuples allows a much more concise
solution to these problems in both synchronous and asynchronous forms. Such a model is

also more practical since fewer communications are required. With tupled communication the
number of messages exchanged is 1 in the synchronous case and 2 in the asynchronous case.

Communicating a pair of simple values takes 3 message exchanges for a molecular action in the
synchronous case and 8 in the asynchronous case (not illustrated).

As the number of values to be communicated increases, the savings of the tupled style get larger.

Of course, the message size increases when using tupled communication, but under typical
implementation schemes, messages have to be quite substantial before the cost of transmitting

the data values becomes comparable with setup cost.

As an example we will build on [19] which provides encodings of the –Calculus in the –

Calculus. Only closed terms are considered. The encodings do not reduce the bodies of ab-
stractions. This is not a problem when considering the application of these techniques to

functional programming where functional normal forms are not usually of interest.

The encodings simulate particular reduction strategies. We will consider the encoding of the
lazy –Calculus [1] which only performs –reduction on the outermost redex on the left-spine, in

other words, normal-order reduction takes place. The pure –Calculus is not of great practical
use. Constants, such as boolean and integer data values, and operations on them must be added

to make a practical functional language.
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4 Process Notation and Graph Rewriting

3.1 An Extension to Milner’s Lazy –Calculus Scheme

3.2 An Example Translation

x

c M N λ Inc

x x u

c u v . v c

λx.M u x, v . M

M N M v t, u R R t w. N R t v

Inc M M a s s m . u v . v m s a

w t

Inc s

m

u m

λx.Inc x f x, q . x a a s s m. q v. v m s a

f t, u

R R t w. w v. v R f t

λ

P

P Read u u Read w w c c v . Print v c

Print

The translation scheme is parameterised by the name of a link which will provide a characteristic

handle on the process network for the translated expression. In the scheme below, is a variable,
is an integer constant, and are –expressions, and is the operator returning the

successor of its argument:

[[ ]] = !

[[ ]] = ? !

[[ ]] = ?( ) [[ ]]

[[ ]] = ( [[ ]] ( !( ) : = ? ([[ ]] )) )

[[ ( )]] = ( [[ ]] ( ! ? ? !( + 1)) )

An abstraction expects to receive a pair providing a link for its argument and a link to form
the handle on the result of the application. The code for an application sends such values to

the function which will receive the pair when it has become an application. Evaluation of the
argument does not proceed until the application requests the argument by giving it an argument
link via the channel. The argument, but not the function, may be used several times and

hence a recursive defined agent is used.

Constants must be modelled by process networks which behave correctly within the translation

scheme. Abstractions and variables wait to be given the names of links on which to commu-
nicate, while applications evolve until they simulate abstractions. As a data value may be an

argument, it must behave in the same way as an abstraction. Processes representing constants
will expect to be sent the name of a link and will respond with the value along the link. An

operator requests the value of its argument by giving it a result channel and receiving the
value . It then acts exactly like the translation of a constant, awaiting its own result channel
on and returning the value + 1 as required.

We will consider translation of a very simple expression:

[[( ( )) 3]] = ( ?( ) ( ! ( ! ? ? !( + 1) ) )

!( )

: = ? ( ? !3 ) )

A –expression acting as a program is expected to reduce to a constant, rather than an ab-
straction. To extract the value from a program, , we would produce a network of the form:

( [[ ]] ( ) ) : ( ) = ( ! ? ( ) )

and will display the final result.

Process networks in the asynchronous style described in [14] and in ACPL may be easily trans-
lated into generalised graph rewriting systems. The discussion below uses the practical graph

rewriting language Dactl [9]. Dactl provides a notation for describing computational objects in
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4.1 The Graph Rewriting Language Dactl

a: Append[ c c ],

c: Cons[ o n ],

o: 1,

n: Nil

a: Append[ c:Cons[ 1 Nil ] c ]

operator data constructor overwritable

pattern contractum
redex

redirections

terms of directed graphs and for describing programs in terms of pattern-directed graph trans-
formation rules. Although the syntax is different, the model of graph rewriting is the same as

in [3]. A restricted form of this rewriting model underlies Term Graph Rewriting [2].

Dactl may be used as a vehicle for comparing implementation techniques and computational
strategies since it provides fine control of the rewriting process. Also, since it has a well-defined

operational semantics, it may be used as an intermediate code for language implementation.

Studies using Dactl have shown that implementations of a range of declarative languages may be
made using graph rewriting as a common computational model [10]. In addition to translation

of functional programming and term rewriting languages [16], which are traditionally associated
with graph rewriting, Dactl has been used successfully to translate full GHC on which is based

the kernel language adopted by the Japanese Fifth Generation Computer Systems project [11].

Graph rewriting also shows promise for supporting the integration of different programming
styles. [12] reports early work on integration of functional and concurrent logic languages, while

the work reported in [13] and this paper arises from a study of the integration of functional and
process-based programming.

The nodes of a Dactl graph are labelled with a symbol which indicates that the node plays the
role of an at the root of a rule application, a , or an . The

role of operators and constructors will be familiar. The novel feature is the use of overwritable
nodes which may be modified as a side-effect of rule application. This enables Dactl to express

many more computations than the conventional graph rewriting used to implement functional
languages. Overwritables may model von Neumann storage cells, semaphores, and the logic

variable. Overwritable nodes will be used in this paper to model the contents of communication
channels.

Each node has a distinct identifier. From a node leads a sequence of arcs to successor nodes.

Arcs point from an operator node to its arguments, or from a data constructor to its sub-terms.
A Dactl graph may be represented by listing the definitions of the nodes giving their identifier,

symbol, and a sequence of identifiers for the successor nodes. Repetition of identifiers is used
to indicate sharing in a graph:

Symbols are integers or identifiers starting in upper-case, while node identifiers start in lower-
case. A node definition may replace one of the occurrences of the node identifier, and redundant

identifiers may be removed allowing the equivalent shorthand form:

Dactl rules contain a to be matched and a body, or , to replace the occurrence
of the pattern in the graph, or . Patterns are Dactl graphs but may contain node identifiers

lacking a definition which will match an arbitrary node.

The contractum of a rule contains new graph structure to be built, which may reference nodes

matched by the pattern, and one or more , which indicate that the source of the
redirection should be overwritten by the target. In classic term rewriting rules there will always

7
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->
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RULE

{1} FunApp[Cons[u x] y] => #Cons[u ^*FunApp[x y]];

{2} FunApp[Nil y] => *y;

{3} FunApp[p1 p2] => #FunApp[^*p1 p2];

Cons

FunApp

{1} r:FunApp[Cons[u x] y] -> c:#Cons[u ^*FunApp[x y]], r:=c;

*FunApp[ c:Cons[ o:1 n:Nil ] c ]

=>{1} #Cons[ o:1 ^s:*FunApp[n:Nil c:Cons[o n]] ]

=>{2} #Cons[ o:1 ^c:*Cons[o n:Nil] ]

=>{-} *Cons[ o:1 c:Cons[o n:Nil] ]

=>{-} Cons[ o:1 c:Cons[o n:Nil] ]

be a redirection overwriting the root of the redex with the root of the contractum. In such rules
the pattern and contractum are separated by the symbol . This is shorthand for a form with

an explicit overwrite using as separator.

Computation under the Dactl model proceeds by identifying a subgraph matching the pattern
of a rewriting rule and replacing it by the contractum of the rule. If more than one rule matches,

an arbitrary choice may be made about which rule to apply; fairness is not assumed. To control
the order of evaluation, attempts to match the rules against the graph only begin at

nodes. Such nodes are marked with a in the representation of a Dactl graph. The pattern of
a rule contains no such markings, since the matching process is insensitive to markings, but the

contractum may use markings to nominate further nodes at which rewriting may take place. If
multiple active nodes arise they may be considered in any order, or even in parallel if there is

no conflict between possible rewritings.

Nodes may also be created waiting for that a successor has been rewritten
to a stable form. This enables a rule to create a dataflow graph in which certain nodes are

active and will produce results which awaken parent nodes once all arguments are available.
Suspension is indicated by one or more markings. Each notification removes one suspension,

the node becoming active when the last suspension is removed. Notification takes place when an
active node is considered for rewriting, but no rule matches. This is typically because the node

in question is a constructor or overwritable. Arcs which will form notification paths are marked
with .̂ The following examples show some rules with markings and the execution sequence for

functional versions of append, and a version using the logic variable.

The example is a strict function which rewrites to a data constructor node, , which is

suspended waiting for completion of a recursive invocation of the function before notifying the
parents of the original node. The final rule applies if the first argument is not yet in the form

of a list. The argument is activated and the application will be reconsidered when the
argument has been rewritten.

Using explicit redirections we could write the first rule as follows:

We will illustrate evaluation of a Dactl graph using an example with sharing, indicating the
rule applied at each step, or a hyphen when no rule matches and notification occurs:

The computation terminates when no active nodes remain.

The following rules illustrate a version of append from logic programming. Here the result of the

rewrite indicates success or failure of a predicate and results are communicated by instantiation
of shared variables.

8



RULE

{1} LogApp[Cons[u x] y r:Var] => *LogApp[x y w:Var], r:=*Cons[u w];

{2} LogApp[Nil y r:Var] => *SUCCEED, r:=*y;

{3} LogApp[p:Var q r:Var] => #LogApp[^p q r];

r Cons

Cons

LogApp

*LogApp[Nil Cons[1 Nil] v:Var], *LogApp[v Cons[2 Nil] w:Var]

=>{3} *LogApp[Nil Cons[1 Nil] v:Var], #LogApp[^v Cons[2 Nil] w:Var]

=>{2} *SUCCEED, v:*Cons[1 Nil], #LogApp[^v Cons[2 Nil] w:Var]

=>{-} *SUCCEED, *LogApp[v:Cons[1 Nil] Cons[2 Nil] w:Var]

=>{1} *SUCCEED, w:*Cons[1 x], *LogApp[Nil Cons[2 Nil] x:Var]

=>{2} *SUCCEED, w:*Cons[1 x], x:*Cons[2 Nil], *SUCCEED

=>...

LogApp

v LogApp

Chan

RULE

{1} Put[c:Chan[v] d] -> c:= *Chan[Cons[d v]];

{2} Get[c:Chan[Cons[d v]]] -> *Use[d], c:=*Chan[v];

{3} Get[c] -> #Get[^c];

Chan[Nil]

*Get[c], *Put[c 2], c:Chan[n:Nil]

=>{3} #Get[^c], *Put[c 2], c:Chan[n:Nil]

=>{1} #Get[^c], c:*Chan[Cons[2 n:Nil]]

=>{-} *Get[c], c:Chan[Cons[2 n:Nil]]

=>{2} *Use[2], c:Chan[n:Nil]

=>...

The result of the first rule depends on the success of a recursive use of the predicate. The variable
is bound to a node whose second argument is a new variable which will be instantiated by

the recursive call. The node is made active in order to notify any computation suspended
waiting for the variable to be instantiated. The final rule illustrates the case when the critical

first argument is not instantiated. The call suspends waiting for some other computation to
instantiate the variable (using one of the first two rules, for example).

We illustrate these rules in action with two calls to which share a variable:

In the first step, the right-hand predicate finds a variable and suspends until it is
instantiated. The second step instantiates the variable as a side-effect. The third step finds no
match on the list value assigned to variable , and reactivates the suspended predicate.

As a final illustration, we consider the modelling of buffered communication channels. A channel
will consist of an overwritable whose argument is a list acting as a stack of available values.

To output to the channel, a rule simply overwrites the channel to contain a list prefixed with the
new value. To input from a channel, a rule must test for available input. If the channel contains

the empty list, the operation is suspended until input is available. Otherwise the channel is
rewritten containing the tail of the original list.

Some example rules in this style are:

In the illustration of the rules in action below the first attempt to read from the channel

suspends on finding the empty channel . Note the final state with the channel empty
again:
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4.2 Translating ACPL Networks to Standard Form
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P x y x y.A A A A P x P A P

λx.Inc x

f x, q . x a a s s m. q v. v m s a

f t, u

R R t w. w v. v R

f t

Read u

u

Read w w c c v. Print v c

Put

P P

Q Q

A A f x, q . B B Put x, a Put a, s C

C s m.D D q v. Put v, m s a

Put f, t, u

R R t w. E E F F w v. Put v, R

f t

Read u

u

Read w Put w, c G G c v. Print v c

Put x, v x v

P P

Q u Q u

A f A f f x, q . B x, q B x, q Put x, a Put a, s C s, q

C s, q s m.D q,m D q,m q v. Put v, m s a

Put f, t, u

R t R t t w.E w, t

E w, t F w F w w v.Put v, R t

f t

Read u

Before describing the translation of a ACPL process network to a GRS, it will be shown that
any network may be expressed in a standard form which makes heavy use of defined agents. If

stands for an agent identifier then we will define a sub-language of ACPL in which the only
forms allowed are:

::= ! ? ( ) : =

Furthermore, we only permit the agent definitions to be at the outermost level (no agent defini-
tions within agent definitions), and they may contain no free variables. Any ACPL expression

can be converted to this form as will be shown below. Equivalent forms of the translation of
the example ( )) 3 are shown for illustration: The original program is:

( ( ?( ) ( ! ! ? ? !( + 1) )

!( )

: = ? ( ? !3 )

)

( )

) :

( ) = ( ! ? ( ) )

Adding additional agent definitions to satisfy the reduced syntax, and also using an agent
definition for all output operations:

: =

( : =

( : = ?( ) : = ( ( ) ( ) :

= ? : = ? ( ( + 1)))

( ( ))

: = ? : = ( : = ? ( 3) )

)

( )

) :

( ) = ( ( ) : = ? ( ) ) :

( ) = !

Adding parameters to avoid free variables:

: =

( ( ) : ( ) =

( ( ) : ( ) = ?( ) ( ) : ( ) = ( ( ) ( ) ( ) :

( ) = ? ( ) : ( ) = ? ( ( + 1)))

( ( ))

( ) : ( ) = ? ( ) :

( ) = ( ( ) : ( ) = ? ( 3) ( ))

)

( )
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4.3 Translating ACPL Networks to Graph Rewriting Systems

u

Read w Put w, c G c G c c v. Print v c

Put x, v Put x, v x v

P P Q u Read u u

Q u A f Put f, t, u R t f t

A f f x, q . B x, q

B x, q Put x, a Put a, s C s, q s a

C s, q s m.D q,m

D q,m q v. Put v, m

R t t w. E w, t

E w, t F w R t

F w w v. Put v,

Read w Put w, c G c c

G c c v. Print v

Put x, v x v

P

Q B E Read

Q B Read

RULE

INITIAL -> *Q[u], *Read[u], u: NewChan;

Q[u] -> *A[f], *Put[f Pair[t u]], *R[t], f: NewChan, t: NewChan;

A[f:Chan[Cons[Pair[x q] r]]] -> *B[x q], f:=*Chan[r];

A[f:Chan[Nil]] -> #A[^f];

B[x q] -> *Put[x a], *Put[a s], *C[s q], s: NewChan, a: NewChan;

C[s:Chan[Cons[m r]] q] -> *D[q m], s:=*Chan[r];

C[s:Chan[Nil] q] -> #C[^s q];

D[q:Chan[Cons[v r]] m] -> #Put[v ^*IAdd[m 1]], q:=*Chan[r];

D[q:Chan[Nil] m] -> #D[^q m];

R[t:Chan[Cons[w r]]] -> *E[w t], t:=*Chan[r];

R[t:Chan[Nil]] -> #R[^t];

E[w t] -> *F[w], *R[t];

F[w:Chan[Cons[v r]]] -> *Put[v 3], w:=*Chan[r];

F[w:Chan[Nil]] -> #F[^w];

Read[w] -> *Put[w c], *G[c], c: NewChan;

G[c:Chan[Cons[v r]]] -> *Print[v], c:=*Chan[r];

G[c:Chan[Nil]] -> #G[^c];

INITIAL

*

) :

( ) = ( ( ) ( ) : ( ) = ? ( ) ) :

( ) : ( ) = !

All definitions can now be pulled to the top level:

: = ( ( ) ( ) ) :

( ) = ( ( ) ( ( )) ( ) ) :

( ) = ?( ) ( ) :

( ) = ( ( ) ( ) ( ) ) :

( ) = ? ( ) :

( ) = ? ( ( + 1)) :

( ) = ? ( ) :

( ) = ( ( ) ( ) ) :

( ) = ? ( 3) :

( ) = ( ( ) ( ) ) :

( ) = ? ( ) :

( ) = !

It will be seen that ACPL programs in standard form have a very simple format. It is possible

to convert agent definitions in standard form directly to Dactl rules. We will give the translated
Dactl code and then describe the translation:

All Dactl programs start with a graph containing a single node with the symbol , which
replaces above. Processes generally correspond to GRS terms. The marks an active process

or rewritable term. Parallel composition, used by , , , and is very straightforward
and appears as little more than a change of syntax. Restriction, used in , , and

11



is

′

′

′

′

| \

| \

| \

\ |

4.4 Translating SCPL Networks to Graph Rewriting Systems

λ

λ

S v P v, x Q x x

P u, x x u. P

Q x x y . Q y

S v P v, x Q x x

P u, x x u, k k z. P k

Q x x y, k . k z z Q y

NewChan

Chan

IAdd

Put Pair

Q

A

PATTERN

NewChan = Chan[Nil];

Put Print

RULE

Put[c:Chan[v] d] -> c := *Chan[Cons[d v]];

Print[v] -> *PrintF["Result: %d" v];

Put

corresponds to declaration of new links denoted by the term . Links are represented
by the overwritable symbol which contains a stack of messages which have been sent on

the link. is the primitive function for adding integers.

All output actions use the primitive introduced earlier. To output a pair, the con-

structor is used, as in . Processes guarded by input actions become two rules: the first matches
a non-empty channel, binds the value received, and rewrites the channel having extracted the

value; the second applies if the channel is empty and blocks until input available. When a
pair is input, (for example in ), the pattern matches a pair of values for use in the body of the

action.

A new channel is defined as the following pattern:

The processes and are defined as follows:

just inserts the new message at the head of the stack of messages held by the link.

The overall style of execution contrasts strongly with the more conventional Term Graph Rewrit-
ing [2] approach. Instead of representing an expression as a single rooted term, this style rep-

resents sub-expressions as independent unrooted terms linked by shared references to nodes
representing channels. Execution corresponds more to the actions of the Chemical Abstract

Machine [4] than a traditional graph reduction machine.

A translator has been written in ML which takes –expressions and converts them to an internal
form of ACPL. The process network is converted to standard form, as described above, and is
mapped to Dactl. The Dactl code may be executed using an interpreter or compiler developed

at UEA. The example above is as produced by the translator, with machine-generated identifiers
replaced by more readable ones.

The mapping from –expressions to ACPL used here is based on extensions to the Lazy scheme

in [19]. The translator also implements a new scheme reported in [13].

It has been shown that communication in the synchronous language can be modelled in the
asynchronous language by sending an acknowledgement channel. Using the earlier example we

can provide a translation to Dactl.

The SCPL network:

( ) = ( ( ) ( ) ) :

( ) = ! :

( ) = ? ( )

can be modelled by the ACPL network:

( ) = ( ( ) ( ) ) :

( ) = ( !( ) ? ) :

( ) = ?( ) ( ! ( ) )

Translating the ACPL program yields Dactl rules such as:

12



•

•

•

| | \

|

|

z k

P Q

P R

S P x Q x R x x

P x x . Print

Q x x y. Q x Print y

R x x Print

RULE

S[v] -> *P[v x], *Q[x], x:NewChan;

P[u x] -> *Put[x Pair[u k]], *A[k], k:NewChan;

A[k:Chan[Cons[z r]]] -> *P’, k:=*Chan[r];

A[k:Chan[Nil]] -> #A[^k];

Q[x:Chan[Cons[Pair[y k] r]]] ->

*Q’[y], x:=*Chan[r], *Put[k z], z:NewChan;

Q[x:Chan[Nil]] -> #Q[^x];

Wait Free

RULE

S[v] -> *P[v x], *Q[x], x:NewChan;

P[u x] -> *Put[x Pair[u k]], *A[k], k:Wait;

A[k:Free] -> *P’;

A[k:Wait] -> #A[^k];

Q[x:Chan[Cons[Pair[y k:Wait] r]]] -> *Q’[y], x:=*Chan[r], k:=*Free;

Q[x:Chan[Nil]] -> #Q[^x];

Cons

ACons SCons

RULE

S -> *P[x], *Q[x], *R[x], x:NewChan;

P[x:Chan[s]] -> x:=*Chan[SCons[2 s k:Wait]], *A[k];

A[k:Free] -> *Print[3];

A[k:Wait] -> #A[^k];

R[x:Chan[s]] -> x:=*Chan[ACons[4 s]], *Print[ 5];

Q[x:Chan[SCons[y r k:Wait]]] ->

*Q[x], x:=*Chan[r], k:=*Free, *Print[y];

Q[x:Chan[ACons[y r]]] -> *Q[x], x:=*Chan[r], *Print[y];

Q[x:Chan[Nil]] -> #Q[^x];

Hence the communication mechanism can be used in the normal way. However, optimisations

can be made if it is known that a link is being used purely for synchronisation:

No special value needs to be communicated on the synchronisation channel

The synchronisation channel will be used only once so need not be rewritten once used

A simpler overwritable structure will suffice in place of a complete link

The Dactl code can be simplified to the form below. The synchronisation value takes the initial

value when created by and is overwritten by when the message is received by :

Further, should it be desired, a mixture of synchronous (acknowledged) and asynchronous
(unacknowledged) communications can be used. In this case the Dactl code receiving a message

would distinguish between classes of values in the message queue.

The final example below involves a process which uses synchronous communication and

which waits for no acknowledgement. Instead of using the constructor to build the message
stack, we use either for asynchronous messages or for synchronous messages. For

this example specialised rules are used for output.

= ( ( ) ( ) ( ) ) :

( ) = !2 (3) :

( ) = ? ( ( ) ( ) ) :

( ) = ( !4 (5) )
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This paper has explored some practical extensions to the theory of process calculi with asyn-
chronous communication in the style of [14].

Although the process language is rich enough to support all the facilities used in [19], the
language lacks the choice (sum) operators and hence avoids the need to retract communication

offers. It also adopts a different approach to the repetition construct proposed there. [14] show
how the repetition construct might be expressed in ACPL, but the Dactl translation would

compute indefinitely, generating increasing numbers of copies of the repeated process through
internal actions. Instead, we use recursively defined agents as in earlier models and rely on

such processes having dependencies on external actions to prevent an explosion of the process
network.

We have not explored data-dependent matching constructs at this stage. [14] provide a theoret-

ically elegant approach to selections, but we feel that a more direct approach will be required
for our rather practical purposes. The match construct of the –calculus may be suitable.

It has been shown that the language ACPL based on asynchronous communication principles
may be mapped to a graph rewriting notation. This opens up the question of whether graph

rewriting might lead to a suitable low-level implementation route for such process notations,
and for programming languages integrating functional and process styles. It is also shown
that the requirements of synchronous communication may be satisfied with comparatively little

overhead.
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