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Abstract. In previous papers, the authors studied normalization relative to
desirable sets S of ‘partial results’, where it is shown that such sets must be
stable. For example, the sets of normal forms, head-normal-forms, and weak
head-normal-forms in the A-calculus, are all stable. They showed that, for
any stable S, S-needed reductions are S-normalizing. This paper continues
the investigation into the theory of relative normalization. In particular, we
prove existence of minimal normalizing reductions for regular stable sets of
results. All the above mentioned sets are regular. We give a sufficient and
necessary criterion for a normalizing reduction (w.r.t. a regular stable S) to
be minimal. Finally, we establish a relationship between relative minimal and
optimal reductions, revealing a conflict between minimality and optimality:
for regular stable sets of results, a term need not possess a reduction that is
minimal and optimal at the same time.

1 Introduction

The Normalization Theorem in the A-calculus, due to Curry and Feys [CuFe58],
states that contraction of leftmost-outermost redexes in a term t yields a normal
form whenever t is normalizable, even if ¢ has infinite reduction sequences.

Generalizing this fundamental theorem to a large class of Orthogonal Term
Rewriting Systems (OTRSs), Huet and Lévy laid the foundations of a regular theory
of ‘normalization by neededness’ in [HuLé91]. They proved that any term ¢ not in
normal form, in an OTRS, has a needed redex, and that contraction of needed re-
dexes in a normalizable term results in a normal form. Here a redex u in ¢ is needed
if some residual of it is contracted in every normalizing reduction starting from ¢.

Barendregt et al. [BKKS87] applied the neededness notion to the A-calculus, and
studied neededness not only w.r.t. normal forms, but also w.r.t. head-normal forms.
The authors proved correctness of the two needed strategies for computing corre-
sponding normal forms. In [Mar92], Maranget also studied a strategy that computes
a weak head-normal form of a term in an OTRS. Normalization w.r.t. another inter-
esting set of ‘normal forms’, that of constructor head-normal forms in constructor
OTRSs, is studied by Nocker [Nok94].

In [GIKh94], the present authors studied normalization with respect to any de-
sired set of final terms, and found the sufficient and necessary properties, called
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stability, that a set S of terms must possess in order for the neededness theory of
Huet and Lévy still to make sense. That is, they showed that, for any stable S, each
S-normalizable term not yet in S (not in S-normal form) has at least one S-needed
redex, and that repeated contraction of S-needed redexes in a term t will lead to an
S-normal form of ¢t whenever there is one. It is shown also that if a stable S is reg-
ular, i.e., if S-unneeded redexes cannot duplicate S-needed ones, then the S-needed
strategy is hypernormalizing as well. This work was performed in the context of Or-
thogonal Fzpression Reduction Systems (OERSs) [Kha92], a form of higher-order
rewriting which subsumes TRSs and the A-calculus and is similar to Klop’s Combina-
tory Reduction systems (CRSs) [Klo80]. Most of these results were later generalized
to an abstract framework of Deterministic Residual Structures [GIKh96].

Normalization theory has developed in other directions as well, of which we men-
tion only a few. Boudol extended neededness theory to non-orthogonal TRSs [Bou85].
Khasidashvili defined a similar normalizing strategy, the essential strategy, in the A-
calculus, OTRSs and OERSs [Kha88, Kha93, Kha94]. Kennaway and Sleep [KeS189]
generalized the needed strategy to Klop’s orthogonal CRSs [Klo80]. Sekar and Ra-
makrishnan [SeRa93] study a normalizing strategy which in each multi-step con-
tracts a necessary set of redexes — a set at least one member of which is con-
tracted in every normalizing reduction. A different approach to normalization in
not-necessarily orthogonal rewrite systems is developed in Kennaway [Ken89] and
Antoy&Middeldorp [AnMi94]. Antoy et al. [AEH94] designed a needed narrowing
strategy. Gardner [Gar94] described a complete way of encoding neededness infor-
mation using a type assignment system. Kennaway et al. [KKSV95] studied a needed
strategy for infinitary OTRSs.

The contribution of this paper is to develop a theory of minimal reduction in the
framework of relative normalization, and to establish a relationship between minimal
and optimal [Lév78] reductions. While normal forms are unique in an OERS, a term
may have many S-normal forms. A reduction P : ¢t —» s witht & S and s € S is said
to be S-minimal if it does no more work than any other S-normalizing reduction
Q :t —» e, ie., the residual [LévT8] P/Q of P under Q is empty. The final term in
the S-minimal reduction is said to be an S-minimal S-normal form.

S-minimal S-normal forms are useful to compute since any other S-normal form
is accessible from the S-minimal one. Further, strategies computing partial results,
such as head-normal-forms (hnfs) and weak hnfs, in the A-calculus, usually compute
minimal reductions, and it is natural to ask whether optimality can be achieved
while retaining minimality. The prime example is the leftmost outermost strategy
computing the so called ‘principal’ hnf and whnf of a A-term, and used in construc-
tions of Bohm [Bar84] and Lévy-Longo [Lév76, Lon83] (also called lazy [AbOn93))
trees, respectively. These trees represent the values of the term according to different
semantics — Bohm semantics and Lévy- or lazy semantics, respectively. Clearly this
property of minimality is not useful for full normal forms, but full normal forms are
rarely used in the practice of functional programming.

Our research on minimal S-normalizing reductions was inspired by a result of
Maranget [Mar92], stating that standard reductions are minimal among reductions
computing a ‘stable prefix’ of a given term. However, we will show that standard
reductions are not always minimal in the relative case, and a different concept of
standard reduction is required.



The earliest minimality result was obtained by Berry and Lévy in [BeLé79],
where existence of minimal reductions was shown for any (finite or infinite) ap-
proximation of a possibly infinite value of a term, for Recursive Program Schemes.
Minimal reductions were used to design optimal reductions, both finite and infinite,
and minimality and optimality of outermost complete family-reductions were shown.

In this paper, we restrict ourselves to finite reductions only. We show that, for any
stable and regular S, any S-normalizable term not yet in S possesses an S-needed
S-unabsorbed redex, and repeated contraction of such redexes gives S-minimal S-
normalizing reductions. We further give a sufficient and necessary criterion for an
S-normalizing reduction to be S-minimal. We show also that S-minimal reductions
need not exist if S is stable but is irregular.

It has been shown in [GIKh96] that complete S-needed family-reductions, which
contract all members of a redex-family containing an S-needed redex in a multi-step,
are optimal in the sense that they reach S in the least number of family-reduction
steps. S-needed complete family reductions, though optimal, need not be S-minimal,
because they may contract S-unneeded redexes that are S-essential. It is tempting
to think that contracting only the S-needed redexes of S-needed families would yield
S-optimal reductions that are S-minimal at the same time. We show however that
this is not the case either in the A-calculus or in OTRSs. As a consequence, a term
need not have a reduction that is both minimal and optimal at the same time.

The paper is organized as follows. In section 2, we introduce higher order rewrit-
ing through Fzpression Reduction Systems. In section 3, we review the theory of
relative normalization. In section 4, we study S-minimal reductions for regular sta-
ble sets S, and in section 5, we relate relative optimal and minimal reductions.
Conclusions appear in section 6. More details can be found in [GIKh94a].

2 Orthogonal Expression Reduction Systems

Klop introduced Combinatory Reduction Systems (CRSs) in [Klo80] to provide a
uniform framework for reductions with substitutions (also referred to as higher or-
der rewriting) as in the A-calculus [Bar84]. Several interesting formalisms have been
introduced later [Kha92, Nip93, OR94]. We refer to van Raamsdonk [Raa96] for a
survey. Here we use a system of higher order rewriting, Fzpression Reduction Sys-
tems (ERSs), defined in [Kha92] (under the name of CRSs); the present formulation
follows [GIKh94] and is simpler.

Definition 2.1 Let X be an alphabet, comprising variables, denoted by x,y, z, . . .;
function symbols, also called simple operators; and operator signs or quantifier signs.
Each function symbol has an arity k € N, and each operator sign ¢ has an arity
(m,n) with m,n # 0 such that, for any sequence z1,...,z,, of pairwise distinct
variables, 0z . . .Z., is a compound operator or a quantifier with arity n. Occurrences
of x1,..., Ty in ox1 ...z, are called binding variables. Each quantifier sign o, as
well as any corresponding quantifier ox; . .. x,, and binding variables x; .. .z,, has
a scope indicator (ki,...,k;) to specify the arguments in which oz ...z, binds all
free occurrences of x1, ..., T,,. Terms are constructed from variables using functions
and quantifiers in the usual way.



Metaterms are constructed similarly from terms and metavariables A, B, .. .,
which range over terms. In addition, metasubstitutions, expressions of the form
(t1/x1, ..., tn/Tn)to, with t; as arbitrary metaterms, are allowed, where the scope
of each z; is tg. Metaterms without metasubstitutions are simple metaterms. An
assignment maps each metavariable to a term over Y. If ¢ is a metaterm and 6
is an assignment, then the #-instance t0 of t is the term obtained from t by re-
placing metavariables with their values under 0, and by replacing metasubstitutions
(t1/21, ..., tn/Tn)to, in the left to right order, with the result of substitution of terms
t1,...,t, for free occurrences of x1,...,x, in tg.

For example, a B-redex in the A-calculus appears as Ap(Az ¢, s) in our notation,
where Ap is a function symbol of arity 2, and X is an operator sign of arity (1,1)
and scope indicator (1). Integrals such as fst f(z) dz can be represented as [z st f(x)
using an operator sign [ of arity (1,3) and scope indicator (3).

Definition 2.2 An FEzpression Reduction System (ERS) is a pair (X, R), where X
is an alphabet, described in Definition 2.1, and R is a set of rewrite rules r : t — s,
where ¢ and s are closed metaterms (i.e., no free variables) such that ¢ is a simple
metaterm and is not a metavariable, and each metavariable that occurs in s occurs
also in t.

Further, each rule r has a set of admissible assignments AA(r) which, in order to
prevent undesirable confusion of variable bindings, must satisfy the condition that:

(a) for any assignment § € AA(r), any metavariable A occurring in ¢ or s, and
any variable x € FV(Af), either every occurrence of A in r is in the scope of some
binding occurrence of x in r, or no occurrence is.

For any § € AA(r), t0 is an r-redex or an R-redex, and s6 is the contractum of
th. We call R simple if right-hand sides of R-rules are simple metaterms.

Our syntax is similar to that of Klop’s CRSs [Klo80], but is simpler and is closer
to the syntax of the A-calculus and of First Order Logic. For example, the §-rule
is written as 3 : Ap(AzA, B) — (B/z)A, where A and B can be instantiated by
any terms; the n-rule is written as Az(Axz) — A which requires that an assignment
6 is admissible iff ¢ (A#), otherwise an x occurring in Af and therefore bound
in Ax(Afz) would become free. A rule like f(A) — Jx(A) is also allowed, but
an assignment 6 with & € A@ is not. The recursor rule is written as u(AzA) —
(WaA) /) A.

Below we restrict ourselves to the case of non-conditional ERSs, i.e., ERSs where
an assignment is admissible iff the condition (a) of Definition 2.2 is satisfied. We
ignore questions relating to renaming of bound variables. As usual, a rewrite step
consists of replacement of a redex by its contractum. Subterms of a redex corre-
sponding to metavariables are arguments of the redex, and the rest is its pattern.
Note that the use of metavariables in rewrite rules of ERSs is not really necessary —
free variables can be used instead, as in TRSs. We will indeed do so at least when
giving TRS examples.

Notation 2.1 We use a, b, ¢, d for constants, t, s, e, o for terms, u, v, w for redexes,
and N, P, @Q for reductions. We write s C t if s is a subterm of t. A one-step reduction
contracting a redex u C ¢ is written as ¢ X sort— sor just u. We write P :t —» s
if P denotes a reduction of ¢t to s. P + @) denotes the concatenation of P and Q.



The definition of orthogonality in ERSs is similar to the case of CRSs: all the
rules are left-linear and in no term redex-patterns can overlap [Klo80]. As in the
case of the A-calculus [Bar84], for any co-initial reductions P and @, one can define
in OERSs the notion of residual of P under Q, written P/Q, due to Lévy [LévT8].
We write P<1Q if P/Q = 0 (< is the Lévy-embedding relation); P and @ are called
Lévy-equivalent, strongly-equivalent, or permutation-equivalent (written P ~j, Q) if
P <@ and Q < P. It follows immediately from the definition of / that if P and Q
are co-initial reductions in an OERS, then (P + P’)/Q =~ P/Q + P’/(Q/P) and
P/(Q+ Q") ~L (P/Q)/Q".

The following strong Church-Rosser (confluence) property is proved for ERSs
in [Kha92]; the same result for other higher-order rewriting formats are obtained,
among others, in [K1o80, Nip93, KOR93, OR94, O0s94, Kv095, Raa96].

Theorem 2.1 (Strong Church-Rosser) For any co-initial reductions P and @ in
an OERS, P+ Q/P =1, Q + P/Q.

3 Relative Normalization

In this section, we review some notions and results concerning relative normalization

from [GIKh94].

Definition 3.1 Let S be a set of terms in an OERS R. We call a redex ©u C t S-
needed, written N Eg(u, t), if at least one residual of it is contracted in any reduction
from ¢ to a term in S, and call it S-unneeded, written U Ng(u, t), otherwise.

Definition 3.2 (1) We call a set S of terms stable iff (a) S is closed under parallel
moves: for any t € S, any P :t = 0 € S, and any @ : t — e which does not
contain terms in &, the final term of P/Q is in S; and (b) S is closed under unneeded
expansion: for any e—o such that e ¢ S and o € S, u is S-needed. (2) We call a
stable S regular iff S-unneeded redexes cannot duplicate S-needed ones.

Below S, resp. R, will denote a stable, resp. regular stable, set of terms in an
OERS. t|s will denote that ¢ is S-normalizable, i.e., reducible to a term in S, and
similarly for t]gz.

Lemma 3.1 (1) Residuals of S-unneeded redexes in a term ¢ ¢ S are S-unneeded.
(2) Lett ¢ S, t-5t', UNs(u,t), and let u’ C t' be a u-new redex. Then U Ns(u/, t').
(3) Let tls, t—s, NEs(v,t), and v # u. Then v has an S-needed residual in s.

Theorem 3.1 (Relative Normalization) Let S be a stable set of terms in an
OERS R. Then any S-normalizable term ¢ in R not in S-normal form contains an
S-needed redex; and any S-needed reduction starting from ¢ eventually terminates
at a term in S. If S is moreover regular, then S-needed reductions starting from ¢
eventually reach S even if finite sequences of consecutive S-unneeded steps are also
allowed.



4 Minimal Relative Normalization

In this section, we define S-unabsorbed, persistently S-needed, and S-erased redexes,
and show that each class is a strict subset of the next when S is regular. Further,
we define S-minimal reductions as minimal w.r.t. Lévy-embedding < among co-
initial S-normalizing reductions, and show that, when S is regular, an S-normalizing
reduction is S-minimal iff it is S-erased, i.e., contracts only S-erased redexes. But
S-erased reductions need not be S-needed, hence need not be S-normalizing, and
again for regular S, we show existence of S-unabsorbed S-normalizing reductions,
which are S-needed S-minimal reductions. We show that S-minimal reductions need
not exist for irregular stable S. Below we always consider reductions in OERSs.

Definition 4.1 (1) We call u C t persistently S-needed if all residuals of u are
S-needed. (2) We call u C t S-erased if u doesn’t have a residual under any S-
normalizing reduction. We call a reduction S-erased if it only contracts S-erased
redexes.

Note that S-erased redexes need not be S-needed (e.g., when S is the set of
normal forms and the OERS has an erasing rule, say f(z) — a). The following
example illustrates the introduced concepts using a simple OTRS.

Example 4.1 Consider an OTRS R = {f(z) — ¢g(z, h(x)), h(z) — ¢, a — b},
consider a term (redex) u = f(a), and the following sets of terms in R: the set
S1 of normal forms; the set Sy of terms not containing a redex on the left-spine
(i.e., not containing a redex with the top symbol on the left-spine, when the term is
considered as a tree); the set Sz of terms not containing occurrences of a; and the
set Sy of terms not containing a on the right-spine. Then, for the two redexes u and
a in u = f(a), we have the following:

1. u is S1-needed, persistently Si-needed, and Si-erased. a C u is Sj-needed but
not persistently Sj-needed (since the second residual of a in g(z, h(a)) is Si-
unneeded); still, a is S;-erased.

2. u is Se-needed, persistently Ss-needed, and Ss-erased. a C w is So-needed but
not persistently Sy-needed; and a is not Se-erased — a has a residual along the
Sy-normalizing reduction u — g(a, h(a)) — g(b, h(a)).

3. w is neither (persistently) Ss-needed nor Ss-erased. a C w is Ssz-needed but
not persistently Ss-needed (since the second residual of a in g(a, h(a)) is Ss-
unneeded); still, a is Sz-erased.

4. both u and a are neither (persistently) Sy-needed nor Sy-erased.

Note that &; and Sy are regular stable sets; Sz is stable but not regular, since Ss3-
unneeded redex u duplicates the S3-needed redex a; and Sy is not stable (therefore,
u does not contain an Sy-needed redex).

Lemma 4.1 Every persistently S-needed redex is S-erased, but an S-erased redex,
even if S-needed, need not be persistently S-needed.

Proof. (=) Let u C t be persistently S-needed, and let P : ¢ —» s be S-normalizing,.
If u/P was not empty, then every u’ € u/P (the set of P-residuals of u) would be
S-needed, which is not possible since s € S. (<) From Example 4.1 (cases 1 and 3).



Definition 4.2 We call P : t —» s S-minimal if it is S-normalizing and P < @
for any S-normalizing Q : t —* 0.2 When P is S-minimal, we call s an S-minimal
S-normal form of t.

It follows immediately from Definition 4.2 that if ¢t s S (i.e., tls and t € S),
then ¢ has no more than one S-minimal S-normal form s. For any other S-normal
form e of ¢, it holds that s —» e. Note that the latter property of S-minimal S-normal
forms cannot be taken as the definition, because in that case an S-normalizable term
could have many S-minimal S-normal forms, due for example to a cycle in S, and
some of them may require more reduction to be reached than others. For example,
take R ={a = b, b = a, f(z) — z} and S = {a,b}. Then S is stable and regular,
t = f(a) has two S-normal forms from which any other one is accessible — a and b,
but any reduction from ¢ to b should contract the S-unneeded redex a in t; therefore,
no reduction from ¢ to b can be considered as S-minimal.

Lemma 4.2 Every S-erased S-normalizing reduction is S-minimal.

Proof. Let P : ty=3t; — ... — t, be an S-erased S-normalizing reduction, let
P : tg8... = t;, and let Q : to —> 0 € S. By stability of S, Q; = Q/P; is
S-normalizing. Since u; is S-erased and Q; is S-normalizing, u;/Q; = (. Hence

P/Q =10, ie., P is S-minimal.

Definition 4.3 Let F' be a set of redexes in t. We call P an F-reduction if it
contracts only residuals of redexes from F and created redexes; we call such redexes
F-redexes. Below F' C t will denote that F' is a set of redexes in a term ¢, and F(t)
will denote the set of all redexes of .

Definition 4.4 (1) Let F C ¢t. We call a redex u C t F-unabsorbed (in t) if u € F
and, for any F-reduction P, none of the residuals of u along P appear in arguments
of F-redexes; we call u F-absorbed in if u € F and it is not F-unabsorbed.

(2) We call u C t S-(un)absorbed if it is Fs(t)-(un)absorbed, where Fis(t) is the
set of S-needed redexes of ¢. (Thus any S-unabsorbed redex is necessarily S-needed.)
We call a reduction P S-unabsorbed if each redex contracted in it is.

Example 4.2 Consider an OTRS R = {a — ¢, b = V', f(c,z) — '}, and take a
term t = g(f(a,b),a). Then both occurrences of a in ¢ are F(t)-unabsorbed in ¢,
while b is F(t)-absorbed in ¢: we have t — g(f(c,b),a) = s, and the residual of b
in s is in an argument of the created redex f(c,b). If F C ¢ contains two redexes
— the first occurrence of a in t and the redex b C ¢, then only the first a C ¢ is
F-unabsorbed in t. If the set of terms not having a left-spine redex is taken for S,
then the first a is the only S-unabsorbed redex in ¢ (it is the only S-needed redex
t00).

It is shown in [HuLé91, Kha93, GIKh94] that any term ¢ not in normal form
contains an F'(t)-unabsorbed redex (such redexes are called external in [HuLé91]).
Now, if one ignores all redexes in ¢ except those in F' C ¢, it follows that, for any
F # ), F contains an F-unabsorbed redex. And by taking Fs(t) for F' (Fs(t) # 0
by Theorem 3.1), we obtain the following proposition:

2 We prefer to use minimal rather than least or smallest.



Proposition 4.1 Every term ¢ ¢ S contains an (S-needed) S-unabsorbed redex.

Below, in the study of S-minimal reductions, we will restrict ourselves to regular
stable S. The reason is that, as shown by the following example, an S-normalizable
term need not have an S-minimal reduction when § is irregular.

Example 4.3 Consider R = {f(z) — g(z,z), a — b}, take for S the set of terms
not containing a as the leftmost innermost node, and take ¢ = f(a). Obviously, S
is closed under unneeded expansion, because the only S-needed redex in a term
s ¢ S is the leftmost occurrence of @ in it, and S is closed under reduction. S is
not regular, because the outermost redex in ¢ is S-unneeded, while the innermost
one is S-needed. Further, there are three S-normalizing reductions starting from
t: P: fla) = f(b); Q: f(a) = g(a,a) — g(b,a), and N : f(a) — g(a,a) —
g(a,b) — g(b,b). (There are two more reductions that continue @ and P, but we
do not need to consider them because they cannot be S-minimal.) We have P AQ,
@ AP, and N AP. Hence none of the reductions is S-minimal.

Lemma 4.3 For any P :t —» s with ¢t € R, there is an R-needed @, containing the
same number of steps as that of R-needed steps in P, and an R-unneeded N, such
that P =~y @ + N; and if P is R-normalizing or contains infinitely many R-needed
steps, then N = .

Proof. The lemma was proved in [Kha88, Kha93] for the case of essentiality in place
of R-neededness. The same proof applies in this case.

Lemma 4.4 If a redex u C t is R-unabsorbed, then it need not be unabsorbed in
t, but it cannot be replicated and is persistently R-needed.

Proof. Let P : t —» o, not necessarily an Fy(t)-reduction. By Lemma 3.1.(3), it
is enough to show that if a residual u’ of u can appear inside an R-needed redex
w’ # u/, then w’ cannot replicate u'; therefore u has at most one residual in any
term of P. Suppose, on the contrary, that there is P : ¢ —» s such that a residual v’
of u is inside an R-needed redex w’ such that w’ replicates u’; and assume that P is
a shortest such a reduction, i.e., u has exactly one residual in every term in P. By
Lemma 4.3, there are R-needed P’ and R-unneeded P’ such that P =~ P’ + P”.
Since v’ and w’ are R-needed and P” is R-unneeded, it follows from Lemma 3.1.(2)
that there are R-needed v and w” in the final term of P’ such that «’ and w’ are the
only residuals of v and w”, respectively. Since u is R-unabsorbed, v’ € w”. Hence
u'" has exactly one w”-residual, say u*. By Theorem 2.1, w” 4+ P” /w" replicates u”,
since w’ replicates u'. Thus P”/w" replicates u* — a contradiction, since P”/w" is
R-unneeded by Lemma 3.1.(1), and R is regular.

Note that if S is irregular, then an S-unabsorbed redex u C t need not be
persistently S-needed or S-erased. Indeed, take R, S, and @ as in Example 4.3. Then
a in t is S-needed, so is its leftmost residual in g(a, a), but the rightmost residual
is S-unneeded, and a/Q = ). Hence a C t is not persistently S-needed or S-erased.
But a C t is S-unabsorbed, since the only Fs(¢)-reduction is N : f(a) — f(b), and
a is Fs(t)-unabsorbed in N.



Proposition 4.2 An R-normalizing reduction is R-minimal iff it is R-erased.

Proof. (<) From Lemma 4.2. (=) Let P : t¢23t; — ... — t, be R-minimal,
and let @Q : tg —» o be R-unabsorbed, hence R-erased by Lemmas 4.4 and 4.1,
R-normalizing reduction; Q exists by Proposition 4.1. Further, let P; : tg=3 ... — t;
and let @Q; = Q/P;. Since Q is R-erased, so is Q;, and Q; is R-normalizing by the
closure of R under parallel moves. Hence @); is R-minimal by Lemma 4.2. Since P
is R-minimal too, u;/Q; = () for every i. But for every R-normalizing reduction
Q) : t; —» o;, it holds that Q; < Q) (since Q; is R-minimal). Hence u;/Q) = 0, i.e.,
u; is R-erased, and P is R-erased too.

Remark 4.1 It can be shown that a redex u C t ¢ R is R-erased iff every residual
of u (in particular, u itself) along any reductions starting from ¢ is either R-needed
or R-inessential. Here a subterm s C t is S-inessential iff there is no S-normalizing
P starting from ¢ such that s has a P-descendant. The latter notion is a refinement
of that of residual, allowing tracing of contracted redexes — the descendant of a
contracted redex is its contractum, while it does not have residuals [Kha92]. One
can show also that a redex u C t [g¢ R is R-inessential iff it is R-unneeded and
R-erased. Note that the latter proposition can be taken as the definition of S-
(in)essentiality, thus avoiding the use of the descendant concept, and the above
characterization of R-erased redexes follows logically. See [GIKh94a] for details.

Now we are ready to prove the main result of the paper.

Theorem 4.1 (Minimal Relative Normalization) Let R be a regular stable set
of terms in an OERS, and let ¢t [g¢ R. Then repeated contraction of R-needed
‘R-erased redexes in ¢ yields an R-minimal R-normalizing reduction, even if a finite
number of R-unneeded R-erased, and only such, redexes are also contracted. In
particular, any ¢t [x¢ R has an R-unabsorbed R-minimal reduction, which is R-
needed.

Proof. By Proposition 4.1, any ¢t |x¢ R has an R-unabsorbed redex, which is R-
needed and R-erased by Lemma 4.4 and Lemma 4.1. It remains to apply Theo-
rem 3.1 and Proposition 4.2.

Remark 4.2 (Relative Standardization) Note that R-normalizing standard re-
ductions (in the sense of [Bar84, Klo80], or in the sense of [GLM92], where left-to-
right order of contracted redexes is not required) need not be R-needed. Indeed,
take for example R = {f(x) — g(x,z), a — b}, and take for R the set of terms not
containing a redex on the right-spine; then R is regular, f(a) — g(a,a) — g(b,a) —
g(b, ) is standard and R-normalizing, but the second step is R-unneeded. Therefore,
we should take standard R-minimal reductions for the R-standard R-normalizing
reductions. It is not difficult to see that R-unabsorbed R-normalizing reductions
are then R-standard in the sense of [GLM92], and the left-to-right order of con-
traction of R-unabsorbed redexes can also be achieved by Klop’s standardization
theorem [Klo80], which is valid for OERSs as well.



5 Relative optimal versus minimal reductions

Lévy introduced the notion of redex family in the A-calculus, and showed that
any multi-step reduction that in each multi-step contracts all redexes in a needed
family (i.e., a family containing a needed redex) is optimal in the sense that it
reaches a normal form (when it exists) in a minimal number of family-reduction
steps [LévT78, Lév80]. This theory has been generalized to OTRSs, Interaction Sys-
tems, and higher-order rewrite systems [Mar91, AsLa93, O0s96], and to the case of
relative normalization, to all Deterministic Family Structures [GIKh96]. The latter
are abstract rewrite systems with axiomatized residual and family relations, and
model family concepts in all orthogonal rewrite systems, OERSs among them. Re-
dex families consist of ‘redexes with the same origin’, and here we only need to know
that, in particular, all residuals of the same redex are in the same family.

It is easy to see that any R-needed family-reduction that in each step contracts
all the R-needed redexes of some family, but does not necessarily contract its R-
unneeded members, is still optimal. We will call such reductions R-needed semi-
complete family-reductions. It follows from Proposition 4.2 that such a reduction
is R-minimal as well iff every R-needed redex contracted in it is R-erased. For
example, g(a) — f(a,a) — f(b,a) is both R-minimal and R-optimal semi-complete
family-reduction in R = {g(z) — f(z,z), a — b}, where R is the set of terms
not containing left-spine redexes. However, the following examples show that a term
either in an OTRS or in the A-calculus need not possess an R-minimal R-optimal
family-reduction.

Example 5.1 Consider the OTRS R = {f(z) — g(z, z), g(b,z) — h(z,z), a — b},
and take for R the set of terms not containing left-spine redexes. One can show
that R is regular. Now P : f(a) — g(a,a) — g(b,a) — h(a,a) — h(b,a) is an
R-minimal reduction, but h(b,a) is not reachable by an R-needed semi-complete
family reduction. If the first step reduces a then we reach the R-normal form h(b, b)
which is not R-minimal. Hence, in order to reduce f(a) to h(b,a), one should delay
contraction of the R-needed occurrences of a (which all belong to the same family).
So f(a) — g(a,a) must be the first step. In g(a, a), both occurrences of a are R-
needed, but their contraction makes h(b, a) unreachable. Thus there is no R-minimal
reduction that is R-optimal at the same time.

Example 5.2 Take for R the set of A-terms in head-normal form, which is regular,
and take t = (Az.zx)u, where v = (A\y.Az.zvz)w, and y, z,v and w are different
variables. Then P : t — wu — (Az.zvz)u — wvu — (Az.zvz)vu — vovu = e is an
R-minimal reduction. In order to reach e from ¢ by a semi-complete R-needed family
reduction, one should delay contraction of R-needed redexes in the family of u. So
the outermost redex in ¢ must be contracted first. In the obtained term o = uu, both
occurrences of u are R-needed, and their contraction would make e unreachable —
there is no occurrence of w in (Az.zvz)(Az.zvz).

6 Conclusions and Future Work

We have studied minimal normalization relative to regular stable sets R of final
terms, and have shown that R-normalizing reductions that are both minimal and



optimal need not exist for an R-normalizable term ¢, despite the fact that ¢ possesses
minimal as well as optimal R-normalizing reductions. These results were obtained for
orthogonal ERSs, but are valid for Klop’s CRSs and for context-sensitive conditional
OERSs [Kv095], and therefore apply to numerous typed A-calculi as well. We expect
that the results remain valid for other systems of higher-order rewriting too.

Similar questions arise for infinite reductions. Stability and regularity of sets of
finite and infinite reductions must be defined first, and we expect a strong connection
between this concept and the concept of stability in interpretations [BeLé79].

As already mentioned in [GIKh94], it would be interesting to investigate strong
sequentiality and strictness analyses for arbitrary stable sets of normal forms. Inves-
tigation of minimal relative normalization in an abstract setting seems also feasible
and is useful.
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