A New Process Model for Functions

J.R.W. Glauert, L. Leth and B. Thomsen

In: Term Graph Rewriting: Theory and Practice, Wiley, 1993

1 Introduction

A number of studies have been made of the relationship between process
notations and functional programming. Early work by Kennaway and Sleep
used the LNET model [Ken82], while Thomsen used higher-order processes
[Tho89, Tho90]. Milner [Mil90], and Leth [Let91], show how an arbitrary
A—expression may be converted to a network of processes whose behaviour
simulates reduction of the original A—expression.

This work has been primarily motivated by a desire to explore the the-
oretical relationship between the formalisms, rather than to provide an effi-
cient implementation of the A-Calculus. Such work is of particular interest
when considering implementation of a language such as Facile [Gia89] which
aims to integrate functional and process styles. By encoding the functional
components of a program as a network of processes, the complete language
may be converted to processes for semantic purposes at least.

The studies based on extensions to CCS adopt a synchronous model of
communication. Honda and Tokoro [Hon91] show that asynchronous com-
munication can be used to the same effect. The work presented here is able
to take advantage of such asynchronous models.

This paper describes a new translation of the A-Calculus into a process
notation, supporting a mixture of evaluation strategies using techniques sim-
ilar to [Bur84]. Milner and Leth consider only the pure A-Calculus while
our new translation handles constant data values and their operations.

Programs in the process language may be translated very naturally into
a generalised graph rewriting system (GRS). A translation to the practical
GRS language Dactl is presented. The style of execution of such a GRS is
rather different from the traditional term-based translation of a functional
language.

2 The Lazy- and Eager- A-Calculus

In this section we shall review some aspects of the Lazy-A-Calculus [Abr88|
and introduce the Eager-A-Calculus. The syntax of both is slightly uncon-
ventional as we use an explicit left-associative operator, @, for application.



The operator will be decorated to indicate which calculus is being consid-
ered.

e u= z|Ar.e|leQe

where x is taken from a set of variable names.

2.1 The Lazy-A-Calculus

Terms in the Lazy-A-Calculus may be reduced according to the relation —f,
defined as follows:

DEFINITION 2.1 Let —p, lazy reduction, be the smallest relation satisfying:

e — e
eQe — Q¢

APPL: BETA: (Az.e)Qeé —p ele/z]
The Lazy-A-Calculus is inherently sequential. Reduction always occurs at
the head of an application sequence, i.e. let M = My@QM; ... M, (n > 0)
where My is not an application, then the only reduction possible is when
n > 1 and My = Az. N. In this case we have My@QMQMs ... M, —|,
N{M;/x}QM; ... M, since we will generally consider that expressions to
reduce are closed. There will always be a redex on the left spine unless the
whole expression is an abstraction.

Note that the Lazy-A-Calculus does not reduce the bodies of abstractions
so it will only reduce expressions to weak head-normal form. This is not a
problem when considering functional programming where functional normal
forms are not usually of interest.

2.2 The Eager-)\-Calculus

Since we are interested in parallel evaluation of functional programs by trans-
lating them into a formalism for concurrent processes, we do not have great
hopes if we solely base our work on the Lazy-A-Calculus. A more eager
evaluation strategy is obtained by adding an extra reduction rule APPR:

DEFINITION 2.2 Let —p, eager reduction, be the smallest relation satisfy-
mg:

e =g €' APPR e —g e

APPL :
e@Qe¢ —p Q¢ eQ¢ —p e@e

BETA: (Ar.e)Qe —g ele/x]

This allows reduction in both operator and operand in an application. We
shall call this calculus the Eager-A-Calculus. — 1, is clearly contained in —g.

The Eager-A-Calculus introduces some non-determinism to the reduction
rules since for any application with redexes in the operand we may either
reduce the operand or perform the reduction in —;. Since the Lazy-A-
Calculus is normalising, the Eager-A-Calculus may converge whenever the
lazy calculus converges. However, if we continually choose redexes from — g



which are not needed, then a term with a weak head-normal form may not
converge.

We should remark that the Eager-A-Calculus is not the same as the Call-
by- Value-A-Calculus. Call-by-value reduction uses a restricted BET A rule
in which the operand must be a value, v, in the form Azx. e:

BETA: (Az.e)Quv —y elv/z]

This means that reduction of operator and operand may proceed non-deterministically,
but reduction of a redex may only occur when both operator and operand

have converged. Clearly there are terms for which the Call-by-value-\-

Calculus diverges when the Lazy-A-Calculus converges and the Eager-\-

Calculus may converge.

2.3 A Mixed Calculus

The translations presented in this paper support a mixed language in which
the Lazy-A-Calculus and Eager-A-Calculus live together in one calculus. In
this case we annotate the application by Q; or Qg in MQy N or MQgN
to indicate which evaluation strategy is to be used. The rules APPL and
BET A apply to both forms of application while APPR applies only to Q.
The effect is similar to [Bur84]. The intuition is that we may reduce any
instance of the BET A rule which can be reached by a path through the
operator position of @y, terms or either argument of Qg terms.

Languages such a Concurrent Clean provide facilities which allow for lim-
ited eager evaluation and might well be given a semantics in the same way as
the mixed calculus. Judicious use of the Qg operator in positions where the
operand is needed or strongly terminating will mean that the convergence
properties of the program are the same as for the Lazy-A-Calculus.

3 A Process Notation

We present a process notation into which we will translate programs written
in the mixed calculus described in the previous section. The notation has
features corresponding to those of ECCS [Eng86], the 7-Calculus [MPW89]
and LCCS [Let91]. All may be regarded as extensions to CCS allowing the
communication of link names and hence allowing dynamic process networks
to be generated.

The significant extension to these earlier notations is that we permit, as
an atomic event, the communication of terms representing arbitrary tuples
of values, although nothing more complicated than pairs is required for our
translations below. This is very nearly equivalent to the Polyadic-m-Calculus
[Mil91] although we would allow nested terms. We allow a received term to
be matched to a pattern of names, or bound to a single name. Further work
is required on a sort discipline for the calculus to ensure that names bound
to structured values are never used as link names.



We are also very interested in the sub-calculus in which the process
following an output action is always the inactive process. This is in essence
the language of [Hon91].

3.1 Syntax

The forms of agent, or process, allowed are a subset of those of LCCS with
the addition of defined agents from the 7w-Calculus. In the syntax below, P
and Q are agents, A an agent identifier, x a link, and y a value or link name:

Output zly. P
Send value y on link z and continue with behaviour P.
Tupled Output z!(q,r).P
Send pair of values ¢ and r on link x and continue with behaviour P.
Input x?y.P
Receive a value on link x and bind the value to y in subsequent be-
haviour P.
Tupled Input x?(q,r).P

Receive a pair of values on link x. Bind the first value to ¢ and the
second to 7 in subsequent behaviour P.

Restriction P\z
x is the name of a link which may only be used within P. For many
purposes this may be seen as the declaration of the link .

Parallel Composition (P|Q)
P and @ continue concurrently and may interact via shared links.
Binary composition is illustrated but an arbitrary number of agents
may be composed including zero which gives inaction.

Agent Definition P:A(zy,...,2n) =Q
A is an agent identifier of arity n which may be used in P. x1,...,z,
may be free names in (). @ may contain agent identifiers, including
A, and free names from P.

Defined Agent Ay, -+ Yn)
A corresponding agent definition of the form A(zq,...,z,) = Q must
be in scope. The defined agent behaves like Q{y1/x1,...,yn/zn}.

Hence parallel composition and repetition are supported, but not summation
(choice).

? and \ are name binding constructs yielding the obvious notion of free
and bound names. We let fn(P) denote the set of free names in P.

The form recX.P is allowed as syntactic sugar for X : X = P.



Output z!y.P oY p

Input z?y.P LIET P{z/y}

@ /
Res Pa;P ,x # c(a)
P\z — P'\z
ylz ,
open — LT g fa(P\a)

P\z 2% Priz/z)

P % P
Par Plo %P Q ,bn(a) U fn(Q) =0

P4 p Q- Z%

Com -
PlQ—P|Q
P p QI ¢y
Close - Yy & fn(P)
PlQ— (P|Q)\y
<« /
Agents P{yl/xla---ayn/xn} — P ,A(.Tl,.. ’xn) S »)

A(yL, ..y Yn) — P!

Figure 1: Operational semantics for Process Notation

3.2 Operational Semantics

The operational semantics of the process notation is given in terms of a
labelled transition system. There are four kinds of actions, ranged over by
a: input actions z?y, output actions z!z, output of restricted name z\y
and internal actions 7. We let ¢(a) denote the communication channel of
an action, e.g. = above. ? and \ are name binders and bn(«) denotes the
bound name of an action, e.g. y above.

The transition relation is defined as the smallest relation satisfying the
axiom and rules in Figure 1.



4 Translation of Lazy and Eager \-Calculus

Milner [Mil90] provides encodings of the Lazy-A-Calculus and the Call-by-
value-A-Calculus in the 7m-Calculus. Only closed terms are considered. The
encodings simulate particular reduction strategies.

We present a new scheme for translating A—expressions to process net-
works. The language translated provides two forms of application operator
and also supports constants denoted by k in the syntax. If all applications
are @7 then a lazy translation results, although it is not quite the same
as that of Milner. The use of @ throughout yields a translation of the
Eager-A-Calculus.

4.1 The New Translation Scheme

[x]. = recX.u?.(zWw.()|X)

[k]l. = recX.u?v.(vlk.()|X)
[Az. M], = recX.u?(z,q).([M];|X)
[M@L Nl = ([M]s|f!(tw).()[rec X . t?0.(alv.()| [N]a| X)\a) \f\t
[M@p N, = ([Mly|fHa,u).0f[Nla)\f\a

The pure A-Calculus is not of great practical use. Constants, such as
boolean and integer data values, and operations on them must be added
to make a practical functional language. Data values are represented by
a set of names disjoint from those used for links. Functions such as the
successor function will be represented by global names. A process network
to implement these functions will exist in parallel with the program to be
evaluated. The network for succ would be as follows:

S

s
\

rec X.u?(z,q). (X |(zlt.()|tn.q?r.ri(n+1).())\t)

An occurrence of the name succ will be translated like a variable.

It is assumed that programs will reduce to data values. To retrieve the
value from the translation of such a A—expression it is necessary to send a
channel to it and receive back the value on the channel. To extract the value
from a program, P, we would produce a network of the form:

([P]u| Read(wu))\u : Read(w) = (wle.()|c?v. Print(v)) \c

and Print will display the final result.

4.2 Properties of the New Scheme

The intuition behind the translation is that the translation of each syntactic
construct is a process network with a special characteristic link, or handle,
through which the network will communicate. This link is denoted by w in
the translations.

If the process represents a numeric constant, the value received on u will
be a link on which the number is to be returned. If the process encodes an



abstraction, u will be sent a pair of links. The first link of the pair is the
handle on the argument, while the second link is to be the handle on the
process which results when the argument is substituted in the body of the
abstraction.

The encoding of an application links up an abstraction with an argument.
Considering @Qp first, we see that neither the encoding of the operator nor
operand are guarded. The process networks concerned will evolve indepen-
dently. When the operator reaches weak head-normal form it will be waiting
to receive input on its handle. The apply glue code in the translation sends
the resulting abstraction a pair informing it of the operand and the channel
which is to be the handle for the resulting network.

The encoding of @7, guards the operand so that only when the operator
actually requests the value of the operand will it be evaluated. The extra
glue code acts as a buffer, passing on the request from the operator to the
operand network.

A variable simply acts as a buffer, relaying information sent to it to the
handle for the operand provided when the abstraction binding the variable
was applied. The information sent will depend on the type of the result: if it
is a constant then a single return link name will be sent; if it has a function
type then a pair will be sent.

There are simplifications gained by communicating pairs of values. If
only simple names may be communicated, extra temporary links are needed
to prevent interleaving of messages from different agents able to the handle u,
as in Milner’s call-by-value scheme. The Polyadic-m-Calculus also overcomes
these problems, though we must be aware that the sort of apparently similar
links will depend on the type of the A-expressions being translated.

All output actions in a translated network are followed by inaction. As
a consequence no process is dependent on synchronised communication, and
an asynchronous communication model would suffice. This can significantly
reduce the complexity of a low-level implementation of such a process nota-
tion as will be shown later. [Hon91] shows that sequentialisation is possible
using just asynchronous communication, though our use of tupled commu-
nication allows their scheme to be simplified.

4.3 Elimination of Some Recursion

It will be seen that a number of uses of the rec construct appear. These
are needed to allow for multiple occurrences of the bound variable in the
body of abstractions. When such abstractions are applied, the argument
may be evaluated more than once with different arguments. These uses of
rec are not always required. Indeed none would be required for the linear
A-Calculus.

To eliminate some of the superfluous recursion we may use a more so-
phisticated translation scheme based on the observation that terms in head
position do not need recursion. In other words, when a variable or a A-
abstraction occurs as an operator in a A-expression there is no need for
multiple copies, whereas occurrence as an operand needs the possibility of



producing various copies of the variable or the A-abstraction.

The function application cannot be analysed similarly, so recursion has
to be provided in all cases. This gives us eight rules in the translation
scheme; two for variables (without and with recursion), two for constants,
two for A-abstraction, and one for each of the applications. The translations
involved with recursion are annotated with x*:

Jlu = uv.zlv.()
], = recXw?v.(zlv| X)
Ju = u?v.vlk.()
[k]; = recX.u?v.(vlk.()|X)
[Ae. M), = u?(z,q).[M],

ln = recX.u?(z,q).([M]q|X)
[M@pN]. = [M@gN],

= ([M]z ] fia,w)-O[IN]) \f\a

[M@N], = [Ma@,N];
= ([M]g [ £1(t,w).() [rec X . t70.(alv.() | [N]a| X) \a ) \f\t

Note that the translation of M @y N only involves one level of recursion

using rec. The recursion in M Qg N comes indirectly through the use of
[N]".

5 Process Notation and Graph Rewriting

Process networks such as those described in this paper may be easily trans-
lated into generalised graph rewriting systems. The practical graph rewrit-
ing language Dactl [Gla91b] is used as the target for our translation.

5.1 A Standard From for Process Networks

In this section we define how to express a process network in a standard
form which makes heavy use of defined agents. This form can then be
implemented very easily as a GRS.

If A stands for an agent identifier then the forms we will allow are:

Pu=alyA|laty.A|(A]...|A)|P\a|P:A=P

Also, we restrict agent definitions to the outermost level, so they may con-
tain no free variables. It should be clear that any process expression can be
converted to this form by inserting new agent identifiers and adding appro-
priate definitions. The transformation is in four stages. We will use forms
of Ax.z for illustration:

rec X.u?(z,q). (X |recY.q?.(Y|zW.()))



The first stage is to expand the syntactic sugar for rec which was defined
such that recX.P = X : X = P. This gives:

X: X =ul(z,q). (X|Y:Y = qw.(Y|zlv.())

The second stage is to add extra agent definitions to satisfy the reduced
syntax using the rule that P = A : A = P where A is a new agent identifier:

X : X =ulz,q).Z:Z = (X|Y:Y =qv.W:
W = (Y|Put: Put = alv.Nil: Nil = ()))

The third stage is to add parameters to avoid free variables. This uses the

rule that X : X = P = X(fn(P)): X(fn(P)) = P{(fn(P))/X}:

X(u):  X(u)= ul(z,9). Z(u,z,9): Z(u,,q) = (X(u) |Y(z,q):
Y(z,q) = qv.W(z,q,v): W(z,q,v)= (Y(z,q) | Put(z,v):
Put(xz,v) = zlv.Nil: Nil=()))

Finally, definitions can now be pulled to the top level:

X(u):  X(u) =u?z,q). Z(u,z,q):
Z(u,2,q) = (X(u)|Y(z,q)):
Y(z,q) = q?v.W(z,q,v):

Wz, q,v) = (Y(z,q) | Put(z,v)) :
Put(xz,v) = zlv. Nil:
Nil = ()

All output operations are followed by a process denoting inaction. The Put
action definition can be used for all output actions.

5.2 The Graph Rewriting Language Dactl

Dactl provides a notation for describing computational objects as directed
graphs, and for specifying computation in terms of pattern-directed rewrit-
ings of such graphs. It has been used in studies of the implementation of a
range of language styles including functional programming, term rewriting
languages [Ken90], and concurrent logic languages [Gla88]. Graph rewriting
also shows promise for supporting the integration of different programming
styles; [Gla9la] reports early work on integration of functional and logic
languages, while the work reported here arises from a collaborative study
investigating integration of functional and process-based programming.
[Gla91b] provides a thorough background to the Dactl language. Here
we review the language features exploited in the translation of process net-
works to graph rewriting systems in this paper. The nodes of a Dactl graph
are labelled with a symbol which indicates that the node plays the role of
an operator at the root of a rule application, a data constructor, or an over-
writable. The role of operators and constructors will be familiar. The novel



feature is the use of overwritable nodes which may be modified as a side-
effect of rule application. This enables Dactl to express more computational
models than the term-graph rewriting which is discussed elsewhere in this
book. Overwritables may model von Neumann storage cells, semaphores,
and the logic variable. Overwritable nodes will be used in this paper to
model the contents of communication channels.

A Dactl graph may be represented by listing the definitions of the nodes
giving their identifier, symbol, and a sequence of identifiers for the successor
nodes. Repetition of identifiers is used to indicate sharing in a graph:

c: Chan[ n ],
n: Nil

Symbols are integers or identifiers starting in upper-case, while node identi-
fiers start in lower-case. A node definition may replace one of the occurrences
of the node identifier, and redundant identifiers may be removed allowing
the equivalent shorthand form:

c: Chan[ Nil ]

Dactl rules contain a pattern to be matched and a body, or contractum, to
replace the occurrence of the pattern in the graph, or redex. Patterns are
Dactl graphs but may contain node identifiers lacking a definition which will
match an arbitrary node.

The contractum of a rule contains new graph structure to be built, which
may reference nodes matched by the pattern, and one or more redirections,
which indicate that the source of the redirection should be overwritten by
the target. In classic term rewriting rules there will always be a redirection
overwriting the root of the redex with the root of the contractum. In such
rules the pattern and contractum are separated by the symbol =>. This is
shorthand for a form with an explicit overwrite using -> as separator.

To control the order of evaluation, attempts to match the rules against
the graph only begin at active nodes, marked with a * in the representation.
If more than one rule matches, an arbitrary choice may be made about which
rule to apply; fairness is not assumed. The contractum may use markings
to nominate further nodes at which rewriting may take place. If multiple
active nodes arise they may be considered in any order, or even in parallel
if there is no conflict between possible rewritings.

A parallel composition of processes P and ) both using links x and y
might be encoded by a graph:

*P[x yl, *Q[x yl

Nodes may also be created suspended, indicated by one or more # mark-
ings, waiting for notification that a successor has been rewritten to a stable
form. This enables a rule to create a dataflow graph in which certain nodes
are active and will produce results which awaken parent nodes once all ar-
guments are available. Each notification removes one suspension, the node
becoming active when the last suspension is removed. Notification typically

10



takes place when an active node has become a constructor or overwritable.
Arcs which will form notification paths are marked with ~.

As a final illustration, we consider the modelling of links in our transla-
tion of the process notation. A channel will consist of an overwritable Chan
whose argument is a list acting as a stack of available values. To output to
the channel, a rule simply overwrites the channel to contain a list prefixed
with the new value. To input from a channel, a rule must test for available
input. If the channel contains the empty list, the operation is suspended
until input is available. Otherwise the channel is rewritten containing the
tail of the original list.

The rules for Put add a value at the head of the stack of values, while Get
receives a value and then continues with process Use which may manipulate
the value received:

RULE
Put[c:Chan[v] d] -> c:= *Chan[Cons[d v]];
Get[c:Chan[Cons[d v]]] -> #Useld], c:= Chanl[v];
Get[c:Chan[Nill]] -> #Get[~c];

Below we illustrate the rules in action. The first attempt to read from
the channel suspends on finding the empty channel Chan[Nil]l. Note the
final state with the channel empty again:

*xGet[c], *Putl[c 2], c:Chan[n:Nil]
=>{3} #Get["c], *Put[c 2], c:Chan[n:Nill
=>{1} #Get["c], c:*Chan[Cons[2 n:Nil]]
=>{-} *Get[c], c:Chan[Cons[2 n:Nil]]
=>{2} xUse[2], c:Chan[n:Nil]
=>...

The initial state of a link is Chan [Nil], a channel with no messages avail-
able. Introduction of new channels is associated with restriction operators
in process expressions.

The Put rule updates the channel ¢ to contain the message referred to
by d as the first message in its buffer. The effect of the active marker on
the updated channel will be to unblock any process attempting to receive
on this channel.

The two rules for Get describe the behaviour of a process guarded by
an input action. The first rule corresponds to the case where there is input
available. The value found in the channel is passed to the Use process which
is made active. The channel is updated to reflect the fact that a message
has been delivered. The final rule comes into play if the channel is empty.
The # and ~ markings indicate that the Get process should be suspended
until the channel c is updated by a Put process.

5.3 Translation of Standard Form Networks to Dactl

The Dactl rules below illustrate the translation of the function Az.x applied
to the constant value 3:

11



RULE
INITIAL => xRead[z], *A[z], z:NewChan;
A[z] -> *X[f], *Put[f Cons[a z]], *Const[a 3],
f:NewChan, a:NewChan;
X[u:Chan[Cons[Pair[x q] r]l] -> *Z[u x ql, u:= Chan[r];
X[u:Chan([Nil]] -> #X["ul;
Zlu x q] -> *X[ul, *Y[x ql;
Y[x q:Chan[Cons[v r]]] -> *W[x q v], q:= Chan[r];
Y[x q:Chan[Nil]l] -> #Y[x “ql;
Wlx q vl -> xY[x ql, *Put[x v];
Const[u:Chan[Cons[v r]] k] -> *C[u k v], u:= Chanl[r];
Const[u:Chan[Nil] k] -> #Const["u k] ;
Clu k vl -> *Const[u k], *Putl[v k];
Read[z] => *Get[r], *Put[z r], r:NewChan;

All Dactl programs start with a graph containing a single active node
with symbol INITIAL. This replaces process P above.

Processes generally correspond to GRS terms. The * marks an active
process or rewritable term. Parallel composition, used by Z and W, is very
straightforward. Restriction, used in A, corresponds to declaration of new
links denoted by the term NewChan. The following pattern defines such new
channels:

PATTERN
NewChan = Chan[Nil];

All Output actions involve the primitive Put described earlier. Processes
guarded by an input action become two rules. The first extracts a value
from a channel containing input, while the second applies when no input is
available and blocks the process until an output action is performed on the
channel.

To output a pair, the Pair constructor is used to build the pair, as in
A. When a pair is input, (for example x and q in X), the pattern matches a
pair of values for use in the body of the action (Z in this case).

The processes Read and Put are defined as follows:

RULE
Put[c:Chan[v] d] -> c:= *Chan[Cons[d v]];
Read[z] -> *Put[z r], *Print[r], r: NewChan;
Print[x:Chan[Cons[v r]]] —->
*PrintF["Result: %d" v], x:= Chanl[r];
Print[x:Chan[Nil]] -> #Print["x];

The communication scheme is very simple because of the restricted use
of the process model in the translation scheme: lack of a choice operator
avoids the need to retract communication offers; ability to use asynchronous
communication removes the need for synchronising operations; and there is
no need to maintain the order of available messages so a stack may be used.

12



The overall style of execution contrasts strongly with the more conven-
tional Term Graph Rewriting [Bar87] approach. Instead of representing an
expression as a single rooted term, this style represents subexpressions as
independent unrooted terms linked by shared references to nodes represent-
ing channels. In this way, execution corresponds more to the actions of
the Chemical Abstract Machine [Ber90] than a traditional graph reduction
machine.

6 Results

A translator has been developed which will convert “programs” in an ex-
tended A-Calculus to the process notation. Several different translations
from A-Calculus to processes have been implemented. The process networks
are converted to the sublanguage which makes heavy use of agent definitions.
This form is then converted to Dactl.

The mapping from process notation to Dactl does not handle non-trivial
processes with output guards (only inaction may follow an output guard).
This enables us to express the new translation directly, but the m-Calculus
translations of Milner cannot be translated directly. A Form of the Lazy-
A-Calculus translation modified in a manner inspired by [Hon91| has been
produced. The translation is extended to handle constants. This has been
called PiLazy:

Jlu = zlu.()

Ju = u?v.vlk.()

[Ne.M], = wu?d.(dla.()]|a?z.u?v.[M],)\a

[M@pN], = ([M]y]|v!d.()|d?a. (alt.()]vu.()|recX . t?w. ([N]w| X)) \t)\d\v

This translations were compared with NewLazy and NewFEager. These
correspond to the new translation converting all applications to lazy or eager
form correspondingly. In addition, the tupled communication of our notation
was exploited to produce an improved version of PiLazy, called ImpPiLazy:

Jlu = zW.()
[k]l. = u?v.vlk.()
Ju = u?(z,v).[M],
[M@pN], = ([M]y,|v!(t,u).()|recX .t?w. ([N]y]|X))\t\v

The test programs used were:

IdTest :  (Az.z)99
Twice:  (Atwice.Asucc. twice twice succ0) (Af.Ax.f (f z)) (An.Suce(n))

The efficiency measure used is the number of output actions made. In
most cases, every output message is consumed.

13



Translation | IdTest Twice
NewEager 4 49
NewLazy ) 80
PiLazy 7 94
ImpPiLazy 4 52

Note that the lazy translations allow no parallelism, so our main focus
is on an eager translation, but with the aim of supporting laziness where
it is required. Our translations are superior when function application is
taking place, as in Twice. PiLazy does not perform well since we must avoid
synchronous communication. However, the improved version ImpPiLazy is
best for a purely lazy translation. We have not attempted to reduce recursion
in the new translation.

7 Conclusions

A new scheme for translating A-Calculus expressions to process networks
has been presented. The new model allows mixing of lazy and call-by-value
strategies. Simple data values and their operators may be incorporated in
the translation.

Some early experimental results are presented based on a translation
of process networks to Dactl. The results show that the new translation is
superior for eager computation, and also performs well for lazy computation.

While implementation efficiency is not our primary concern, the final
aim of this work is to investigate possible techniques for practical paral-
lel implementation of languages integrating functional and process styles.
The process notation we have developed may be related to graph rewriting
opening the question of whether graph rewriting can form the basis for such
practical implementations.

References

[Abr88| S. Abramsky: The Lazy Lambda Calculus, Chapter 4 in D.
Turner (ed.), Research Topics in Functional Programming,
pp- 65-116, Addison Wesley, 1988.

[Bar87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R.
Kennaway, M.J. Plasmeijer, & M.R. Sleep: Term Graph
Rewriting, Proc. PARLE 87, Springer LNCS 259, p141-158.
(1987)

[Ber90] G. Berry & G. Boudol: The Chemical Abstract Machine Proc.
POPL 90, p 81-94. (1990)

[Bur84] F.W. Burton: Annotations to Control Parallelism and Reduc-
tion Order in the Distributed Evaluation of Functional Pro-
grams TOPLAS, Vol 6, No 4, p159-174. (1984)

14



[Eng86]

[Giag9]

[Gla88]

[Gla91a]

[Gla91b]

[Hon91]

[Ken82]

[Ken90]

[Let91]

[Mil89]

[Mi190]

[Mil91]

[MPWS89]

U. Engberg & M. Nielsen: A Calculus of Communicating Sys-
tems with Label Passing Report DAIMI PB-205, Computer
Science Department, University of Aarhus. (1984)

A. Giacalone, P. Mishra, & S. Prasad: Facile: A Symmetric
Integration of Concurrent and Functional Programming IJPP,
Vol 18, No 2, p121-160. (1989)

J.R.W. Glauert, & G.A. Papadopoulos: A Parallel Imple-
mentation of GHC Proceedings, International Conference on
Fifth Generation Computer Systems. ICOT, Tokyo, Decem-
ber 1988. (1988)

J.R.W. Glauert, & G.A. Papadopoulos: Unifying Concurrent
Logic and Functional Languages in a Graph Rewriting Frame-

work Proceedings, 3rd Panhellenic Computer Science Confer-
ence. Athens, May 1991. (1991)

J.R.W. Glauert, J.R. Kennaway, & M.R. Sleep: Dactl: An Ezx-
perimental Graph Rewriting Language Proc. 4th International

Workshop on Graph Grammars, Bremen, 1990. Springer
LNCS 532. (1991)

Honda, K., Tokoro, M., An object calculus for asynchronous
communication, Proceedings, ECOOP’91, Geneva, July 1991.
(1991)

J.R. Kennaway and M.R. Sleep: Expressions as processes Pro-
ceedings, Lisp and FP, Aug 1982, p.21-28. (1982)

J.R. Kennaway: Implementing Term Rewrite Languages in
Dactl Theor. Comp. Sci. 72, p.225-250. (1990)

L. Leth: Functional Programs as Reconfigurable Networks of
Communicating Processes Ph. D. Thesis, Imperial College,
London University, 1991.

R. Milner: Communication and Concurrency, Prentice Hall,
1989.

R. Milner: Functions as Processes Automata, Languages, and
Programming. Springer LNCS 443. (1990) Also: Technical
Report INRIA Sophia Antipolis, June 1989.

R. Milner: The Polyadic-mw-Calculus: A Tutorial, Techni-
cal Report ECS-LFCS-91-180, Edinburgh University, October
1991. (1991)

R. Milner, J. Parrow, & D. Walker: A Calculus of Mobile Pro-
cesses Parts I and II TR ECS-LFCS-89-85, Edinburgh Uni-
versity, June 1989. (1989)

15



[Tho89]

[Tho90]

B. Thomsen: A Calculus of Higher Order Communicating
Systems, Proceedings of POPL 89, pp. 143-154, The Asso-
ciation for Computing Machinery, 1989.

B. Thomsen: Calculi for Higher Order Communicating Sys-
tems, Ph. D. Thesis, Imperial College, London University,
1990.

16



