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Abstract. This paper generalizes the Huet and Lévy theory of normaliza-
tion by neededness to an abstract setting. We define Stable Deterministic
Residual Structures (SDRS) and Deterministic Family Structures (DFS) by
axiomatizing some properties of the residual relation and the family relation
on redexes in an Abstract Rewriting System. We present two proofs of the
Relative Normalization Theorem, one for SDRSs for regular stable sets, and
another for DFSs for all stable sets of desirable ‘normal forms’. We further
prove the Relative Optimality Theorem for DFSs. We extend this result to de-
terministic Computation Structures which are deterministic Event Structures
with an extra relation expressing self-essentiality.

1 Introduction

A normalizable term, in a rewriting system, may have an infinite reduction, so it is
important to have a normalizing strategy which enables one to construct reductions
to normal form. It is well known that the leftmost-outermost strategy is normalizing
in the A-calculus [CuFe58].

For Orthogonal Term Rewriting Systems (OTRSs), a general normalizing strat-
egy, called the needed strategy, was found by Huet and Lévy [HuLé91]. The strategy
always contracts a needed redex — one whose residual has to be contracted in any
reduction to normal form. Huet and Lévy showed that any term not in normal form
has a needed redex, and that repeated contraction of needed redexes leads to its
normal form whenever there is one.

This work has been extended in several directions. Barendregt et al. [BKKS87],
Maranget [Mar92], and Nocker [N6k94] study neededness w.r.t. head-normal forms,
weak head-normal forms, and constructor head-normal forms, respectively. Sekar
and Ramakrishnan [SeRa90] study normalization via necessary set of redexes. Ken-
naway et al. [KKSV96] study a needed strategy for infinitary OTRSs. A different
approach to normalization is developed in Kennaway [Ken89] and Antoy and Mid-
deldorp [AnMi94]. Antoy et al. [AEH94] design a needed narrowing strategy.

In [GIKh94], the present authors address the question of normalization relative to
a desired set of final terms, considering the properties that a set of terms must possess
in order for the neededness theory of Huet and Lévy still to make sense. This work is
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done in the context of orthogonal Ezpression Reduction Systems (OERS) [Kha92], a
form of higher-order rewriting which subsumes Term Rewriting and the A-calculus.
Natural conditions are imposed on S, called stability, that are necessary and sufficient
for the following Relative Normalization (RN) theorem to hold: each S-normalizable
term not in S (not in S-normal form) has at least one S-needed redex, and repeated
contraction of such redexes will lead to an S-normal form whenever there is one. It is
shown also that if a stable S is regular, i.e., if S-unneeded redexes cannot duplicate
S-needed ones, then the S-needed strategy is hypernormalizing as well.

In this paper, we further generalize the theory by abstracting from the struc-
ture of terms. We study relative normalization in Deterministic Residual Structures
(DRSs). A DRS is an Abstract Reduction Systems (ARSs) which has a residual re-
lation between redexes in the source and target terms of each transition. Redexes of
t may be erased by reduction of u, new redexes may be introduced in s, while other
redexes of s are considered residuals of redexes in ¢, as specified by the residual rela-
tion. Further, the residual relation is generalized to all reductions, and permutation-
equivalence on reductions, referred to below as Lévy-equivalence, and the embedding
relation, which induces a partial ordering on the reduction space, is introduced, as
is done for the A-calculus in [Lév78, Lév80]. Sufficient conditions needed to define
the above concepts in an abstract setting were stated in [Sta89, GLM92].

In [Sta89], Stark defines Concurrent Transition Systems (CTSs) and uses them
to develop a model of concurrent computation, studying ways of building machine
networks with concurrent machines as basic objects. On the other hand, Gonthier
et al. [GLM92] were interested in studying more syntactic properties, such as stan-
dardization, of orthogonal rewrite systems in an abstract setting. The way standard-
ization is understood in that paper requires a nesting relation on redexes in a term,
and some axioms giving its important properties. Standard reductions then become
some kind of outside-in reductions. However, the [GLM92] axioms are rather restric-
tive, since even orthogonal DAGs [Mar91, Mar92, KKSV93| do not satisfy them as
pointed out by R. Kennaway.

Our DRSs are more refined than CTSs, since in the latter the residual relation is
non-duplicating. We do not impose a nesting relation on redexes, but are still able to
prove the RN theorem for all regular stable sets S. (We actually prove the Relative
Hypernormalization theorem.) We use a form of Berry’s stability axiom [Ber79] and
show that without this axiom the theorem fails. The proof method employed is
similar to that in [Kha88, Kha93], and is based on the fact that S-needed steps in a
reduction can be pushed before S-unneeded steps without affecting the number of
S-needed steps. The important difference is that [Kha88, Kha93] uses the syntactic
notion of descendants of subterms — a refinement of the residual notion for redexes
— which is much harder to axiomatize.

Since for irregular stable S, S-unneeded redexes can duplicate S-needed ones, the
above proof method does not apply for all DRS; for the same reason, the S-needed
strategy is no longer hypernormalizing. We define a Deterministic Family Structure
(DFS) as a DRS with a very liberal notion of family relation [Lév78, Lév80] and
a contribution relation on families, expressing the notion of (at least one member
of) a family to be needed to create another family. For DFSs, the proof of the RN
theorem for all stable S from [GIKh94] works perfectly.

An advantage of the first RN theorem is that checking for Berry’s stability



is much simpler than constructing a sound family relation. For example, the A-
calculus [Lév78, Lév80], orthogonal TRSs [Mar92], Interaction Systems [AsLa93],
and orthogonal CRSs (and ERSs) [K1o80, KeS189] form DFSs It seems very likely
that other orthogonal higher-order rewriting systems, such as HRSs [Nip93] and
HORSs [O0s94, OR94], which do form stable DRSs, form DFSs as well, although,
to our knowledge, this is not yet known.

For DFSs we show that a strategy that contracts, in an arbitrary order, only re-
dexes that belong to S-needed families, but which need not be S-needed themselves,
is still S-normalizing. As a corollary, any S-needed complete family-reduction, which
contracts all members of a family containing an S-needed redex in a multi-step, is
S-normalizing. Similarly to [Lév80], we show that the latter reductions are optimal
in the sense that they reach S in the least number of family-reduction steps.

Using the family axioms, we give an Event Structure (ES) [Win80] semantics to
DRSs, by considering redex-families as events. We define Deterministic Computation
Structures (DCS) as Deterministic Prime ESs with an extra relation « > e to express
the fact that an event e is inessential for a set of events «, a configuration. This
enables us to define Lévy-equivalence on prime deterministic ESs. For DCSs, the
theory of relative normalization can be applied.

The paper is organized as follows. In the next section, we introduce stable DRSs
and give some examples. In Section 3, we prove the RN theorem for regular stable
sets § in an SDRS R, and demonstrate that if R is not stable, then the theorem
fails. In Section 4, we introduce DFSs, compare them with stable DRSs, and prove
the RN theorem for all stable S. In Section 5, we strengthen the latter result, and
prove the Relative Optimality theorem for any DFS. Finally, in Section 6, we extend
the obtained results to Event Structures. Conclusions appear in Section 7.

2 Deterministic Residual Structures

In this section we define Deterministic Residual Structures (DRSs) which are Ab-
stract Reduction Systems (ARSs) satisfying certain properties concerning residuals.
The definition and some results about ARSs can be found e.g., in [Klo92]. Our def-
inition is slightly different.

Definition 2.1 An ARS is a triple A = (Ter,Red,—) where Ter is a set of terms,
ranged over by t,s,0,e; Red is a set of redezes (or redex occurrences), ranged over
by u, v, w; and —: Red — (Ter x Ter) is a function such that for any ¢ € Ter there
is only a finite set of u € Red such that — (u) = (¢, s), written t-—s. This set will
be known as the redexes of term ¢, where u € t denotes that u is a member of the
redexes of t and U C ¢ denotes that U is a subset of the redexes. Note that — is a
total function, so one can identify u with the triple t—s. A reduction is a sequence
t54,%3 ... Reductions are denoted by P,Q, N. We write P :t —» s or t L sift P
denotes a reduction (sequence) from ¢ to s. |P| denotes the length of P. We use
U,V,W to denote sets of redexes of a term.

DRSs are similar to Stark’s Determinate Concurrent Transition Systems (DTCS)
[Sta89], to Abstract Reduction Systems of Gonthier et al. [GLM92], and to van Oost-
rom’s Descendant Rewriting Systems [00s94]. The main difference from DCTSs is



that Stark requires a non-duplicating residual relation, and distinguishes a start
state. The difference from ARSs of [GLM92] is that we do not have a nesting rela-
tion on redexes and the corresponding axioms, and the stability axiom is modified
accordingly. The difference from van Oostrom’s DRSs is that in the latter the notion
of descendant of any subterm/position of a term is formalized, not only the notion
of residual of redexes.

Definition 2.2 (Deterministic Residual Structure) A Deterministic Residual
Structure (DRS) is a pair R = (A4, /), where A is an ARS and / is a residual relation
on redexes relating redexes in the source and target term of every reduction t—s € A,
such that for v € ¢, the set v/u of residuals of v under u is a set of redexes of s; a
redex in s may be a residual of only one redex in ¢ under u, and u/u = (. If v has
more than one u-residual, then u duplicates v. If v/u = 0, then u erases v. A redex
of s which is not a residual of any v € ¢ under v is said to be created by u. The set
of residuals of a redex under any reduction is defined by transitivity.

A development of a set U of redexes in a term ¢ is a reduction P : ¢ —» that only
contracts residuals of redexes from U; the development P is complete if U/ P, the set
of residuals under P of redexes from U, is empty (). Development of () is identified
with the empty reduction. U will also denote a complete development of U C t.
The residual relation satisfies the following two axioms, called Finite Developments
(FD) [GLM92] and acyclicity (which appears as axiom (4) in [Sta89]):

e [FD] All developments are terminating; all co-initial complete developments of
the same set of redexes end at the same term; and residuals of a redex under all
complete co-initial developments of a set of redexes are the same.

o [acyclicity] Let u,v € t, let u # v, and let u/v = (). Then v/u # .

The properties of the residual relation are all standard, and we refer to [HuLé91,
Lév78, Lév80, Sta89] for details. Hence, we assume that, in a DRS R, the residual
relation on redexes is extended to all co-initial reductions as follows: (P, + P»)/Q =
Pi/Q + P:/(Q/Py) and P/(Q1 + Q2) = (P/Q1)/Q2, and that Lévy-equivalence or
permutation-equivalence is defined as the smallest relation on co-initial reductions
satisfying: U + V/U ~;, V+U/V and Q ~, Q' = P+Q+ N ~, P+Q + N,
where U and V are complete developments of redex sets in the same term. Further,
one defines P < Q iff P/Q = ), and can show that P~y Q if P < Q and Q < P;
and P < Q iff Q@ ~; P + N for some N. Intuitively, P < @ expresses that @
does more work than P, and Q/P is the part of @ that remains from it after P. The
above relations can equivalently be defined also using Klop’s method of commutative
diagrams. The method is well described in [Klo80, Bar84].

Definition 2.3 We call a DRS R stable (SDRS) if the following axiom is satisfied:

o [stability] If u,v € t are different redexes, t—se, t—s, and u creates a redex
w € e, then the redexes in w/(v/u) are not u/v-residuals of redexes of s, i.e., they
are created by u/v (see the diagram).

Intuitively, stability means that a redex cannot arise from two unrelated sources.
This property has a natural extension to many-step reductions, where ‘unrelated’ is
formalized by the notion of external. For syntactic systems externality is a natural
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concept relating to overlap between components of terms involved in reduction steps.
In an abstract setting it expresses the absence of shared (residuals of) redexes.

Definition 2.4 e Let u € U C t and P : t —» . We call P external to U (resp. u)
if P does not contract residuals of redexes in U (resp. residuals of u).

e Let P : ¢y B tiSti, —» and Q : ty = so g% sjgsj_kl —» . We call P
external to Q if for any i, 7, u;/(Q;/P;) Nv;/(P;/Q;) =0
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Obviously, P is external to the set U iff it is external to any development of U,
and is external to a redex wu iff it is external to the reduction contracting u.

Lemma 2.1 Let P:t —» s be external to Q : t —» e, in an SDRS, and let P create
redexes W C s. Then the residuals W/(Q/P) of redexes in W are created by P/Q,
and Q/P is external to W (see the diagram).

Proof By induction on the number n of elementary diagrams in Klp’s diagram
D(P,Q) of P and Q. The case n = 1 is the axiom [stability]. It follows from Def-
inition 2.4 that the top and left edges of all sub-diagrams of D(P, Q) are external
reductions, therefore we can assume the lemma is proved for all subdiagrams of
D(P,Q). So let |P| > 1, i.e., P =u+ N with |[N| > 0. Then W = W,,/N U Wy,
where W, is the set of redexes created by u, and Wy is the set of redexes created
by (i.e., along) N. By the induction assumption, Q/u is external to W, and the re-
dexes in W,,/(Q/u) are created by u/Q. By Lemma 3.1, Q/P = (Q/u)/N is external
to W, /N. By the induction assumption, Q@/P = (Q/u)/N is external to Wy and
redexes in Wy /(Q/P) are created by N/(Q/u). Hence Q/P is external to W, and
since W/(Q/P) = Wx /(Q/P)UW,/((Q/u) UN), redexes in W/(Q/P) are created

by P/Q.

As already mentioned, all orthogonal first and higher order rewrite systems are
stable DRSs, and so are orthogonal graph rewriting systems [KKSV93, Mar92].
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3 Relative Normalization for regular stable sets

In this section, we prove that, for any regular stable set of terms S in a stable
DRS R, an S-normal form of an S-normalizable term can be found by contracting
S-needed redexes in it, even if every S-needed step is preceded by a finite number
of S-unneeded steps. We show that without the assumption of stability for R, this
result breaks down. Further, examples from [GIKh94] show that the stability of S
is necessary for the Relative Normalization theorem to hold. This shows that the
stability of S for a Berry—stable R provides a unique notion of stability for the
computation system (R, S).

Definition 3.1 ([GIKh94]) Let S be a set of terms in a DRS R. We call a redex
u € t S-needed, written N Es(u,t), if at least one residual of it is contracted in any
reduction from ¢ to a term in S, and call it S-unneeded, written U Ng(u, t), otherwise.

Definition 3.2 ([GIKh94]) (1) We call a set S of terms stable if: (a) S is closed
under parallel moves: for any t € S, any P:t — 0 € S, and any @ : t — e which
does not contain terms in S, the final term of P/Q is in S; and (b) S is closed under
unneeded expansion: for any e—so such that e ¢ S and 0 € S, u is S-needed.

(2) We call a stable set S regular if S-unneeded redexes cannot duplicate S-
needed ones.

A stable set need not be closed under reduction — @Q/P in the definition above
may contain terms not in S, but closure under parallel moves requires that the final
term is. Stability and regularity coincide in non-duplicating systems. Below S will
usually denote a stable set of terms in some DRS. R will denote a regular stable
set. For simplicity, we only consider stable sets that are closed under reduction;
obviously, closure under reduction implies closure under parallel moves.

The most appealing examples of stable sets are normal forms [HuLé91], head-
normal forms [BKKS87], weak-head-normal forms in an OTRS (a partial result
is in [Mar92]), and constructor-head-normal forms for constructor TRSs [N6k94].
All the above sets are closed under reduction, and are regular. Other examples in-
clude weak-head-normal forms (up to garbage-collection, modulo a congruence) in
Yoshida’s Af-calculus (an environment calculus) [Yos93] and the set of answers in
call-by-need A-calculus of Ariola et al. [ AFMOW®94]; both are conditional rewrite
systems. An example of an OTRS with an irregular stable S is given in Remark 3.1.

We begin the proof by showing that S-unneeded redexes cannot create S-needed
ones, and that residuals of S-unneeded redexes remain unneeded. When S is regular,
this enables us to construct a S-needed variant of any S-normalizing reduction.



Lemma 3.1 Let P : ty%t; > ... — t, be external to U = {uy,...,u,} C to, and
let Qo : to —» 0p. Then P’ = P/Qy is external to U’ = U/Qq. If P is S-normalizing,
then so is P’.

Proof Let P; : tg3t1 ... — t;, Q; = Qo/P;, and P, =vi/Q; (0 <i<mn).Since
P is external to U, we have for each ¢ that v; & U/P;. Therefore, v;/Q;NU/(P;4+Q;) =
(0 (since the residuals of different redexes are different). Thus v;/Q; NU/(Qo + P +
...+ P]) = 0. Hence, P/, is external to U’/(P{ 4 ...+ P/). This means that P’ is
external to U’. If P is S-normalizing, then so is P’ by stability of S.

V9 = P Uy
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Corollary 3.1 For any stable S, residuals of S-unneeded redexes under any reduc-
tion remain S-unneeded.

Lemma 3.2 Let S be stable, let t ¢ S, t-%e, UNs(u,t), and let w € e be a redex
created by u, in a stable DRS. Then UNg(w, €).

Proof If e € S, then every redex in e is S-unneeded; so suppose e ¢ S. UNg(u,t)
implies existence of an S-normalizing P : ¢ —» s that does not contract residuals of
u. By Lemma 2.1, P/u does not contract residuals of w. Also, P/u is S-normalizing
since S is closed under parallel moves. Hence w is S-unneeded.

The following example shows that, in the above lemma, stability of the DRS is
necessary.

Example 3.1 Let terms in the DRS R be t = I(I(x)), s = I(z), and e = x;
redexes in ¢t be u = t and v = I(z), s contain the only redex w = s, and = doesn’t
contain a redex; let the reduction relation be given by Red = {ti>s, t-5s, sﬂm}, let
the residual relation be empty except for empty reductions, for which the residual
relation is identity, and let S = {x}. (Obviously, this is not, and cannot be, the
usual residual relation for orthogonal TRSs.) Then S is stable and regular, both u
and v are S-unneeded, and both create the redex w € s that is S-needed. Note also
that the Relative Hypernormalization theorem (proved below) is not valid for (R, S)
since t ¢ S is S-normalizable but doesn’t contain an S-needed redex.

Definition 3.3 We call P : tg — t1 — ... S-(un)needed, written NEg(P), (resp.
UNgs(P)) if it contracts only S-(un)needed redexes. We call P S-quasi-needed if it
contracts infinitely many S-needed redexes, and call it S-semi-needed if it can be
expressed as P = P} + P, with NEg(P;) and UNg(P2). In the latter case, we call
P, the S-needed part of P (P; can be infinite, in which case P, = 0).



We now describe an algorithm that, for a regular stable R in a DRS R, trans-
forms any finite or infinite reduction P into an R-semi-needed reduction K (P). The
algorithm is as follows: find in P the leftmost subreduction P, : t—ss—o such that
UNx(u,t) and NEg(v,s). Let P = P, + Py + P>. By Lemma 3.2, v is a residual of
a redex v’ € t, which is R-needed by Corollary 3.1. Since R is regular, v is the only
residual of v, hence Py and Pj = v’ + u/v’ are both complete developments of the
set u, v’ € t, thus Py ~1 P}. Now replace Py by P} in P. Transform the obtained
reduction P’ in the same way, and so on, as long as possible. Obviously, by regularity
of R, the number of R-unneeded steps in P’ preceding v’ is less than the number
preceding v in P, and the number of R-needed steps in P and P’ coincide.

Lemma 3.3 Let P be a finite or infinite reduction in an SDRS, and let R be regular.
(1) If P ends at a term in R, then K(P) is a finite S-semi-needed reduction
whose S-needed part ends at a term in R as well.
(2) If P is S-quasi-needed, then K (P) is an infinite S-needed reduction.
Proof (1) Since the transformation doesn’t change the number of R-needed steps
in P, it follows that K (P) is R-semi-needed, and it ends at R since K(P) ~, P.
The step of K(P) entering R is the last R-needed step of K(P) by stability of R.
(2) Immediate from the construction of K (P).

Next we show that, unless it is contracted, an R-needed redexes has at least one
R-needed residual. Therefore, residuals of R-quasi-needed reductions remain so. It
follows that an R-normalizable term cannot possess an R-quasi-needed reduction.

Lemma 3.4 Let R be a regular stable set of terms in a DRS R, and let t—s. Then
any R-needed redex v € t different from u has an R-needed residual.

Proof If ¢t is not R-normalizable, then neither is s, and all redexes in ¢ and s
are R-needed. So suppose ¢ is R-normalizable (¢ € R since ¢ contains an R-needed
redex), and suppose on the contrary that each residual v; of v in s is R-unneeded.
By closure of R under parallel moves, s is R-normalizing too. By Lemma 3.3.(1),
there is an R-needed R-normalizing reduction P : s —» o. Since by Corollary 3.1
all residuals of each v; along P are R-unneeded, P is external to all v;. Therefore,
u + P is external to v and is R-normalizing — a contradiction, since N Eg (v, t).

Lemma 3.5 Let £y have an R-quasi-needed reduction and to—sg. Then sg also has
an R-quasi-needed reduction (see diagram).

Proof By Lemma 3.3, ty has an infinite R-needed reduction P : to8t; % ... Let
U =u/(up+ ...+ ui—1), 3 = 0,1,.... It follows from finiteness of developments

that there are infinitely many numbers k such that uyx & Uy (otherwise there should
be a number m such that tm@tm+1um—¢l ... is an infinite U,,-development). By
Lemma 3.4, uy ¢ Ur and NEg(uk,tr) imply that ug has at least one R-needed
Ug-residual in sg, i.e. ux/Uy contains at least one R-needed step. Hence P/u is

R-quasi-needed.

Theorem 3.1 (Relative Hypernormalization) Let R be a regular stable set of
terms in a stable DRS R, and let t € R be a term in R. Then
(1) t contains at least one R-needed redex.



uo U1

to t1 [2)
u = Uol Ull U2l
So S1 S2

uo /U u1/Us

(2) ¢t has an R-normal form iff it does not possess a reduction in which infinitely
many times R-needed redexes are contracted.
Proof (1) By Definition 3.1 if ¢ is not R-normalizing, and by Lemma 3.3 otherwise.

(2) (=) Let ¢ Liser. Suppose on the contrary that there is an R-quasi-needed
Q starting from ¢. Then by Lemma 3.5 Q/P is R-quasi-needed as well — a contra-
diction, since all terms of Q/P are in R, by the closure of R under reduction, and
therefore /P must be R-unneeded. (<) By (1), one can repeatedly contract R-
needed redexes in t, unless a term in R is reached; the latter is inevitable since ¢
doesn’t have an infinite R-needed reduction.

Remark 3.1 If S is not regular, then Lemma 3.3 doesn’t hold. Indeed, consider
the example from [GIKh94]: take OTRS R = {f(z) — h(f(z), f(z)), a — b} and
take for S the set of terms not containing occurrences of a. It is easy to check
that S is stable, but is not regular, since the outermost redex in ¢ = f(a) is S-
unneeded, while the innermost one is S-needed. Then P : f(a) — h(f(a), f(a)) —
B(F(), £(@) — h(F(b),h(F(a), F(@))) — h(F(B), h(f(B), F(a))) — ... is S-quasi-
needed, while the S-needed part @ : f(a) — f(b) of K(P) is S-normalizing, and
P/Q = f(b) — h(f(b), f(b)) — h(f(b), h(f (D), f(b))) — ... is S-unneeded, thus not
S-quasi-needed any more. Because of that, the proof of Lemma 3.5 fails, and the
S-needed strategy need not be hypernormalizing.

4 Relative Normalization in Deterministic Family Structures

In order to generalize the RN theorem to all stable sets in DRSs, we introduce
Deterministic Family structures (DFSs) by defining a notion of family in a DRS,
and by imposing some axioms on the contribution relation on families. This enables
us to repeat the proof of the RN theorem in [GIKh94| for all DFSs, and makes
explicit the properties of family relation needed to develop an abstract theory of
optimal normalization.

Definition 4.1 (Deterministic Family Structure) A DFS F is a triple F =
(R, ~, <), where R is a DRS; ~ is an equivalence relation on redexes with histories;
and < is the contribution relation on co-initial families, defined as follows:

(1) For any co-initial reductions P and @, a redex Qu in the final term of @ (read
as v with history Q) is called a copy of a redex Pu if P < Q, i.e., P4+ Q/P =1, Q,
and v is a Q/P-residual of u; the zig-zag relation ~, is the symmetric and transitive
closure of the copy relation [Lév80]. The family relation ~ is an equivalence relation
among redexes with histories containing ~,. A family is an equivalence class of the



family relation; families are ranged over by é,,.... Fam( ) denotes the family of
its argument.

(2) The relations ~ and < satisfy the following axioms:

e [initial] Let u,v € t and w # v, in R. Then Fam(Q:u) # Fam(B:v).

e [contribution] ¢ < ¢’ iff for any Pu € ¢’, P contracts at least one redex in ¢.

e [creation] if e s t%s and u creates v € s, then Fam(Pu) — Fam((P +u)v).

e [termination] Any reduction that contracts redexes of a finite number of families
is terminating.

One can check that all the existing definitions of family relation in the litera-
ture [LévT78, KeSI89, Mar92, AsLa93] satisfy the above axioms. Hence our definition
is consistent. The reason for considering more notions of family than just the zig-zag
is that we want to be more flexible and able to consider a large class of sharing mech-
anisms as legal; there are sharing mechanisms that are strictly larger than zig-zag,
e.g., the one in [AsLa93].

Let us call Cone(¢) = {¢; | ¢i < ¢} the cone of ¢. It follows immediately from
the family axioms that:

Proposition 4.1 In any DFS F:

o [irreflexivity] ¢ & ¢.
o [transitivity] If ¢ — ¢’ and ¢’ — ¢, then ¢ — ¢".
e [finiteness| For any ¢, Cone(¢) is finite, and Cone(P;u) = 0 for any u € t.

The following example shows that, in a DRS with ~ and <, [initial], [creation]
and [contribution] do not imply [termination].

Example 4.1 Consider the ARS given by Figure (a) below, where the redex x
creates u and v; u; and uh, create w; v/u = v'; u/v = {ui,us}; ur/us = uf,
ug/uy = ub; uh/w = {uh,, uby }; w/uh =0, ubh, /uly, =0, ul, Jub, = ub. All the us are
residuals of u, hence belong to the same family U. Similarly, v and v" must be in the
same family too, say V. Further, take X = {z}, take for W the set of all contracted
ws (with histories), and define the contribution relation on X, U, V,W by X — V,U
and U — W. Since the only infinite reduction goes through the cycle infinitely
many times, and each time the contracted w is created by uj,, all developments in
the figure are terminating. It remains to note that [FD] and the other family axioms
but [termination] are satisfied too. Note that the DRS is stable.

Lemma 4.1 Any DFS F is a stable DRS.

Proof We want to show that if u,v € t are different redexes, t—e, t—s, e v—/;; 0,
and u creates a redex w € e, then the redexes in w/(v/u) € o are not u/v-residuals
of redexes of s. By axioms [creation] and [contribution], for any redex w' € s,
Cone(Fam(w')) = 0 if w’ is not a created redex, and Cone(Fam(w')) = {Fam(v)}
otherwise; and Cone(Fam(w)) = {Fam(u)}. Hence the redexes in w/(v/u) and s
are in different families by [initial], and the lemma follows (since ~,C~).
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The following example shows that a DRS with ~ and < relations satisfying all
DF'S axioms but [initial] need not be stable.

Example 4.2 Consider the DRS given by Figure (b) above, where w and w’ are
created by u and v, respectively, u/v = v/, v/u = v, w/v' = w’'/u’ = w*. Then the
sets U = {u,v/,v,v'} and W = {w,w’, w*} with the contribution relation U — W
do satisfy the DFS axioms except for [initial], but the underlying DRS is not stable.

Lemma 4.2 Let S be stable, t ¢ S, t-5t', UNs(u,t), and let v/ € ¢’ be a redex
created by u, in a DFS F. Then UNs(v/,t).
Proof By Lemma 3.2 and Lemma 4.1.

Now we can generalize the RN theorem, proved in [GIKh94] for orthogonal ERSs
[Kha92], to all DFSs. We now allow for arbitrary stable sets S.

Below FAM(P) denotes the set of families (whose member redexes are) con-
tracted in P.

Theorem 4.1 (Relative Normalization) Let S be a stable set of terms in a
Deterministic Family Structure F, and let ¢t ¢ S be S-normalizable. Then

(1) t contains an S-needed redex.

(2) Any S-needed reduction starting from ¢ eventually terminates at a term in S.
Proof (1) Let P :t — s’ — s—e be an S-normalizing, and let s ¢ S. By the
stability of S, NEs(u,t). By Corollary 3.1 and Lemma 4.2, u is either created by or
is a residual of an S-needed redex of s’, and (1) follows by repeating the argument.

(2) Let P : t = s be an S-normalizing reduction and Q : t*3t;3 ... be an
S-needed reduction. Further, let Q; : t=3t1 =% .. M5 and Py = P/Q; (i > 1) (see
the diagram below). By ~,C~, FAM(P;) C FAM(P). Since @ is S-needed and
P; is S-normalizing (by the closure of S under parallel moves), at least one residual
of u; is contracted in P;. Therefore, again by ~,C~, Fam(u;) € FAM(P;). Hence
FAM(Q) C FAM(P) and Q is terminating by [termination].

Note that we have not used the acyclicity axiom in the proofs. However, it is
necessary and sufficient to insure that the set of normal forms is stable. Note also
that only by using Theorem 4.1 can we prove the analogue of Lemma 3.4 for all
stable S.
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5 The Relative Optimality Theorem

In this section, we define weakly S-needed redexes, and show that their contraction
in an S-normalizable term ¢ leads to an S-normal form of t. We also generalize
Lévy’s Optimality theorem [Lév80] to all stable sets S in any DFS.

Definition 5.1 We call a family ¢ relative to t S-needed if any reduction from ¢ to
a term in S contracts at least one member of ¢. We call redexes in S-needed families
weakly S-needed.

Theorem 5.1 Let S be a stable set of terms in a Deterministic Family Structure
F, and t be an S-normalizable term in F. Then any weakly S-needed reduction
starting from ¢ is terminating.

Proof By [termination], since there is only a finite number of S-needed families
relative to ¢.

The above theorem allows one to propagate S-neededness information, obtained
from earlier terms, along the reduction, and to contract safely (without a danger of
missing an S-normal form whenever it exists) any residual of an S-needed redex,
even if it is no longer S-needed.

Definition 5.2 A multistep reduction P : tg —» t; —» ... —» t, is called a family-
reduction if each P; : t; —» t;41 is a development of a set U; of redexes belonging
to the same family. ||P|| will denote the number of multisteps in P. The family-
reduction P is complete if each P; is the complete development of a maximal set of
redexes of t; belonging to the same family. A family-reduction P is called S-needed
if each U; contains at least one S-needed redex (i.e., if the (single-step) reduction
corresponding to P is weakly S-needed).

Corollary 5.1 Let S be a stable set of terms in a DFS F. Then any S-needed
family-reduction starting from an S-normalizable term is eventually S-normalizing.

Lemma 5.1 Every family is contracted at most once in a complete family-reduction.

Un_ . .
Proof Let P, : tg Yo, t1 Yy Ty t, be a complete family-reduction. We show
by induction on n = || P|| that (a),: all families contracted in P, are different; and

(b)n: there is no redex in t,, whose family has been contracted in P,. The case
n = 0 is clear. Further, (a), follows immediately from (a),—; and (b),—1. Again



by (a)n—1 and (b),—1, and by the completeness of P,, all redexes in ¢, that are
residuals of redexes of ¢,,_; are in families that have not been contracted before.
By [creation], for the family ¢ of a created redex in t,, we have Fam(U,_1) < ¢;
by (a)n—1, (b)n—1, and [contribution], Fam(U,_1) ¥ Fam(U;), for any i < n — 1.
Hence Cone(Fam(U;)) # Cone(), and (b),, follows.

Theorem 5.2 (Relative Optimality) Let S be a stable set of terms in a De-
terministic Family Structure F, and ¢ be an S-normalizable term in F. Then any
S-needed S-normalizing complete family-reduction @ : ¢t —» e € S is S-optimal in
the sense that it has a minimal number of family-reduction steps.

Proof As in the A-calculus [Lév80]. Let P : ¢ —+ s be an S-normalizing family-
reduction. It follows from the proof of Theorem 4.1 that FAM(Q) C FAM(P).
Hence, by Lemma 5.1, |Q| = Card(FAM(Q)) < Card(FAM(P)) < ||P||, where
Card(FAM(Q)) denotes the number of families in FAM (Q).

6 Relative Normalization in Event Structures

In this section, we give an Event Structure semantics to DFSs. Smoothness of the
interpretation justifies our choice of family axioms. We also generalize the RN the-
orems to ESs by giving the reverse translation. To this end, we equip ESs with an
extra operation [> expressing redundancy of events, thereby enhancing the match
between DFSs and corresponding ESs.

A Prime Event Structure (PES) [Win80] is a triple £< = (E, Con, <), where E
is a set of events, ranged over by e, eq,...; the consistency predicate Con is a non-
empty set of subsets of E, denoted by X,Y,...; and the causal dependency relation
< is a partial order on E, such that {e} € Con, Y C X € Con = Y € Con,
X € ConATe' € Xe<e = XU{e} € Con,and {¢'|e < e} is finite for any e € E.

In this paper we only consider deterministic structures, DPESs, where no event
can prevent others from occurring, and therefore the consistency predicate is the
powerset of E, and will be omitted. Configurations (or states) of ES are left-closed
subsets o, B,...of E,i.e.,subsets {a CE|e€ EAe <e=¢€ €a}.Itisimmediate
from Proposition 4.1 that:

Theorem 6.1 For any DFS F; = (R;,~, <), where R; is a (sub)DRS whose term
domain is the graph of a term t (i.e., the set of terms to which ¢ is reducible),
S}% = (FAM(t),—) is a DPES, where ¢~ means that ¢ < ¢ or ¢ = 1.

Definition 6.1 Let £ = (E, <) be a DPES with an extra relation >C FConf(£) x
E, where FConf(€) is the set of finite configurations of £, satisfying the following
axioms:

ealeNaCpB € FConf(€) = B> e

eaU{et>ednauf{dlre = abe.
Then we callC = (€, 1>) a Deterministic Computation Structure (DCS). We read o >
e as: ‘e is a-inessential’. On FConf(C) = FConf(£), we define Lévy-equivalence by:

o o~y (B iff SE(a) = SE(B), where SE(a) = {e € a | a ¥ e} is the set of
self-essential events of a.



In 5}%, the configurations are sets FAM(Q) of complete family-reductions Q.
Define FAM(Q) > ¢ iff there are (finite) complete family-reductions P, N =~ Q
such that ¢ ¢ FAM(P) and ¢ € FAM(N). Then >; satisfies the above >-axioms.
So we can actually speak of translation of F; into a DCS Cx, = (€£,, ). Obviously,
P =y, P' implies SE(FAM (P)) = SE(FAM(P')). The converse can also be proved
using the acyclicity axiom.

Definition 6.2 To a DCS C = (&,>), we associate a DRS R as follows:

e The terms of R¢ are Lévy-equivalence classes (a)r, (8)r, ... of finite configu-
rations of C;

e The reduction relation of R¢ consists of sets of pairs of terms u = ((a)r, (B)1),
where 3 = a U {e}; (Note that u = 0 iff (a)y, = (8) T B> e.)

e The residual relation is defined as follows: if u = ({a)r,{(aU{e})r) and
v = ({a)r,(aU{e'Pyr), then u/v = ((aU{e'})r, (aU{e,e})r). (Thus u/v = 0
iff (a¢U{e'})r =~ (a«U{e,e})r.)

Note that Stark’s encoding of DPESs into DCTSs [Sta89], which are DRSs as
well, would (or at least may) interpret configurations that are different as sets (but
may be the same semantically) as different states. For example, consider the DPES,
corresponding to the rewrite system {f(z) — ¢, a — b} with the graph of t =

f(a) as the set of terms, whose events are t-f(b) and AR (the steps f(b)fﬁi)c

and "9 represent the same event); and whose configurations are a = {f(a)},
B = {a}, and v = {a, f(a)}. Then Stark’s encoding would consider «, 5 and v as
different configurations, while we can identify « with -y, which is more natural if the
information that « > a is provided.

One can verify that R¢ is indeed a DRS. The translation of DCSs into DRSs
enables us to extend the theory of relative normalization from DRSs to DCSs, and
in particular, to DPESs (since DPESs are DCSs with the empty > relation).

Theorem 6.2 Let S be a stable set of finite configurations in a Deterministic Com-
putation Structure. Then execution of S-needed events leads to configurations in S,
even if a finite number of S-unneeded events are executed as well.

7 Conclusions and future work

We have proven two abstract versions of the RN theorem: one in stable DRSs for
regular stable sets R, and another in DFSs for all stable S. We believe that our first
proof is the simplest existing proof among those using the residual notion, though it
covers all the existing normalization results, except for the one in [GIKh94], which
is covered by our second RN theorem. It is remarkable that, unlike the proofs in
[CuFe58, HuLé91, BKKS87], our proof does not use the notion of standard reduction.
Similar proofs for orthogonal CRSs in [KeSI89] and for orthogonal DAGs in [Mar91,
Mar92] use an even stronger termination argument, expressed by the [termination]
axiom; they used suitable labelling systems to define notions of family. Our second
proof can be seen as a generalization of that proof method, which was used already
by Lévy in [Lév78, Lév80]. It would be interesting to investigate whether it is possible



to prove our second theorem already for stable DRSs, i.e., without family axioms,
but possibly some much weaker axioms.

Obviously, our family axioms are too weak to prove certain properties of families
which arise from using labelling notions, and studying its refinements certainly seems
useful. Nevertheless, our axioms are powerful enough to build the normalization and
optimality theory, and to bridge DRSs with Event Structures (thereby defining a
denotational semantics for DRSs). Indeed, in DFSs it is possible to do much more —
e.g., study infinitary normalization, define the notion of independence of computa-
tions, and turn Lévy’s reduction space into a Vector Space, etc. This is the subject
of forthcoming papers. Some extra axioms on duplication behaviour are needed, but
no nesting relation is necessary, so many machine models are still covered.
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