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In previous papers, the authors studied normalization relative to
desirable sets of ‘partial results’, where it is shown that such sets must be

. For example, the sets of normal forms, head-normal-forms, and weak
head-normal-forms in the -calculus, are all stable. They showed that, for
any stable , reductions are -normalizing. This paper continues
the investigation into the theory of relative normalization. In particular, we
prove existence of normalizing reductions for stable sets of
results. All the above mentioned sets are regular. We give a sufficient and
necessary criterion for a normalizing reduction (w.r.t. a regular stable ) to
be minimal. Finally, we establish a relationship between relative minimal and
optimal reductions, revealing a conflict between minimality and optimality:
for regular stable sets of results, a term need not possess a reduction that is
minimal and optimal at the same time.

This work was supported by the Engineering and Physical Sciences Research Council of
Great Britain under grant GR/H41300

John Glauert and Zurab Khasidashvili

The in the -calculus, due to Curry and Feys [CuFe58],
states that contraction of leftmost-outermost redexes in a term yields a normal
form whenever is normalizable, even if has infinite reduction sequences.

Generalizing this fundamental theorem to a large class of Orthogonal Term
Rewriting Systems (OTRSs), Huet and Lévy laid the foundations of a regular theory
of ‘normalization by neededness’ in [HuLé91]. They proved that any term not in
normal form, in an OTRS, has a redex, and that contraction of needed re-
dexes in a normalizable term results in a normal form. Here a redex in is needed
if some residual of it is contracted in every normalizing reduction starting from .

Barendregt et al. [BKKS87] applied the neededness notion to the -calculus, and
studied neededness not only w.r.t. normal forms, but also w.r.t. head-normal forms.
The authors proved correctness of the two needed strategies for computing corre-
sponding normal forms. In [Mar92], Maranget also studied a strategy that computes
a weak head-normal form of a term in an OTRS. Normalization w.r.t. another inter-
esting set of ‘normal forms’, that of constructor head-normal forms in constructor
OTRSs, is studied by Nöcker [Nök94].

In [GlKh94], the present authors studied normalization with respect to any de-
sired set of final terms, and found the sufficient and necessary properties, called
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, that a set of terms must possess in order for the neededness theory of
Huet and Lévy still to make sense. That is, they showed that, for any stable , each

-normalizable term not yet in (not in -normal form) has at least one -needed
redex, and that repeated contraction of -needed redexes in a term will lead to an

-normal form of whenever there is one. It is shown also that if a stable is
, i.e., if -unneeded redexes cannot duplicate -needed ones, then the -needed

strategy is hypernormalizing as well. This work was performed in the context of Or-
thogonal (OERSs) [Kha92], a form of higher-order
rewriting which subsumes TRSs and the -calculus and is similar to Klop’s

(CRSs) [Klo80]. Most of these results were later generalized
to an abstract framework of Deterministic Residual Structures [GlKh96].

Normalization theory has developed in other directions as well, of which we men-
tion only a few. Boudol extended neededness theory to non-orthogonal TRSs [Bou85].
Khasidashvili defined a similar normalizing strategy, the strategy, in the -
calculus, OTRSs and OERSs [Kha88, Kha93, Kha94]. Kennaway and Sleep [KeSl89]
generalized the needed strategy to Klop’s orthogonal CRSs [Klo80]. Sekar and Ra-
makrishnan [SeRa93] study a normalizing strategy which in each multi-step con-
tracts a set of redexes – a set at least one member of which is con-
tracted in every normalizing reduction. A different approach to normalization in
not-necessarily orthogonal rewrite systems is developed in Kennaway [Ken89] and
Antoy&Middeldorp [AnMi94]. Antoy et al. [AEH94] designed a needed narrowing
strategy. Gardner [Gar94] described a way of encoding neededness infor-
mation using a type assignment system. Kennaway et al. [KKSV95] studied a needed
strategy for infinitary OTRSs.

The contribution of this paper is to develop a theory of reduction in the
framework of relative normalization, and to establish a relationship between minimal
and [Lév78] reductions. While normal forms are unique in an OERS, a term
may have many -normal forms. A reduction : with and is said
to be if it does no more work than any other -normalizing reduction

: , i.e., the [Lév78] of under is empty. The final term in
the -minimal reduction is said to be an -normal form.

-minimal -normal forms are useful to compute since any other -normal form
is accessible from the -minimal one. Further, strategies computing partial results,
such as head-normal-forms (hnfs) and weak hnfs, in the -calculus, usually compute
minimal reductions, and it is natural to ask whether optimality can be achieved
while retaining minimality. The prime example is the leftmost outermost strategy
computing the so called ‘principal’ hnf and whnf of a -term, and used in construc-
tions of Böhm [Bar84] and Lévy-Longo [Lév76, Lon83] (also called [AbOn93])
trees, respectively. These trees represent the values of the term according to different
semantics – Böhm semantics and Lévy- or lazy semantics, respectively. Clearly this
property of minimality is not useful for full normal forms, but full normal forms are
rarely used in the practice of functional programming.

Our research on minimal -normalizing reductions was inspired by a result of
Maranget [Mar92], stating that reductions are minimal among reductions
computing a ‘stable prefix’ of a given term. However, we will show that standard
reductions are not always minimal in the relative case, and a different concept of
standard reduction is required.
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The earliest minimality result was obtained by Berry and Lévy in [BeLé79],
where existence of minimal reductions was shown for any (finite or infinite) ap-
proximation of a possibly infinite value of a term, for Recursive Program Schemes.
Minimal reductions were used to design optimal reductions, both finite and infinite,
and minimality and optimality of were shown.

In this paper, we restrict ourselves to finite reductions only. We show that, for any
stable and regular , any -normalizable term not yet in possesses an -needed

redex, and repeated contraction of such redexes gives -minimal -
normalizing reductions. We further give a sufficient and necessary criterion for an

-normalizing reduction to be -minimal. We show also that -minimal reductions
need not exist if is stable but is irregular.

It has been shown in [GlKh96] that complete -needed family-reductions, which
contract all members of a containing an -needed redex in a multi-step,
are in the sense that they reach in the least number of family-reduction
steps. -needed complete family reductions, though optimal, need not be -minimal,
because they may contract -unneeded redexes that are -essential. It is tempting
to think that contracting only the -needed redexes of -needed families would yield

-optimal reductions that are -minimal at the same time. We show however that
this is not the case either in the -calculus or in OTRSs. As a consequence, a term
need not have a reduction that is both minimal and optimal at the same time.

The paper is organized as follows. In section 2, we introduce higher order rewrit-
ing through . In section 3, we review the theory of
relative normalization. In section 4, we study -minimal reductions for regular sta-
ble sets , and in section 5, we relate relative optimal and minimal reductions.
Conclusions appear in section 6. More details can be found in [GlKh94a].

Klop introduced (CRSs) in [Klo80] to provide a
uniform framework for reductions with substitutions (also referred to as higher or-
der rewriting) as in the -calculus [Bar84]. Several interesting formalisms have been
introduced later [Kha92, Nip93, OR94]. We refer to van Raamsdonk [Raa96] for a
survey. Here we use a system of higher order rewriting,

(ERSs), defined in [Kha92] (under the name of CRSs); the present formulation
follows [GlKh94] and is simpler.

Let be an , comprising , denoted by ;
, also called ; and or .

Each function symbol has an , and each operator sign has an
( ) with = 0 such that, for any sequence of pairwise distinct
variables, is a or a with . Occurrences
of in are called . Each quantifier sign , as
well as any corresponding quantifier and binding variables , has
a ( ) to specify the arguments in which binds all
free occurrences of . are constructed from variables using functions
and quantifiers in the usual way.
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Definition 2.2

Notation 2.1

Metaterms terms metavariables
metasubstitutions

scope
simple metaterms

assignment
instance

Expression Reduction System
alphabet rewrite rules

admissible assignments

redex redex contractum
simple

arguments pattern

A,B, . . .

t /x , . . . , t /x t t
x t

Σ t θ
θ tθ t t

θ
t /x , . . . , t /x t
t , . . . , t x , . . . , x t

β λ Ap λx t, s
Ap λ

f x dx x s t f x

Σ,R Σ
R r t s

t s t
s

t
r AA r

θ AA r A t s
x FV Aθ A r

x r
θ AA r tθ r R sθ

tθ R R

λ β
β Ap λxA,B B/x A, A B
η λx Ax A

θ x Aθ x Aθ
λx Aθx f A x A

θ x Aθ µ λxA
µ λxA /x A

a, b, c, d t, s, e, o u, v, w
N, P,Q s t s t

u t t s t s u P t s
P t s P Q P Q

are constructed similarly from and ,
which range over terms. In addition, , expressions of the form
( ) , with as arbitrary metaterms, are allowed, where the
of each is . Metaterms without metasubstitutions are . An

maps each metavariable to a term over . If is a metaterm and
is an assignment, then the - of is the term obtained from by re-
placing metavariables with their values under , and by replacing metasubstitutions
( ) , in the left to right order, with the result of substitution of terms

for free occurrences of in .

For example, a -redex in the -calculus appears as ( ) in our notation,
where is a function symbol of arity 2, and is an operator sign of arity (1,1)

and scope indicator (1). Integrals such as ( ) can be represented as ( )
using an operator sign of arity (1,3) and scope indicator (3).

An (ERS) is a pair ( ), where
is an , described in Definition 2.1, and is a set of : ,
where and are closed metaterms (i.e., no free variables) such that is a simple
metaterm and is not a metavariable, and each metavariable that occurs in occurs
also in .

Further, each rule has a set of ( ) which, in order to
prevent undesirable confusion of variable bindings, must satisfy the condition that:

(a) for any assignment ( ), any metavariable occurring in or , and
any variable ( ), either every occurrence of in is in the scope of some
binding occurrence of in , or no occurrence is.

For any ( ), is an - or an - , and is the of
. We call if right-hand sides of -rules are simple metaterms.

Our syntax is similar to that of Klop’s CRSs [Klo80], but is simpler and is closer
to the syntax of the -calculus and of First Order Logic. For example, the -rule
is written as : ( ) ( ) where and can be instantiated by
any terms; the -rule is written as ( ) which requires that an assignment

is admissible iff ( ), otherwise an occurring in and therefore bound
in ( ) would become free. A rule like ( ) ( ) is also allowed, but
an assignment with is not. The recursor rule is written as ( )
( ( ) ) .

Below we restrict ourselves to the case of non-conditional ERSs, i.e., ERSs where
an assignment is admissible iff the condition (a) of Definition 2.2 is satisfied. We
ignore questions relating to renaming of bound variables. As usual, a rewrite step
consists of replacement of a redex by its contractum. Subterms of a redex corre-
sponding to metavariables are of the redex, and the rest is its .
Note that the use of metavariables in rewrite rules of ERSs is not really necessary –
free variables can be used instead, as in TRSs. We will indeed do so at least when
giving TRS examples.

We use for constants, for terms, for redexes,
and for reductions. We write if is a subterm of . A one-step reduction
contracting a redex is written as or or just . We write :
if denotes a reduction of to . + denotes the concatenation of and .
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Definition 3.1

Definition 3.2

Lemma 3.1

Theorem 3.1 Relative Normalization

λ P Q
P Q P/Q

P Q P/Q P Q
P Q

P Q Q P / P Q
P P /Q P/Q P / Q/P

P/ Q Q P/Q /Q

P Q
P Q/P Q P/Q

R u t
NE u, t

t UN u, t

t P t o Q t e
P/Q

e o e o u

t t
t

t

t t t UN u, t u t u UN u , t

t t s NE v, t v u v s

R t R
t

t

orthogonality

residual of under
Lévy-embedding

Lévy-equivalent strongly-equivalent permutation-equivalent

strong Church-Rosser (confluence)

-
needed

stable closed under parallel
moves

closed under unneeded

expansion
regular

The definition of in ERSs is similar to the case of CRSs: all the
rules are left-linear and in no term redex-patterns can overlap [Klo80]. As in the
case of the -calculus [Bar84], for any co-initial reductions and , one can define
in OERSs the notion of , written , due to Lévy [Lév78].
We write if = ( is the relation); and are called

, , or (written ) if
and . It follows immediately from the definition of that if and

are co-initial reductions in an OERS, then ( + ) + ( ) and
( + ) ( ) .

The following property is proved for ERSs
in [Kha92]; the same result for other higher-order rewriting formats are obtained,
among others, in [Klo80, Nip93, KOR93, OR94, Oos94, KvO95, Raa96].

For any co-initial reductions and in
an OERS, + + .

In this section, we review some notions and results concerning relative normalization
from [GlKh94].

Let be a set of terms in an OERS . We call a redex
, written ( ), if at least one residual of it is contracted in any reduction

from to a term in , and call it -unneeded, written ( ), otherwise.

(1) We call a set of terms iff (a) is
: for any , any : , and any : which does not

contain terms in , the final term of is in ; and (b) is

: for any such that and , is -needed. (2) We call a
stable iff -unneeded redexes cannot duplicate -needed ones.

Below , resp. , will denote a stable, resp. regular stable, set of terms in an
OERS. will denote that is -normalizable, i.e., reducible to a term in , and
similarly for .

(1) Residuals of -unneeded redexes in a term are -unneeded.

(2) Let , , ( ), and let be a -new redex. Then ( ).

(3) Let , , ( ), and = . Then has an -needed residual in .

( ) Let be a stable set of terms in an
OERS . Then any -normalizable term in not in -normal form contains an

-needed redex; and any -needed reduction starting from eventually terminates
at a term in . If is moreover regular, then -needed reductions starting from
eventually reach even if finite sequences of consecutive -unneeded steps are also
allowed.
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S S S S
S S
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S S S
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⇒ ⊆ S →→ S
∈

S ∈ S ⇐

In this section, we define , , and redexes,
and show that each class is a strict subset of the next when is regular. Further,
we define reductions as minimal w.r.t. Lévy-embedding among co-
initial -normalizing reductions, and show that, when is regular, an -normalizing
reduction is -minimal iff it is -erased, i.e., contracts only -erased redexes. But

-erased reductions need not be -needed, hence need not be -normalizing, and
again for regular , we show existence of -unabsorbed -normalizing reductions,
which are -needed -minimal reductions. We show that -minimal reductions need
not exist for irregular stable . Below we always consider reductions in OERSs.

(1) We call if all residuals of are
-needed. (2) We call if doesn’t have a residual under any -

normalizing reduction. We call a reduction if it only contracts -erased
redexes.

Note that -erased redexes need not be -needed (e.g., when is the set of
normal forms and the OERS has an erasing rule, say ( ) ). The following
example illustrates the introduced concepts using a simple OTRS.

Consider an OTRS = ( ) ( ( )) ( ) ,
consider a term (redex) = ( ), and the following sets of terms in : the set

of normal forms; the set of terms not containing a redex on the left-spine
(i.e., not containing a redex with the top symbol on the left-spine, when the term is
considered as a tree); the set of terms not containing occurrences of ; and the
set of terms not containing on the right-spine. Then, for the two redexes and

in = ( ), we have the following:

1. is -needed, persistently -needed, and -erased. is -needed but
not persistently -needed (since the second residual of in ( ( )) is -
unneeded); still, is -erased.

2. is -needed, persistently -needed, and -erased. is -needed but
not persistently -needed; and is not -erased – has a residual along the

-normalizing reduction ( ( )) ( ( )).
3. is neither (persistently) -needed nor -erased. is -needed but

not persistently -needed (since the second residual of in ( ( )) is -
unneeded); still, is -erased.

4. both and are neither (persistently) -needed nor -erased.

Note that and are regular stable sets; is stable but not regular, since -
unneeded redex duplicates the -needed redex ; and is not stable (therefore,

does not contain an -needed redex).

Every persistently -needed redex is -erased, but an -erased redex,
even if -needed, need not be persistently -needed.

( ) Let be persistently -needed, and let : be -normalizing.
If was not empty, then every (the set of -residuals of ) would be

-needed, which is not possible since . ( ) From Example 4.1 (cases 1 and 3).
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Lemma 4.2

Definition 4.3

Definition 4.4
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S

S
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S S S
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→ → →→ ∈ S S
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⊆
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∈
⊆ S

S S S
S
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⊆

⊆ ⊆
S

S S

⊆
6 ∅ 6 ∅

-minimal
-minimal

Proof.

-reduction

-redexes

unabsorbed

-absorbed in
-(un)absorbed

-unabsorbed

external

P t s P Q
Q t o P s

t

t t t
t s
e t s e

R a b, b a, f x x a, b
t f a a b

t b a t
t b

P t t . . . t
P t . . . t Q t o Q Q/P

u Q u /Q
P/Q P

F t P F
F

F F t F t F t
t

F t u t F t u F
F P u P

F u F u F F
u t F t F t

t
P

R a c, b b , f c, x c
t g f a, b , a a t F t t
b F t t t g f c, b , a s b

s f c, b F t
a t b t a t

F t
a t

t
F t

t F t
F F F F t F F t

We call : if it is -normalizing and
for any -normalizing : . When is -minimal, we call an

-normal form of .

It follows immediately from Definition 4.2 that if (i.e., and ),
then has no more than one -minimal -normal form . For any other -normal
form of , it holds that . Note that the latter property of -minimal -normal
forms cannot be taken as the definition, because in that case an -normalizable term
could have many -minimal -normal forms, due for example to a cycle in , and
some of them may require more reduction to be reached than others. For example,
take = ( ) and = . Then is stable and regular,
= ( ) has two -normal forms from which any other one is accessible – and ,

but any reduction from to should contract the -unneeded redex in ; therefore,
no reduction from to can be considered as -minimal.

Every -erased -normalizing reduction is -minimal.

Let : be an -erased -normalizing reduction, let
: , and let : . By stability of , = is

-normalizing. Since is -erased and is -normalizing, = . Hence
= , i.e., is -minimal.

Let be a set of redexes in . We call an if it
contracts only residuals of redexes from and created redexes; we call such redexes

. Below will denote that is a set of redexes in a term , and ( )
will denote the set of all redexes of .

(1) Let . We call a redex - (in ) if
and, for any -reduction , none of the residuals of along appear in arguments
of -redexes; we call if and it is not -unabsorbed.

(2) We call if it is ( )-(un)absorbed, where ( ) is the
set of -needed redexes of . (Thus any -unabsorbed redex is necessarily -needed.)
We call a reduction if each redex contracted in it is.

Consider an OTRS = ( ) , and take a
term = ( ( ) ). Then both occurrences of in are ( )-unabsorbed in ,
while is ( )-absorbed in : we have ( ( ) ) = , and the residual of
in is in an argument of the created redex ( ). If contains two redexes
– the first occurrence of in and the redex , then only the first is

-unabsorbed in . If the set of terms not having a left-spine redex is taken for ,
then the first is the only -unabsorbed redex in (it is the only -needed redex
too).

It is shown in [HuLé91, Kha93, GlKh94] that any term not in normal form
contains an ( )-unabsorbed redex (such redexes are called in [HuLé91]).
Now, if one ignores all redexes in except those in , it follows that, for any

= , contains an -unabsorbed redex. And by taking ( ) for ( ( ) =
by Theorem 3.1), we obtain the following proposition:
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t
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P Q
Q P N P

P t s t Q
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Every term contains an ( -needed) -unabsorbed redex.

Below, in the study of -minimal reductions, we will restrict ourselves to
stable . The reason is that, as shown by the following example, an -normalizable
term need not have an -minimal reduction when is irregular.

Consider = ( ) ( ) , take for the set of terms
not containing as the leftmost innermost node, and take = ( ). Obviously,
is closed under unneeded expansion, because the only -needed redex in a term

is the leftmost occurrence of in it, and is closed under reduction. is
not regular, because the outermost redex in is -unneeded, while the innermost
one is -needed. Further, there are three -normalizing reductions starting from

: : ( ) ( ); : ( ) ( ) ( ) and : ( ) ( )
( ) ( ). (There are two more reductions that continue and , but we

do not need to consider them because they cannot be -minimal.) We have ,
, and . Hence none of the reductions is -minimal.

For any : with , there is an -needed , containing the
same number of steps as that of -needed steps in , and an -unneeded , such
that + ; and if is -normalizing or contains infinitely many -needed
steps, then = .

The lemma was proved in [Kha88, Kha93] for the case of essentiality in place
of -neededness. The same proof applies in this case.

If a redex is -unabsorbed, then it need not be unabsorbed in
, but it cannot be replicated and is persistently -needed.

Let : , not necessarily an ( )-reduction. By Lemma 3.1.(3), it
is enough to show that if a residual of can appear inside an -needed redex

= , then cannot replicate ; therefore has at most one residual in any
term of . Suppose, on the contrary, that there is : such that a residual
of is inside an -needed redex such that replicates ; and assume that is
a shortest such a reduction, i.e., has exactly one residual in every term in . By
Lemma 4.3, there are -needed and -unneeded such that + .
Since and are -needed and is -unneeded, it follows from Lemma 3.1.(2)
that there are -needed and in the final term of such that and are the
only residuals of and , respectively. Since is -unabsorbed, . Hence

has exactly one -residual, say . By Theorem 2.1, + replicates ,
since replicates . Thus replicates – a contradiction, since is

-unneeded by Lemma 3.1.(1), and is regular.

Note that if is irregular, then an -unabsorbed redex need not be
persistently -needed or -erased. Indeed, take , , and as in Example 4.3. Then

in is -needed, so is its leftmost residual in ( ), but the rightmost residual
is -unneeded, and = . Hence is not persistently -needed or -erased.
But is -unabsorbed, since the only ( )-reduction is : ( ) ( ), and

is ( )-unabsorbed in .
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Proposition 4.2

Remark 4.1

Theorem 4.1 Minimal Relative Normalization

Remark 4.2 (Relative Standardization)

An -normalizing reduction is -minimal iff it is -erased.

( ) From Lemma 4.2. ( ) Let : be -minimal,
and let : be -unabsorbed, hence -erased by Lemmas 4.4 and 4.1,

-normalizing reduction; exists by Proposition 4.1. Further, let :
and let = . Since is -erased, so is , and is -normalizing by the
closure of under parallel moves. Hence is -minimal by Lemma 4.2. Since
is -minimal too, = for every . But for every -normalizing reduction

: , it holds that (since is -minimal). Hence = , i.e.,
is -erased, and is -erased too.

It can be shown that a redex is -erased iff every residual
of (in particular, itself) along any reductions starting from is either -needed
or - . Here a subterm is -inessential iff there is no -normalizing

starting from such that has a - . The latter notion is a refinement
of that of residual, allowing tracing of contracted redexes – the descendant of a
contracted redex is its contractum, while it does not have residuals [Kha92]. One
can show also that a redex is -inessential iff it is -unneeded and

-erased. Note that the latter proposition can be taken as the definition of -
(in)essentiality, thus avoiding the use of the descendant concept, and the above
characterization of -erased redexes follows logically. See [GlKh94a] for details.

Now we are ready to prove the main result of the paper.

( ) Let be a regular stable set
of terms in an OERS, and let . Then repeated contraction of -needed

-erased redexes in yields an -minimal -normalizing reduction, even if a finite
number of -unneeded -erased, and only such, redexes are also contracted. In
particular, any has an -unabsorbed -minimal reduction, which is -
needed.

By Proposition 4.1, any has an -unabsorbed redex, which is -
needed and -erased by Lemma 4.4 and Lemma 4.1. It remains to apply Theo-
rem 3.1 and Proposition 4.2.

Note that -normalizing standard re-
ductions (in the sense of [Bar84, Klo80], or in the sense of [GLM92], where left-to-
right order of contracted redexes is not required) need not be -needed. Indeed,
take for example = ( ) ( ) , and take for the set of terms not
containing a redex on the right-spine; then is regular, ( ) ( ) ( )
( ) is standard and -normalizing, but the second step is -unneeded. Therefore,

we should take standard -minimal reductions for the
reductions. It is not difficult to see that -unabsorbed -normalizing reductions
are then -standard in the sense of [GLM92], and the left-to-right order of con-
traction of -unabsorbed redexes can also be achieved by Klop’s standardization
theorem [Klo80], which is valid for OERSs as well.
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Lévy introduced the notion of in the -calculus, and showed that
any multi-step reduction that in each multi-step contracts all redexes in a needed
family (i.e., a family containing a needed redex) is optimal in the sense that it
reaches a normal form (when it exists) in a minimal number of family-reduction
steps [Lév78, Lév80]. This theory has been generalized to OTRSs, Interaction Sys-
tems, and higher-order rewrite systems [Mar91, AsLa93, Oos96], and to the case of
relative normalization, to all Deterministic Family Structures [GlKh96]. The latter
are abstract rewrite systems with axiomatized residual and family relations, and
model family concepts in all orthogonal rewrite systems, OERSs among them. Re-
dex families consist of ‘redexes with the same origin’, and here we only need to know
that, in particular, all residuals of the same redex are in the same family.

It is easy to see that any -needed family-reduction that in each step contracts
all the -needed redexes of some family, but does not necessarily contract its -
unneeded members, is still optimal. We will call such reductions -needed

family-reductions. It follows from Proposition 4.2 that such a reduction
is -minimal as well iff every -needed redex contracted in it is -erased. For
example, ( ) ( ) ( ) is both -minimal and -optimal semi-complete
family-reduction in = ( ) ( ) , where is the set of terms
not containing left-spine redexes. However, the following examples show that a term
either in an OTRS or in the -calculus need not possess an -minimal -optimal
family-reduction.

Consider the OTRS = ( ) ( ) ( ) ( ) ,
and take for the set of terms not containing left-spine redexes. One can show
that is regular. Now : ( ) ( ) ( ) ( ) ( ) is an

-minimal reduction, but ( ) is not reachable by an -needed semi-complete
family reduction. If the first step reduces then we reach the -normal form ( )
which is not -minimal. Hence, in order to reduce ( ) to ( ), one should delay
contraction of the -needed occurrences of (which all belong to the same family).
So ( ) ( ) must be the first step. In ( ), both occurrences of are -
needed, but their contraction makes ( ) unreachable. Thus there is no -minimal
reduction that is -optimal at the same time.

Take for the set of -terms in head-normal form, which is regular,
and take = ( ) , where = ( ) , and and are different
variables. Then : ( ) ( ) = is an

-minimal reduction. In order to reach from by a semi-complete -needed family
reduction, one should delay contraction of -needed redexes in the family of . So
the outermost redex in must be contracted first. In the obtained term = , both
occurrences of are -needed, and their contraction would make unreachable –
there is no occurrence of in ( )( ).

We have studied minimal normalization relative to regular stable sets of final
terms, and have shown that -normalizing reductions that are both minimal and
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optimal need not exist for an -normalizable term , despite the fact that possesses
minimal as well as optimal -normalizing reductions. These results were obtained for
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