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This paper generalizes the Huet and Lévy theory of normaliza-
tion by neededness to an abstract setting. We define

(SDRS) and (DFS) by
axiomatizing some properties of the residual relation and the family relation
on redexes in an . We present two proofs of the

, one for SDRSs for sets, and
another for DFSs for all stable sets of desirable ‘normal forms’. We further
prove the for DFSs. We extend this result to de-
terministic which are deterministic
with an extra relation expressing .
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A normalizable term, in a rewriting system, may have an infinite reduction, so it is
important to have a strategy which enables one to construct reductions
to normal form. It is well known that the leftmost-outermost strategy is normalizing
in the -calculus [CuFe58].

For Orthogonal Term Rewriting Systems (OTRSs), a general normalizing strat-
egy, called the strategy, was found by Huet and Lévy [HuLé91]. The strategy
always contracts a redex – one whose residual has to be contracted in any
reduction to normal form. Huet and Lévy showed that any term not in normal form
has a needed redex, and that repeated contraction of needed redexes leads to its
normal form whenever there is one.

This work has been extended in several directions. Barendregt et al. [BKKS87],
Maranget [Mar92], and Nöcker [Nök94] study neededness w.r.t. head-normal forms,
weak head-normal forms, and constructor head-normal forms, respectively. Sekar
and Ramakrishnan [SeRa90] study normalization via set of redexes. Ken-
naway et al. [KKSV96] study a needed strategy for infinitary OTRSs. A different
approach to normalization is developed in Kennaway [Ken89] and Antoy and Mid-
deldorp [AnMi94]. Antoy et al. [AEH94] design a needed narrowing strategy.

In [GlKh94], the present authors address the question of normalization relative to
a desired set of final terms, considering the properties that a set of terms must possess
in order for the neededness theory of Huet and Lévy still to make sense. This work is
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done in the context of orthogonal (OERS) [Kha92], a
form of higher-order rewriting which subsumes Term Rewriting and the -calculus.
Natural conditions are imposed on , called , that are necessary and sufficient
for the following (RN) theorem to hold: each -normalizable
term not in (not in ) has at least one -needed redex, and repeated
contraction of such redexes will lead to an -normal form whenever there is one. It is
shown also that if a stable is , i.e., if -unneeded redexes cannot duplicate

-needed ones, then the -needed strategy is hypernormalizing as well.
In this paper, we further generalize the theory by abstracting from the struc-

ture of terms. We study relative normalization in
(DRSs). A DRS is an (ARSs) which has a

between redexes in the source and target terms of each transition. Redexes of
may be erased by reduction of , new redexes may be introduced in , while other

redexes of are considered of redexes in , as specified by the residual rela-
tion. Further, the residual relation is generalized to all reductions, and

on reductions, referred to below as , and the
, which induces a partial ordering on the reduction space, is introduced, as

is done for the -calculus in [Lév78, Lév80]. Sufficient conditions needed to define
the above concepts in an abstract setting were stated in [Sta89, GLM92].

In [Sta89], Stark defines (CTSs) and uses them
to develop a model of concurrent computation, studying ways of building machine
networks with concurrent machines as basic objects. On the other hand, Gonthier
et al. [GLM92] were interested in studying more syntactic properties, such as stan-
dardization, of orthogonal rewrite systems in an abstract setting. The way standard-
ization is understood in that paper requires a relation on redexes in a term,
and some axioms giving its important properties. Standard reductions then become
some kind of outside-in reductions. However, the [GLM92] axioms are rather restric-
tive, since even orthogonal DAGs [Mar91, Mar92, KKSV93] do not satisfy them as
pointed out by R. Kennaway.

Our DRSs are more refined than CTSs, since in the latter the residual relation is
non-duplicating. We do not impose a nesting relation on redexes, but are still able to
prove the RN theorem for all stable sets . (We actually prove the Relative
Hypernormalization theorem.) We use a form of Berry’s axiom [Ber79] and
show that without this axiom the theorem fails. The proof method employed is
similar to that in [Kha88, Kha93], and is based on the fact that -needed steps in a
reduction can be pushed before -unneeded steps without affecting the number of

-needed steps. The important difference is that [Kha88, Kha93] uses the syntactic
notion of of subterms – a refinement of the residual notion for redexes
– which is much harder to axiomatize.

Since for stable , -unneeded redexes can duplicate -needed ones, the
above proof method does not apply for all DRS; for the same reason, the -needed
strategy is no longer hypernormalizing. We define a
(DFS) as a DRS with a very liberal notion of relation [Lév78, Lév80] and
a relation on families, expressing the notion of (at least one member
of) a family to be needed to create another family. For DFSs, the proof of the RN
theorem for all stable from [GlKh94] works perfectly.

An advantage of the first RN theorem is that checking for Berry’s stability
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is much simpler than constructing a sound family relation. For example, the -
calculus [Lév78, Lév80], orthogonal TRSs [Mar92], Interaction Systems [AsLa93],
and orthogonal CRSs (and ERSs) [Klo80, KeSl89] form DFSs It seems very likely
that other orthogonal higher-order rewriting systems, such as HRSs [Nip93] and
HORSs [Oos94, OR94], which do form stable DRSs, form DFSs as well, although,
to our knowledge, this is not yet known.

For DFSs we show that a strategy that contracts, in an arbitrary order, only re-
dexes that belong to -needed families, but which need not be -needed themselves,
is still -normalizing. As a corollary, any , which
contracts all members of a family containing an -needed redex in a multi-step, is

-normalizing. Similarly to [Lév80], we show that the latter reductions are optimal
in the sense that they reach in the least number of family-reduction steps.

Using the family axioms, we give an Event Structure (ES) [Win80] semantics to
DRSs, by considering redex-families as events. We define

(DCS) as Deterministic with an extra relation to express
the fact that an event is for a set of events , a . This
enables us to define Lévy-equivalence on prime deterministic ESs. For DCSs, the
theory of relative normalization can be applied.

The paper is organized as follows. In the next section, we introduce stable DRSs
and give some examples. In Section 3, we prove the RN theorem for regular stable
sets in an SDRS , and demonstrate that if is not stable, then the theorem
fails. In Section 4, we introduce DFSs, compare them with stable DRSs, and prove
the RN theorem for all stable . In Section 5, we strengthen the latter result, and
prove the theorem for any DFS. Finally, in Section 6, we extend
the obtained results to Event Structures. Conclusions appear in Section 7.

In this section we define (DRSs) which are
(ARSs) satisfying certain properties concerning residuals.

The definition and some results about ARSs can be found e.g., in [Klo92]. Our def-
inition is slightly different.

An ARS is a triple = ( , , ) where is a set of ,
ranged over by ; is a set of (or ), ranged over
by ; and : ( ) is a function such that for any there

is only a finite set of such that ( ) = ( ), written . This set will
be known as the redexes of term , where denotes that is a member of the
redexes of and denotes that is a subset of the redexes. Note that is a

function, so one can identify with the triple . A is a sequence

. Reductions are denoted by . We write : or if
denotes a reduction (sequence) from to . denotes the length of . We use

to denote sets of redexes of a term.

DRSs are similar to Stark’s (DTCS)
[Sta89], to of Gonthier et al. [GLM92], and to van Oost-
rom’s [Oos94]. The main difference from DCTSs is
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that Stark requires a non-duplicating residual relation, and distinguishes a start
state. The difference from ARSs of [GLM92] is that we do not have a nesting rela-
tion on redexes and the corresponding axioms, and the stability axiom is modified
accordingly. The difference from van Oostrom’s DRSs is that in the latter the notion
of of any subterm/position of a term is formalized, not only the notion
of residual of redexes.

A
(DRS) is a pair = ( ), where is an ARS and is a relation

on redexes relating redexes in the source and target term of every reduction ,
such that for , the set of is a set of redexes of ; a
redex in may be a residual of only one redex in under , and = . If has
more than one -residual, then . If = , then . A redex
of which is not a residual of any under is said to be by . The set
of residuals of a redex under any reduction is defined by transitivity.

A of a set of redexes in a term is a reduction : that only
contracts residuals of redexes from ; the development is if , the set
of residuals under of redexes from , is empty . Development of is identified
with the empty reduction. will also denote a complete development of .
The residual relation satisfies the following two axioms, called

[GLM92] and (which appears as axiom (4) in [Sta89]):
[FD] All developments are terminating; all co-initial complete developments of

the same set of redexes end at the same term; and residuals of a redex under all
complete co-initial developments of a set of redexes are the same.

[acyclicity] Let , let = , and let = . Then = .

The properties of the residual relation are all standard, and we refer to [HuLé91,
Lév78, Lév80, Sta89] for details. Hence, we assume that, in a DRS , the residual
relation on redexes is extended to all co-initial reductions as follows: ( + ) =

+ ( ) and ( + ) = ( ) , and that or
is defined as the smallest relation on co-initial reductions

satisfying: + + and + + + + ,
where and are complete developments of redex sets in the same term. Further,
one defines iff = , and can show that iff and ;
and iff + for some . Intuitively, expresses that
does more work than , and is the part of that remains from it after . The
above relations can equivalently be defined also using Klop’s method of commutative
diagrams. The method is well described in [Klo80, Bar84].

We call a DRS (SDRS) if the following axiom is satisfied:

[stability] If are different redexes, , , and creates a redex
, then the redexes in ( ) are not -residuals of redexes of , i.e., they

are created by (see the diagram).

Intuitively, stability means that a redex cannot arise from two unrelated sources.
This property has a natural extension to many-step reductions, where ‘unrelated’ is
formalized by the notion of . For syntactic systems externality is a natural
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concept relating to overlap between components of terms involved in reduction steps.
In an abstract setting it expresses the absence of shared (residuals of) redexes.

Let and : . We call to (resp. )
if does not contract residuals of redexes in (resp. residuals of ).

Let : and : = . We call
to if for any , ( ) ( ) = .

( )

( )

Obviously, is external to the set iff it is external to any development of ,
and is external to a redex iff it is external to the reduction contracting .

Let : be external to : , in an SDRS, and let create
redexes . Then the residuals ( ) of redexes in are created by ,
and is external to (see the diagram).

By induction on the number of elementary diagrams in Klp’s diagram
( ) of and . The case = 1 is the axiom [stability]. It follows from Def-

inition 2.4 that the top and left edges of all sub-diagrams of ( ) are external
reductions, therefore we can assume the lemma is proved for all subdiagrams of

( ). So let 1, i.e., = + with 0 . Then = ,
where is the set of redexes created by , and is the set of redexes created
by (i.e., along) . By the induction assumption, is external to , and the re-
dexes in ( ) are created by . By Lemma 3.1, = ( ) is external
to . By the induction assumption, = ( ) is external to and
redexes in ( ) are created by ( ). Hence is external to , and
since ( ) = ( ) (( ) ), redexes in ( ) are created
by .

As already mentioned, all orthogonal first and higher order rewrite systems are
stable DRSs, and so are orthogonal graph rewriting systems [KKSV93, Mar92].
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In this section, we prove that, for any stable set of terms in a stable
DRS , an -normal form of an -normalizable term can be found by contracting

-needed redexes in it, even if every -needed step is preceded by a finite number
of -unneeded steps. We show that without the assumption of stability for , this
result breaks down. Further, examples from [GlKh94] show that the stability of
is necessary for the Relative Normalization theorem to hold. This shows that the
stability of for a Berry–stable provides a unique notion of stability for the
computation system ( ).

([GlKh94]) Let be a set of terms in a DRS . We call a redex
, written ( ), if at least one residual of it is contracted in any

reduction from to a term in , and call it , written ( ), otherwise.

([GlKh94]) (1) We call a set of terms if: (a) is
: for any , any : , and any : which

does not contain terms in , the final term of is in ; and (b) is

: for any such that and , is -needed.
(2) We call a stable set if -unneeded redexes cannot duplicate -

needed ones.

A stable set need not be closed under reduction – in the definition above
may contain terms not in , but closure under parallel moves requires that the final
term is. Stability and regularity coincide in non-duplicating systems. Below will
usually denote a stable set of terms in some DRS. will denote a regular stable
set. For simplicity, we only consider stable sets that are closed under reduction;
obviously, closure under reduction implies closure under parallel moves.

The most appealing examples of stable sets are normal forms [HuLé91], head-
normal forms [BKKS87], weak-head-normal forms in an OTRS (a partial result
is in [Mar92]), and constructor-head-normal forms for constructor TRSs [Nök94].
All the above sets are closed under reduction, and are regular. Other examples in-
clude weak-head-normal forms (up to garbage-collection, modulo a congruence) in
Yoshida’s -calculus (an environment calculus) [Yos93] and the set of in

-calculus of Ariola et al. [AFMOW94]; both are conditional rewrite
systems. An example of an OTRS with an irregular stable is given in Remark 3.1.

We begin the proof by showing that -unneeded redexes cannot create -needed
ones, and that residuals of -unneeded redexes remain unneeded. When is regular,
this enables us to construct a -needed variant of any -normalizing reduction.
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Let : be external to = , and
let : . Then = is external to = . If is -normalizing,
then so is .

Let : , = , and = , (0 ) . Since
is external to , we have for each that . Therefore, ( + ) =
(since the residuals of different redexes are different). Thus ( + +
+ ) = . Hence, is external to ( + + ). This means that is

external to . If is -normalizing, then so is by stability of .

For any stable , residuals of -unneeded redexes under any reduc-
tion remain -unneeded.

Let be stable, let , , ( ), and let be a redex
created by , in a stable DRS. Then ( ).

If , then every redex in is -unneeded; so suppose . ( )
implies existence of an -normalizing : that does not contract residuals of
. By Lemma 2.1, does not contract residuals of . Also, is -normalizing

since is closed under parallel moves. Hence is -unneeded.

The following example shows that, in the above lemma, stability of the DRS is
necessary.

Let terms in the DRS be = ( ( )), = ( ), and = ;
redexes in be = and = ( ), contain the only redex = , and doesn’t

contain a redex; let the reduction relation be given by = , let
the residual relation be empty except for empty reductions, for which the residual
relation is identity, and let = . (Obviously, this is not, and cannot be, the
usual residual relation for orthogonal TRSs.) Then is stable and regular, both
and are -unneeded, and both create the redex that is -needed. Note also
that the Relative Hypernormalization theorem (proved below) is not valid for ( )
since is -normalizable but doesn’t contain an -needed redex.

We call : , written ( ), (resp.
( )) if it contracts only -(un)needed redexes. We call if it

contracts infinitely many -needed redexes, and call it if it can be
expressed as = + with ( ) and ( ). In the latter case, we call

the of ( can be infinite, in which case = ).
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We now describe an algorithm that, for a stable in a DRS , trans-
forms any finite or infinite reduction into an -semi-needed reduction ( ). The

algorithm is as follows: find in the leftmost subreduction : such that
( ) and ( ). Let = + + . By Lemma 3.2, is a residual of

a redex , which is -needed by Corollary 3.1. Since is regular, is the only
residual of , hence and = + are both complete developments of the
set , thus . Now replace by in . Transform the obtained
reduction in the same way, and so on, as long as possible. Obviously, by regularity
of , the number of -unneeded steps in preceding is less than the number
preceding in , and the number of -needed steps in and coincide.

Let be a finite or infinite reduction in an SDRS, and let be regular.
(1) If ends at a term in , then ( ) is a finite -semi-needed reduction

whose -needed part ends at a term in as well.
(2) If is -quasi-needed, then ( ) is an infinite -needed reduction.

(1) Since the transformation doesn’t change the number of -needed steps
in , it follows that ( ) is -semi-needed, and it ends at since ( ) .
The step of ( ) entering is the last -needed step of ( ) by stability of .
(2) Immediate from the construction of ( ).

Next we show that, unless it is contracted, an -needed redexes has at least one
-needed residual. Therefore, residuals of -quasi-needed reductions remain so. It

follows that an -normalizable term cannot possess an -quasi-needed reduction.

Let be a regular stable set of terms in a DRS , and let . Then
any -needed redex different from has an -needed residual.

If is not -normalizable, then neither is , and all redexes in and
are -needed. So suppose is -normalizable ( since contains an -needed
redex), and suppose on the contrary that each residual of in is -unneeded.
By closure of under parallel moves, is -normalizing too. By Lemma 3.3.(1),
there is an -needed -normalizing reduction : . Since by Corollary 3.1
all residuals of each along are -unneeded, is external to all . Therefore,

+ is external to and is -normalizing – a contradiction, since ( ).

Let have an -quasi-needed reduction and . Then also has
an -quasi-needed reduction (see diagram).

By Lemma 3.3, has an infinite -needed reduction : . Let
= ( + + ), = 0 1 . It follows from finiteness of developments

that there are infinitely many numbers such that (otherwise there should

be a number such that is an infinite -development). By
Lemma 3.4, and ( ) imply that has at least one -needed

-residual in , i.e. contains at least one -needed step. Hence is
-quasi-needed.

Let be a regular stable set of
terms in a stable DRS , and let be a term in . Then

(1) contains at least one -needed redex.
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4 Relative Normalization in Deterministic Family Structures

Proof

Remark 3.1

Definition 4.1 (Deterministic Family Structure)

Deterministic Family structures family
contribution

histories
contribution

with history copy
zig-zag

family
family

t

t

t s
Q t Q/P

Q/P
Q/P

t t

R f x h f x , f x , a b
a

t f a
P f a h f a , f a

h f b , f a h f b , h f a , f a h f b , h f b , f a . . .
Q f a f b K P

P/Q f b h f b , f b h f b , h f b , f b . . .

R, , ↪ R
↪

P Q Qv Q
v Q Pu P Q P Q/P Q
v Q/P u

(2) has an -normal form iff it does not possess a reduction in which infinitely
many times -needed redexes are contracted.

(1) By Definition 3.1 if is not -normalizing, and by Lemma 3.3 otherwise.

(2) ( ) Let . Suppose on the contrary that there is an -quasi-needed
starting from . Then by Lemma 3.5 is -quasi-needed as well – a contra-

diction, since all terms of are in , by the closure of under reduction, and
therefore must be -unneeded. ( ) By (1), one can repeatedly contract -
needed redexes in , unless a term in is reached; the latter is inevitable since
doesn’t have an infinite -needed reduction.

If is not regular, then Lemma 3.3 doesn’t hold. Indeed, consider
the example from [GlKh94]: take OTRS = ( ) ( ( ) ( )) and
take for the set of terms not containing occurrences of . It is easy to check
that is stable, but is not regular, since the outermost redex in = ( ) is -
unneeded, while the innermost one is -needed. Then : ( ) ( ( ) ( ))
( ( ) ( )) ( ( ) ( ( ) ( ))) ( ( ) ( ( ) ( ))) is -quasi-

needed, while the -needed part : ( ) ( ) of ( ) is -normalizing, and
= ( ) ( ( ) ( )) ( ( ) ( ( ) ( ))) is -unneeded, thus not

-quasi-needed any more. Because of that, the proof of Lemma 3.5 fails, and the
-needed strategy need not be hypernormalizing.

In order to generalize the RN theorem to all stable sets in DRSs, we introduce
(DFSs) by defining a notion of in a DRS,

and by imposing some axioms on the relation on families. This enables
us to repeat the proof of the RN theorem in [GlKh94] for all DFSs, and makes
explicit the properties of family relation needed to develop an abstract theory of
optimal normalization.

A DFS is a triple =
( ), where is a DRS; is an equivalence relation on redexes with ;
and is the relation on co-initial families, defined as follows:

(1) For any co-initial reductions and , a redex in the final term of (read
as ) is called a of a redex if , i.e., + ,
and is a -residual of ; the relation is the symmetric and transitive
closure of the copy relation [Lév80]. The relation is an equivalence relation
among redexes with histories containing . A is an equivalence class of the
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Example 4.1

Lemma 4.1

Proof

' →

• ∈ 6 ∅ 6 ∅

• → ∈

• →→ → ∈ →

•

{ | → }

F

• 6→

• → → →

• ∅ ∅ ∈

' →

{ }
{ } ∅ ∅

{ }
→

→

F

∈ → → →→
∈ ∈

∈
∅ { }

{ }
' ⊆'

φ, ψ, . . . F am

↪

u, v t u v R Fam u Fam v

φ ↪ φ Pu φ P φ

e t s u v s Fam Pu ↪ Fam P u v

Cone φ φ φ ↪ φ φ

φ ↪ φ

φ ↪ φ φ ↪ φ φ ↪ φ

φ Cone φ Cone u u t

↪

x
u v u u w v/u v u/v u , u u /u u

u /u u u /w u , u w/u u /u u /u u u
u U v v

V X x W
w X,U, V,W X ↪ V, U

U ↪ W
w u

u, v t t e t s e o
u w e w/ v/u o u/v

s w s
Cone Fam w w Cone Fam w Fam v

Cone Fam w Fam u w/ v/u s

family relation; families are ranged over by . ( ) denotes the family of
its argument.

(2) The relations and satisfy the following axioms:

[initial] Let and = , in . Then ( ) = ( ).

[contribution] iff for any , contracts at least one redex in .

[creation] if and creates , then ( ) (( + ) ).

[termination] Any reduction that contracts redexes of a finite number of families
is terminating.

One can check that all the existing definitions of family relation in the litera-
ture [Lév78, KeSl89, Mar92, AsLa93] satisfy the above axioms. Hence our definition
is consistent. The reason for considering more notions of family than just the zig-zag
is that we want to be more flexible and able to consider a large class of sharing mech-
anisms as legal; there are sharing mechanisms that are strictly larger than zig-zag,
e.g., the one in [AsLa93].

Let us call ( ) = the of . It follows immediately from
the family axioms that:

In any DFS :

[irreflexivity] .

[transitivity] If and , then .

[finiteness] For any , ( ) is finite, and ( ) = for any .

The following example shows that, in a DRS with and , [initial], [creation]
and [contribution] do not imply [termination].

Consider the ARS given by Figure (a) below, where the redex
creates and ; and create ; = ; = ; = ,

= ; = ; = , = , = . All the s are
residuals of , hence belong to the same family . Similarly, and must be in the
same family too, say . Further, take = , take for the set of all contracted

s (with histories), and define the contribution relation on by
and . Since the only infinite reduction goes through the cycle infinitely
many times, and each time the contracted is by , all developments in
the figure are terminating. It remains to note that [FD] and the other family axioms
but [termination] are satisfied too. Note that the DRS is stable.

Any DFS is a stable DRS.

We want to show that if are different redexes, , , ,
and creates a redex , then the redexes in ( ) are not -residuals
of redexes of . By axioms [creation] and [contribution], for any redex ,

( ( )) = if is not a created redex, and ( ( )) = ( )
otherwise; and ( ( )) = ( ) . Hence the redexes in ( ) and
are in different families by [initial], and the lemma follows (since ).
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Proof

Theorem 4.1 (Relative Normalization)

Proof
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S 6∈ S → ∈
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S
F 6∈ S S
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→→ → → S 6∈ S
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S → → → ≥
' ⊆' ⊆ S

S S
' ⊆' ∈

⊆

S

x v
t

u
e

w
o

u u w

u
s

v

u
o

v

u u
u w

u

v
o

w

o

a b

↪

w w
u v u/v u v/u v w/v w /u w

U u, u , v, v W w, w , w U ↪ W

t t t UN u, t u t
u UN u , t

FAM P
P

t
t

t

P t s s e s
NE u, t u

s

P t s Q t t . . .

Q t t . . . t P P/Q i
FAM P FAM P Q

P
u P Fam u FAM P

FAM Q FAM P Q

( ) ( )

The following example shows that a DRS with and relations satisfying all
DFS axioms but [initial] need not be stable.

Consider the DRS given by Figure (b) above, where and are
created by and , respectively, = , = , = = . Then the
sets = and = with the contribution relation
do satisfy the DFS axioms except for [initial], but the underlying DRS is not stable.

Let be stable, , , ( ), and let be a redex
created by , in a DFS . Then ( ).

By Lemma 3.2 and Lemma 4.1.

Now we can generalize the RN theorem, proved in [GlKh94] for orthogonal ERSs
[Kha92], to all DFSs. We now allow for arbitrary stable sets .

Below ( ) denotes the set of families (whose member redexes are) con-
tracted in .

Let be a stable set of terms in a
Deterministic Family Structure , and let be -normalizable. Then

(1) contains an -needed redex.
(2) Any -needed reduction starting from eventually terminates at a term in .

(1) Let : be an -normalizing, and let . By the
stability of , ( ). By Corollary 3.1 and Lemma 4.2, is either created by or
is a residual of an -needed redex of , and (1) follows by repeating the argument.

(2) Let : be an -normalizing reduction and : be an

-needed reduction. Further, let : and = ( 1) (see
the diagram below). By , ( ) ( ). Since is -needed and

is -normalizing (by the closure of under parallel moves), at least one residual
of is contracted in . Therefore, again by , ( ) ( ). Hence

( ) ( ) and is terminating by [termination].

Note that we have not used the acyclicity axiom in the proofs. However, it is
necessary and sufficient to insure that the set of normal forms is stable. Note also
that only by using Theorem 4.1 can we prove the analogue of Lemma 3.4 for all
stable .
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5 The Relative Optimality Theorem
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S
F S F S

S

S

S S
S

→→ →→ →→
→→

‖ ‖

S
S

S

S F S
S S

→→ →→ →→
‖ ‖

t t

φ t t
φ

t
t

t

P t t . . . t
P t t U

P P
P P
t P

U
P

P t t . . . t
n P a P

b t P
n a a b

weakly -needed

-needed

weakly -needed

family-
reduction

complete
-needed

Definition 5.1

Theorem 5.1

Proof

Definition 5.2

Corollary 5.1

Lemma 5.1

Proof

In this section, we define redexes, and show that their contraction
in an -normalizable term leads to an -normal form of . We also generalize
Lévy’s Optimality theorem [Lév80] to all stable sets in any DFS.

We call a family relative to if any reduction from to
a term in contracts at least one member of . We call redexes in -needed families

.

Let be a stable set of terms in a Deterministic Family Structure
, and be an -normalizable term in . Then any weakly -needed reduction

starting from is terminating.
By [termination], since there is only a finite number of -needed families

relative to .

The above theorem allows one to propagate -neededness information, obtained
from earlier terms, along the reduction, and to contract safely (without a danger of
missing an -normal form whenever it exists) any residual of an -needed redex,
even if it is no longer -needed.

A multistep reduction : is called a
if each : is a development of a set of redexes belonging

to the same family. will denote the number of multisteps in . The family-
reduction is if each is the complete development of a maximal set of
redexes of belonging to the same family. A family-reduction is called
if each contains at least one -needed redex (i.e., if the (single-step) reduction
corresponding to is weakly -needed).

Let be a stable set of terms in a DFS . Then any -needed
family-reduction starting from an -normalizable term is eventually -normalizing.

Every family is contracted at most once in a complete family-reduction.

Let : be a complete family-reduction. We show
by induction on = that ( ) : all families contracted in are different; and
( ) : there is no redex in whose family has been contracted in . The case

= 0 is clear. Further, ( ) follows immediately from ( ) and ( ) . Again
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6 Relative Normalization in Event Structures

Theorem 5.2 (Relative Optimality)

Proof

Theorem 6.1

Definition 6.1

→
6→ ≤ −

6

S
F S F

S S →→ ∈ S S

→→ S
⊆

‖ ‖ ≤ ≤ ‖ ‖

E ≤

≤ { } ∈ ⊆ ∈ ⇒ ∈
∈ ∧∃ ∈ ≤ ⇒ ∪{ } ∈ { | ≤ } ∈

E
{ ⊆ | ∈ ∧ ⇒ ∈ }

F ' →

E → → →

E ≤ ⊆ E ×
E E E

• ∧ ⊆ ∈ E ⇒
• ∪ { } ∧ ∪ { } ⇒

C E
C E

• ≈ { ∈ | 6 }

Event Structure

redundancy

Prime
events consistency predicate

causal dependency relation

deterministic

Configurations states left-closed
subsets

Deterministic Computation Structure
-inessential

self-essential

a b P t
t

φ t Fam U ↪ φ
a b Fam U ↪ Fam U i n
Cone Fam U Cone φ b

t
Q t e

λ P t s
FAM Q FAM P

Q Card FAM Q Card FAM P P
Card FAM Q FAM Q

E,Con, E
e, e , . . . Con

E X, Y, . . .
E e Con Y X Con Y Con

X Con e X.e e X e Con e e e e E

E
α, β, . . . E α E e E e < e e α

R , , ↪ R
t t

FAM t , ↪ φ↪ ψ φ ↪ ψ φ ψ

E, FConf
FConf

α e α β FConf β e

α e e α e e α e

, α
e e α FConf FConf

α β SE α SE β SE α e α α e
α

by ( ) and ( ) , and by the completeness of , all redexes in that are
residuals of redexes of are in families that have not been contracted before.
By [creation], for the family of a created redex in , we have ( ) ;
by ( ) , ( ) , and [contribution], ( ) ( ), for any 1.
Hence ( ( )) = ( ), and ( ) follows.

Let be a stable set of terms in a De-
terministic Family Structure , and be an -normalizable term in . Then any

-needed -normalizing complete family-reduction : is -optimal in
the sense that it has a minimal number of family-reduction steps.

As in the -calculus [Lév80]. Let : be an -normalizing family-
reduction. It follows from the proof of Theorem 4.1 that ( ) ( ).
Hence, by Lemma 5.1, = ( ( )) ( ( )) , where

( ( )) denotes the number of families in ( ).

In this section, we give an semantics to DFSs. Smoothness of the
interpretation justifies our choice of family axioms. We also generalize the RN the-
orems to ESs by giving the reverse translation. To this end, we equip ESs with an
extra operation expressing of events, thereby enhancing the match
between DFSs and corresponding ESs.

A Event Structure (PES) [Win80] is a triple = ( ), where
is a set of , ranged over by ; the is a non-
empty set of subsets of , denoted by ; and the

is a partial order on , such that , ,
, and is finite for any .

In this paper we only consider structures, DPESs, where no event
can prevent others from occurring, and therefore the consistency predicate is the
powerset of , and will be omitted. (or ) of are

of , i.e., subsets . It is immediate
from Proposition 4.1 that:

For any DFS = ( ), where is a (sub)DRS whose term
domain is the graph of a term (i.e., the set of terms to which is reducible),

= ( ( ) ) is a DPES, where means that or = .

Let = ( ) be a DPES with an extra relation ( )
, where ( ) is the set of finite configurations of , satisfying the following

axioms:
( ) ;

.
Then we call = ( ) a (DCS). We read

as: ‘ is ’. On ( ) = ( ), we define Lévy-equivalence by:
iff ( ) = ( ), where ( ) = is the set of

events of .
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6∈ ∈
F C E

≈

C E
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〈 〉 〈 ∪ { }〉 〈 ∪ { }〉 〈 ∪ { }〉 ∅
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{ → → }

→ → →

→ { }
{ } { }

S
S S

S

R S

FAM Q Q
FAM Q φ P,N Q
φ FAM P φ FAM N

,
P P SE FAM P SE FAM P

, R
R α , β , . . .

R u α , β
β α e u α β β e

u α , α e
v α , α e u/v α e , α e , e u/v

α e α e , e

f x c, a b t

f a t f b t c f b c

t c α f a
β a γ a, f a α β γ

α γ
α a

R

In , the configurations are sets ( ) of complete family-reductions .
Define ( ) iff there are (finite) complete family-reductions
such that ( ) and ( ). Then satisfies the above -axioms.
So we can actually speak of translation of into a DCS = ( ). Obviously,

implies ( ( )) = ( ( )). The converse can also be proved
using the acyclicity axiom.

To a DCS = ( ), we associate a DRS as follows:
The terms of are Lévy-equivalence classes of finite configu-

rations of ;
The reduction relation of consists of sets of pairs of terms = ( ),

where = ; (Note that = iff = iff .)
The residual relation is defined as follows: if = ( ) and

= ( ), then = ( ). (Thus =
iff .)

Note that Stark’s encoding of DPESs into DCTSs [Sta89], which are DRSs as
well, would (or at least may) interpret configurations that are different as sets (but
may be the same semantically) as different states. For example, consider the DPES,
corresponding to the rewrite system ( ) with the graph of =

( ) as the set of terms, whose events are ( ) and (the steps ( )

and represent the same event); and whose configurations are = ( ) ,
= , and = ( ) . Then Stark’s encoding would consider , and as

different configurations, while we can identify with , which is more natural if the
information that is provided.

One can verify that is indeed a DRS. The translation of DCSs into DRSs
enables us to extend the theory of relative normalization from DRSs to DCSs, and
in particular, to DPESs (since DPESs are DCSs with the empty relation).

Let be a stable set of finite configurations in a Deterministic Com-
putation Structure. Then execution of -needed events leads to configurations in ,
even if a finite number of -unneeded events are executed as well.

We have proven two abstract versions of the RN theorem: one in stable DRSs for
regular stable sets , and another in DFSs for all stable . We believe that our first
proof is the simplest existing proof among those using the residual notion, though it
covers all the existing normalization results, except for the one in [GlKh94], which
is covered by our second RN theorem. It is remarkable that, unlike the proofs in
[CuFe58, HuLé91, BKKS87], our proof does not use the notion of standard reduction.
Similar proofs for orthogonal CRSs in [KeSl89] and for orthogonal DAGs in [Mar91,
Mar92] use an even stronger termination argument, expressed by the [termination]
axiom; they used suitable labelling systems to define notions of family. Our second
proof can be seen as a generalization of that proof method, which was used already
by Lévy in [Lév78, Lév80]. It would be interesting to investigate whether it is possible
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to prove our second theorem already for stable DRSs, i.e., without family axioms,
but possibly some much weaker axioms.

Obviously, our family axioms are too weak to prove certain properties of families
which arise from using labelling notions, and studying its refinements certainly seems
useful. Nevertheless, our axioms are powerful enough to build the normalization and
optimality theory, and to bridge DRSs with Event Structures (thereby defining a
denotational semantics for DRSs). Indeed, in DFSs it is possible to do much more –
e.g., study normalization, define the notion of of computa-
tions, and turn Lévy’s reduction space into a , etc. This is the subject
of forthcoming papers. Some extra axioms on duplication behaviour are needed, but
no nesting relation is necessary, so many machine models are still covered.
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de l’Université de Paris VII, 1979.

[CuFe58] Curry H. B., Feys R. Combinatory Logic. vol. 1, North-Holland, 1958.

[GlKh94] Glauert J.R.W., Khasidashvili Z. Relative Normalization in Orthogonal Ex-
pression Reduction Systems. In: Proc. of the 4 International workshop on
Conditional (and Typed) Term Rewriting Systems, CTRS’94, Springer LNCS,
vol. 968, N. Dershowitz, ed. Jerusalem, 1994, p. 144-165.
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