Relative Normalization in Orthogonal
Expression Reduction Systems

John Glauert and Zurab Khasidashvili

School of Information Systems, UEA
Norwich NR4 7TJ England
jrwg@sys.uea.ac.uk, zurab@sys.uea.ac.uk *

Abstract. We study reductions in orthogonal (left-linear and non-am-
biguous) Expression Reduction Systems, a formalism for Term Rewrit-
ing Systems with bound variables and substitutions. To generalise the
normalization theory of Huet and Lévy, we introduce the notion of need-
edness with respect to a set of reductions IT or a set of terms S so that
each existing notion of neededness can be given by specifying IT or S. We
imposed natural conditions on S, called stability, that are sufficient and
necessary for each term not in S-normal form (i.e., not in §) to have at
least one S-needed redex, and repeated contraction of S-needed redexes
in a term ¢ to lead to an S-normal form of ¢ whenever there is one. Our
relative neededness notion is based on tracing (open) components, which
are occurrences of contexts not containing any bound variable, rather
than tracing redexes or subterms.

1 Introduction

Since a normalizable term, in a rewriting system, may have an infinite reduction,
it is important to have a normalizing strategy which enables one to construct
reductions to normal form. It is well known that the leftmost-outermost strat-
egy is normalizing in the A-calculus. For Orthogonal Term Rewriting Systems
(OTRSs), a general normalizing strategy, called the needed strategy, was found
by Huet and Lévy in [HuLé91]. The needed strategy always contracts a needed
redex — a redex whose residual is to be contracted in any reduction to normal
form. Huet and Lévy showed that any term ¢ not in normal form has a needed
redex, and that repeated contraction of needed redexes in ¢ leads to its normal
form whenever there is one; we refer to it as the Normalization Theorem. They
also defined the class of strongly sequential OTRSs where a needed redex can
efficiently be found in any term.

Barendregt et al. [BKKS87] generalized the concept of neededness to the A-
calculus. They studied neededness not only w.r.t. normal forms, but also w.r.t.
head-normal forms — a redex is head-needed if its residuals are contracted in each
reduction to a head-normal form. The authors proved correctness of the two

* This work was supported by the Engineering and Physical Sciences Research Council
of Great Britain under grant GR/H 41300

needed strategies for computing normal forms and head-normal forms, respec-
tively. Khasidashvili defined a similar normalizing strategy, called the essential
strategy, for the A-calculus [Kha88] and OTRSs [Kha93]. The strategy contracts
essential redexes — the redexes that have descendants under any reduction. The
notion of descendant is a refinement of that of residual — the descendant of a
contracted redex is its contractum, while it does not have residuals. This refined
notion allows for much simpler proofs of correctness of the essential strategy in
OTRSs and the A-calculus, which generalize straightforwardly to all Orthogonal
Expression Reduction Systems (OERSs). Kennaway and Sleep [KeS189] used a
generalization of Lévy’s labelling for the A-calculus [LévT78] to adapt the proof
from [BKKS87] to the case of Klop’s OCRSs [Klo80], which can also be ap-
plied to OERSs. Khasidashvili [Kha94] showed that in Persistent OERSs, where
redex-creation is limited, one can find all needed redexes in any term. Gard-
ner [Gar94] described a complete way of encoding neededness information using
a type assignment system in the sense that using the principal type of a term
one can find all the needed redexes in it (the principal type cannot be found effi-
ciently, as one might expect). Antoy et al. [AEH94] designed a needed narrowing
strategy.

In [Mar92], Maranget introduced a different notion of neededness, where a
redex u is needed if it has a residual under any reduction that does not contract
the residuals of u. This neededness notion makes sense also for terms that do
not have a normal form, and coincides with the notion of essentiality [Kha93]
(essentiality makes sense for all subterms, not only for redexes). In [Mar92],
Maranget studied also a strategy that computes a (in fact, the ‘minimal’ in
some sense) weak head-normal form of a term in an OTRS. Normalization w.r.t.
another interesting set of ‘normal forms’, that of constructor head-normal forms
in constructor OTRSs, is studied by Nocker [N6k94].

A question arises naturally: what are the properties that a set of terms must
possess in order for the neededness theory of Huet and Lévy still to make sense?
The main contribution of this paper is to provide a solution to that question.
We introduce the notion of neededness w.r.t. a set of reductions IT or a set of
terms S so that each existing notion of neededness can be given by specifying
II or S. For example, HuetéLévy-neededness is neededness w.r.t. the set of
normal forms, Maranget-neededness is neededness w.r.t. all fair reductions, head-
neededness is neededness w.r.t. the set of head-normal forms, etc. We impose
natural conditions on S, called stability, that are sufficient and necessary for
each term not in S-normal form (i.e., not in §) to have at least one S-needed
redex, and repeated contraction of S-needed redexes in a term ¢ to lead to an
S-normal form of ¢ whenever there is one.

A set S of terms is stable if it is closed under parallel moves: for any t € S,
any P:t — o€ S,and any Q : t —» e, the final term of P/Q, the residual of P
under Q, is in S; and is closed under unneeded expansion: for any e—so such that
e ¢S and o € S, a residual of u is contracted in any reduction from e to a term
in §. We present a counterexample to show that the S-needed strategy is not
hypernormalizing for every stable S, i.e., an S-normalizable term may possess

a reduction which never reaches a term in S even though S-needed redexes
are contracted infinitely many times, but S-unneeded redexes are contracted
as well. Therefore, multistep S-needed reductions need not be S-normalizing.
This is because a ‘non-standard’ situation — when a component under an S-
unneeded component is S-needed — may occur for some, call it irregular stable
sets S. However, if S is a regular stable set, then the S-needed strategy is again
hypernormalizing, and the multistep S-needed strategy is normalizing.

Our relative neededness notion is based on tracing (open) components, which
are occurrences of contexts not containing any bound variable, rather than trac-
ing redexes or subterms. We therefore introduce notions of descendant and resid-
ual for components that are invariant under Lévy-equivalence. A component of
atermt ¢ S is called S-needed if at least one descendant of it is ‘involved’ in any
S-normalizing reduction; a redex is S-needed if so is its pattern. Besides gener-
ality, this approach to defining the neededness notion via components is crucial
from a technical point of view, because components of a term in an OERS enjoy
the same ‘disjointness’ property that subterms of a term in an OTRS possesses:
residuals of disjoint components of a term in an OERS remain disjoint, and this
allows for simpler proofs.

The rest of the paper is organized as follows. In the next section, we review
Expression Reduction Systems (ERS), a formalism for higher order rewriting
that we use here [Kha90, Kha92]; define the descendant relation for components,
and show that it is invariant under Lévy-equivalence. Section 3 establishes equiv-
alence of Maranget’s neededness and our essentiality for OERSs. In section 4, we
introduce the relative notion of neededness. In section 5, we sketch some prop-
erties of the labelling system of Kennawayd&Sleep [KeS189] for OERSs needed to
define a family-relation among redexes. We prove correctness of the S-needed
strategy for finding terms of S, for all stable S, in section 6. The conclusions
appear in section 7.

2 Orthogonal Expression Reduction Systems

Klop introduced Combinatory Reduction Systems (CRSs) in [Klo80] to provide a
uniform framework for reductions with substitutions (also referred to as higher-
order rewriting) as in the A-calculus [Bar84]. Restricted rewriting systems with
substitutions were first studied in Pkhakadze [Pkh77] and Aczel [Acz78]. Several
interesting formalisms have been introduced later [Nip93, Wol93, OR94]. We
refer to Klop et al. [KOR93] and van Oostrom [Oo0s94] for a survey. Here we
use a system of higher order rewriting, Fzpression Reduction Systems (ERSs),
defined in Khasidashvili [Kha90, Kha92] (ERSs are called CRSs in [Kha92]); the
present formulation is simpler.

Definition 2.1 Let X be an alphabet, comprising variables, denoted by x,y, z;
function symbols, also called simple operators; and operator signs or quantifier
signs. Each function symbol has an arity k € N, and each operator sign o has
an arity (m,n) with m,n # 0 such that, for any sequence z1, . .., Z,, of pairwise

distinct variables, oxy ...x,, is a compound operator or a quantifier with arity
n. Occurrences of z1,...,%,, in ox;y ...z, are called binding variables. Each
quantifier oz ...z, as well as the corresponding quantifier sign o and binding
variables 21 ... %, has a scope indicator (ki,...,k;) to specify the arguments in
which oz ...z, binds all free occurrences of z1, ..., z,,. Terms are constructed
from variables using functions and quantifiers in the usual way.

Metaterms are constructed similarly from terms and metavariables A, B, . . .,
which range over terms. In addition, metasubstitutions, expressions of the form
(t1/x1, ..., tn/Tn)to, With ¢; arbitrary metaterms, are allowed, where the scope
of each x; is tg. Metaterms without metasubstitutions are simple metaterms. An
assignment maps each metavariable to a term over Y. If ¢ is a metaterm and 6 is
an assignment, then the 6-instance t0 of t is the term obtained from ¢ by replacing
metavariables with their values under 6, and by replacing metasubstitutions
(t1/21,. .. ,tn/Tn)to, in right to left order, with the result of substitution of
terms tq,...,t, for free occurrences of x1,...,x, in tg.

For example, a B-redex in the A-calculus appears as Ap(\z t, s), where Ap is
a function symbol of arity 2, and A is an operator sign of arity (1,1) and scope
indicator (1). Integrals such as f: f(z) dz can be represented as [z st f(z) using
an operator sign [of arity (1,3) and scope indicator (3).

Definition 2.2 An FEzpression Reduction System (ERS) is a pair (X, R), where
XY is an alphabet, described in Definition 2.1, and R is a set of rewrite rules
r:t — s, where t and s are closed metaterms (i.e., no free variables) such that
t is a simple metaterm and is not a metavariable, and each metavariable that
occurs in s occurs also in t.

Further, each rule r has a set of admissible assignments AA(r) which, in order
to prevent undesirable confusion of variable bindings, must satisfy the condition
that:

(a) for any assignment § € AA(r), any metavariable A occurring in ¢ or s,
and any variable x € FV(A#), either every occurrence of A in r is in the scope
of some binding occurrence of x in r, or no occurrence is.

For any 6 € AA(r), t0 is an r-redex or an R-redex, and s6 is the contractum
of t6. We call R simple if right-hand sides of R-rules are simple metaterms.

Our syntax is similar to that of Klop’s CRSs [Klo80], but is closer to the syntax
of the A-calculus and of First Order Logic. For example, the S-rule is written
as Ap(AxA, B) — (B/x)A, where A and B can be instantiated by any terms;
the n-rule is written as Az(Ax) — A which requires that an assignment 6 is
admissible iff x & (A0), otherwise an x occurring in A6 and therefore bound in
Az (Afz) would become free. A rule like f(A) — Jz(A) is also allowed, but an
assignment 6 with x € Af is not. The recursor rule from [AsLa93] is written as
uw(AzA) = (p(AzA)/z)A. A — (72(A)/z)A and FzA — FxA AVzVy(A A
(y/x)A = x = y) are rules corresponding to familiar definitions.

Below we restrict ourselves to the case of non-conditional ERSs, i.e., ERSs
where an assignment is admissible iff the condition (a) of Definition 2.2 is sat-
isfied. We ignore questions relating to renaming of bound variables. As usual,

a rewrite step consists of replacement of a redex by its contractum. Note that
the use of metavariables in rewrite rules is not really necessary — free variables
can be used instead, as in TRSs. We will indeed do so at least when giving TRS
examples.
To express substitution, we use the S-reduction rules
Sn+1$1 e XAy AR A — (Al/ml, .. .,An/xn)Ao, n=12 ..,

where S" 1 is the operator sign of substitution with arity (n,n+1) and scope in-
dicator (n+1), and z1,...,2, and Ay, ..., Ay, Ag are pairwise distinct variables
and metavariables. Thus S"*! binds free variables only in the last argument. The
difference with (-rules is that S-reductions can only perform S-developments of
A-terms [Kha92].

Notation 2.1 We use a, b, ¢, d for constants, t, s, e, o for terms and metaterms,
u, v, w for redexes, and N, P,) for reductions. We write s C ¢t if s is a subterm of
t. A one-step reduction in which a redex u C t is contracted is written as ¢ s

or t — s or just u. We write P:¢t —» sort £y sif P denotes a reduction of ¢
to s. | P| denotes the length of P. P + @ denotes the concatenation of P and Q.

Let r : ¢ — s be a rule in an ERS R and let § € AA(r). Subterms of a
redex v = tf that correspond to metavariables of ¢t are the arguments of v,
and the rest is the pattern of v. Subterms of v rooted in the pattern are called
the pattern-subterms of v. If R is a simple ERS, then arguments, pattern, and
pattern-subterms are defined analogously in the contractum s of v.

We now recall briefly the definition of descendant of subterms as introduced
in [Kha88, Kha93, Kha92] for the A-calculus, TRSs, and ERSs, respectively.
First, we need to split an ERS R into a TRS-part Ry and the substitution-
part S. For any ERS R, which we assume does not contain symbols S"t!
Ry is the ERS obtained from R by adding symbols S"! in the alphabet and
by replacing in right-hand sides of the rules all metasubstitutions of the form
(t1/T1, ..« tn/Tn)to by ST Taq .. xpty .. . tato, respectively. For example, the 3¢
rule would be Ap(AzA, B) — S?xBA. If R is simple, then Rfs =4et Rf =acs R.
Otherwise Rts =4y Ry U S. For each step C[td] - C[sf] in R there is a re-
duction P : C[t0] — g, C[s'0] —» s C[s0] in Rys, where C[s'0] —» s C[s0] is
the rightmost innermost normalizing S-reduction. We call P the refinement of
u. The notion of refinement generalizes to R-reductions with 0 or more steps.

Let t % s be an R-reduction step and let e be the contractum of u in s. For
each argument o of u there are 0 or more arguments of e. We will call them u-
descendants of 0. We refer to the i-th (from the left, 7 > 0) descendant of o also as
the (u,)-descendant of o. Correspondingly, subterms of o have 0 or more descen-
dants. By definition, the descendant, referred to also as the (u, *)-descendant, of
each pattern-subterm of v is e. It is clear what is to be meant by the descendant
of a subterm s’ C ¢ that is not in u. We call it also the (u, *)-descendant of s’
In an S-reduction step C[S"1xy ...z, t1 .. . tato]—Cl(t1/21,. .., tn/2n)to], the
argument t; and its subterms have the same number of descendants as the num-
ber of free occurrences of z; in ty; the i-th descendant is referred to as the

(u,)-descendant. Every subterm of ¢ty has exactly one descendant, the (u,0)-
descendent (in particular, the (u, 0)-descendants of free occurrences of z1, ..., z,
in to are the substituted subterms). The descendant or (u, *)-descendent of the
contracted redex u itself is its contractum. The pairs (u,?) and (u, *) are called
the indezxes of corresponding descendants. The descendants of all redexes except
the contracted one are called residuals.

The notions of descendant and residual extend by transitivity to arbitrary
R¢g-reductions; indezxes of descendants and residuals are sequences of indexes of
immediate (i.e., under one step) descendants and residuals in the chain leading
from the initial to the final subterm. If P is an R-reduction, then P descen-
dants are defined to be the descendants under the refinement of P. The ancestor
relation is the converse of the descendant relation.

We call a component an occurrence of a context that does not contain any
bound variables; that is, neither variables bound from above in the term, nor
variables for which the binder is in the component, belong to the component.
Since we also consider occurrences of the empty context [], which has an arity 1,
we will think of a component as a pair (context, path), where the path charac-
terizes the position of the component in the term (usually, a position is a chain
of natural numbers). Thus an empty component or empty occurrence is a pair
([], path). If terms are represented by trees, then the empty occurrence (], path)
can be seen as the connection at the top of the symbol at the position path.

Obviously, a component C' can be considered as its corresponding subterm
(the subterm rooted at the position of C), with some subterms (the arguments
of C), removed. In particular, a subterm s with itself removed becomes the empty
occurrence at the position of s. We say that an empty occurrence ([], path) in a
term ¢ is in a subterm or component e in ¢ if path is a non-top position of e. We
use C and the letters s,t, e, 0 used for terms to denote components as well. We
write s C ¢ if s is a component of ¢.

The concept of descendent can be extended to components in the following
way:

Definition 2.3 Let R be an ERS, C be a component of a term ¢t in Ryg, let
s = Cls1,...,5,] be the corresponding subterm of C in t, let -5t in R;g, and
let o' C ¢’ be the contractum of u. The pattern of u will be denoted by pat(u)
and the pattern of the contractum by cpat(u). We define u-descendants of C by
considering all relative positions of v and C.

(1) Cnu =0 (so if C is an empty component, C is not in u). Then the
(u, *)-descendant of C' is the (u,*)-descendant of s with the (u,*)-descendants
of s; removed. (If C is an empty occurrence ([], path), then its (u, *)-descendant
is the same pair.)

(2) C is the empty occurrence at the top of an argument o of u. Then the
(u,i)-descendant of C' is the empty occurrence at the top-position of the (u,1)-
descendant of o, if the latter exists; if o doesn’t have u-descendants, then C
doesn’t have u-descendants either. (Thus, the (u, ¢)-descendant of C is the (u, %)-
descendant of its corresponding subterm s = o with itself removed.)

(3) uwis an Ry-redex and C is in an argument of w. Then the (u, 7)-descendant
of C'is the (u, 7)-descendant of s with the (u, 7)-descendants of s; removed (i > 1).

(4) wis an S-redex and C is in an argument of u. Then the (u, ¢)-descendant of
C is the (u, i)-descendant of s with the (u, ¢)-descendants of s; removed (i > 0).

(5) w is an Ry-redex and pat(u) is in C. Then the (u, *)-descendant of C' is
the (u, *)-descendant of s with the descendants of s; removed (see Figure 1). In
particular, if C' is collapsed, i.e. pat(u) = C and cpat(u) = 0, then the (u,*)-
descendant of C is the empty occurrence at the position of o’.

A~ /A

Fig. 1.

(6) u is an S-redex, say with two arguments (for simplicity) u = Sz e o, with
the top in C, and let s = C’[s1,...,5%2 Ce[sk, .-, 51] Colsi41,--+s5m], - -»5n],
withC' = C'[..., 8?2 C[]C,[],..],e = Ce[sk,- .., s1],and 0 = Cy 8141, - - - » Sm)-
Then, the (u, *)-descendants of C are the (u, *)-descendant of s with the descen-
dants of the subterms s; removed, and the descendants of C., as defined in (4)
(see Figure 2, where k =1 =1 and [+1 = m = 2). Note that if C = Pat(u) = 5,
then C, and C, are empty components, C' is collapsed, and its descendants are
the empty occurrences at the top positions of the descendants of u and its argu-
ments.

Fig. 2.

(7) w is an Rjy-redex, pat(u) and C partially overlap (i.e., neither contains
another), and the top of u is (not necessarily strictly) below the top of C. Then
the (u,*)-descendant of C is the (u,*)-descendant of s with the descendants
of the arguments of u that do not overlap with C' and the descendants of s;
that do not overlap with pat(u) removed (see Figure 3). In addition, if the top
symbol of o’ doesn’t belong to the (above) (u, *)-descendant of C', then the empty
component at the top of o is also a (u, x)-descendant of C.

p }@ZA T TR/
R vV

Fig. 3.

(8) w is an Rj-redex, pat(u) and C partially overlap, and the top of C is
below the top of u. Then the (u, *)-descendant of C' is the (u, x)-descendant of s
with the descendants of s; that do not overlap with pat(u) and the descendants
of the arguments of u that do not overlap with C' removed (see Figure 4). In
addition, if the top symbol of o’ doesn’t belong to the (above) (u, *)-descendant
of C, then the empty component at the top of o’ is also a (u, *)-descendant of C.

Ao/a
YO Y

Fig. 4.

(9) wis an Ry-redex and pat(u) contains C' (C' may be an empty component).
Then the (u, *)-descendant of C' is the contractum-pattern of u (the latter may
also be empty) (see Figure 5).

Ry

Fig. 5.

The notion of descendant for components generalises by transitivity to all
R¢s reductions and via refinements to all R-reductions.

In [Klo92], Klop also introduced a notion of descendant of (an occurrence
of) a symbol for the case of TRSs. According to Klop’s definition, descendants
of every symbol in the pattern of the contracted redex are all symbols in the
contractum pattern. We extend this also to empty occurrences in the pattern
of the contracted redex. If the rule is collapsing, i.e., the right-hand side is a
variable, then Klop defines the descendant of pattern-symbols of the contracted
redex to be the topmost symbol of the contractum. We define the descendant
of the pattern-symbols in that case to be the empty occurrence at the position
of the contractum. We can define the notion of descendant of a symbol in the
same spirit for S-reduction steps by declaring that the descendants of the top
S-symbol of a contracted S-redex u are the empty occurrences at the positions of
the descendant of u and the descendants of its arguments. We define the descen-
dants of other symbols, in particular of bound variables, to be the top-symbols
of the descendants of the corresponding subterms. This gives us a definition
of descendant for symbols for all ERSs. Now, it is not difficult to check that
descendants of a component are composed of the ‘corresponding’ descendants
of its symbols and occurrences, and similarly for the descendants of subterms.
Note that, according to Klop’s definition, the descendants of a pattern-subterm
o are all subterms rooted in the contractum-pattern, not just the contractum
of the redex, as in our definition; so descendants of o need not be composed of
descendants of the symbols in o, which is less natural.

Definition 2.4 Co-initial reductions P : ¢ —» s and @ : t —» e are called
Hindley-equivalent, written P ~g @, if s = e and the residuals of a redex of
t under P and @ are the same occurrences. We call P and @ respectively Klop-
equivalent, strictly equivalent [Kha92], or strictly* equivalent, written P ~g Q,
P=g Q,or P}, Q,if s =e and P-descendants and ()-descendants of respec-
tively any symbol, subterm, or component of ¢ are the same occurrences in s
and e.

Definition 2.5 A rewrite rule ¢t — s in an ERS R is left-linear if t is linear, i.e.,
no metavariable occurs more than once in t. R is left-linear if each rule in R is

so. R = {r;|i € I} is non-ambiguous or non-overlapping if in no term redex-
patterns can overlap, i.e., if r;-redex u contains an rj-redex v’ and ¢ # j, then «’
is in an argument of u, and the same holds if ¢ = j and «’ is a proper subterm
of u. R is orthogonal (OERS) if it is left-linear and non-overlapping.

As in the the A-calculus [Bar84], for any co-initial reductions P and @, one
can define in OERSs the notion of residual of P under @, written P/Q, due
to Lévy [Lév80], via the notion of development of a set of redexes in a term.
We write P < Q if P/Q = 0 (< is the Lévy-embedding relation); P and Q are
called Lévy-equivalent or permutation-equivalent (written P ~p Q) if P < Q
and @ < P. It follows immediately from the definition of / that if P and Q are
co-initial reductions in an OERS, then (P + P’)/Q ~r P/Q + P'/(Q/P) and

P/(Q+ Q) =L (P/Q)/Q".

Theorem 2.1 Let P and @ be co-initial reductions in an OERS R. Then:
(1) (CR(res): Church-Rosser for residuals) P+ Q/P =g Q + P/Q.

(2) (CR(sub): Church-Rosser for subterms) P+ Q/P ~; Q + P/Q.
(3) (CR(sym): Church-Rosser for symbols) P+ Q/P ~k Q + P/Q.
(4) (CR(com): Church-Rosser for components) P+ Q/P ~*, Q + P/Q.

Proof. (1) is proved in [Klo80]. (2) is obtained in [Kha92]. The proof of (3)
is routine (it is enough to consider the case when |P| = |Q| = 1). (4) follows
both from (3) and (2), since descendants of a component can be defined both
via descendants of symbols and via descendants of subterms. (Note that (2) can
also be derived from (3) for the same reason.)

3 Neededness, Essentiality and Unabsorbedness

In this section, we recall Huet&Lévy and Maranget’s notion of neededness, and
relate them to the notion of essentiality, in OERSs. We also prove existence of
an essential redex in any term, in an OERS, not in normal form.

Definition 3.1 A redex u in ¢ is HuetéLévy-needed [HuLé91, Lév80] if in each
reduction of ¢ to normal form (if any) at least one residual of u is contracted,;
u is Maranget-needed [Mar92] if u has at least one residual under any reduction
starting from ¢ that does not contract residuals of u.

Definition 3.2 A subterm s in t is essential (written ES(s,t)) if s has at least
one descendant under any reduction starting from ¢ and is inessential (written
IE(s,t)) otherwise [Kha93, Kha88|.

Definition 3.3 A subterm s of a term t is unabsorbed in a reduction P :t —» e
if none of the descendants of s appear in redex-arguments of terms in P, and is
absorbed in P otherwise; s is unabsorbed in t if it is unabsorbed in any reduction
starting from ¢ and absorbed in ¢ otherwise [Kha93].

Remark 3.1 It is easy to see that a redex u C t is unabsorbed iff u is external
[HuLé91] in ¢. Clearly, unabsorbedness implies essentiality, and Huet&Levy- and
Maranget-neededness coincide for normalizable terms. a

Definition 3.4 Let P:t —» s and o be a subterm or a component in t. Then
we say that P deletes o if o doesn’t have P-descendants.

Definition 3.5 (1) Let P: ¢t — t; — ... and u C ¢;. Then w is called erased in
P if there is j > 4 such that u does not have residuals in ¢;. P is fair if each
redex in any ¢; is erased in P [Klo92].

(2) We call a reduction P starting from ¢ strictly cofinal if for any @ : t —» e
there is an initial part P’ : t —% s of P, and a reduction Q' : e —» s such that
PI st Q + QI°

Lemma 3.1 Any strictly cofinal reduction P starting from ¢ deletes all inessen-
tial subterms of ¢.

Proof. Immediate from Definitions 3.2 and 3.5.

For example, fair reductions are strictly cofinal: Klop’s proof of cofinality of
fair reductions (Theorem 12.3 in [Klo80]) can be modified to a proof of strict
cofinality of fair reductions by using CR(sub) (Theorem 2.1.(2)) instead of the
CR theorem.

The following lemma from [Kha94| follows from C' R(sub) (Theorem 2.1.(2));
the proofs are same as for OTRS [Kha93].

Lemma 3.2 (1) Let P:¢t —» ¢’ and s C ¢. Then IE(s,t) iff all P-descendants
of s are inessential in ¢'.

(2) Let t5¢ and e C s C t. Then any u-descendant of e is contained in some
u-descendant of s.

(3) Let e C s Ct and ES(e,t). Then ES(s,t).

(4) Let s be a pattern-subterm of a redex u C ¢. Then ES(u,t) iff ES(s,t).

Notation We write t = (t1//s1,...,tn//sn)s if s1,..., s, are disjoint subterms
in s and t is obtained from s by replacing them with ¢, ...,t,, respectively.

Definition 3.6 Let ¢ = (¢t1//s1,...,tn//Sn)s in an OERS R and let P : s =
eo =% €1 =% ... be an Ryg-reduction. We define the reduction P||(t) : t = 0y -3
01 2 ... as follows.

(1) If vg is an Ry-redex and its pattern does not overlap with sq, .. ., s,, then
ug is the corresponding subterm of vy in t = 0g.

(2) If v is an Ry-redex that is not inside the subterms sq,...,s, and its
pattern does overlap with some of s1, ..., s,, then ug = 0.

(3) If vg is an S-redex that is outside the replaced subterms, then ug is the
corresponding S-redex in to.
(4) If vp is in some of subterms s1, ..., s,, then ug = 0.

In the first case, o; is obtained from e; by replacing the descendants of
$1,...,8y, with the corresponding descendants of ¢1,...,t,, respectively; in the
second case, o1 is obtained from e; by replacing the descendant of vy by the
descendant of its corresponding subterm in oy, and by replacing the descendants
of the subterms s; that do not overlap with vy by the corresponding descendants
of t;; in the third case, 01 is obtained from e; by replacing outermost descen-
dants of sq, ..., s, with the corresponding descendants of ¢1, . . ., t,; in the fourth
case, 01 is obtained from e; by replacing the descendants of s1, ..., s, with the
corresponding descendants of t1, ..., t,, respectively. Thus, in 0; we can choose
the redex u; analogously, and so on. (Note that P||(¢) depends not only on P
and t, but also on the choice of s1, ..., sg, but the notation does not give rise to
ambiguity.)

Lemma 3.3 Let si,...,s, be inessential in s, in an OERS R, and let ¢t =
(t1//81,.--ytn//sn)s. Then ty,..., ¢, are inessential in ¢.

Proof. We show by induction on |Q| that if an Ryg-reduction Q) : s —» o deletes
S1y..-,8n, then Ql(t) deletes t1,...,t,; such a @ exists by Lemma 3.1. Let

Q =v+Q, s>e, and s,...,s, be all the v-descendants of sy,...,s,. By
Lemma 3.2.(1), s} are inessential in e. By Definition 3.6, if v||(¢) : ¢t — o, then o
is obtained from e by replacing some inessential subterms that contain s/, ..., s},
and all the descendants of t¢q,...,t, also are in the replaced subterms of 0. By
the induction assumption, the replaced subterms in o are inessential. Hence,
by Lemma 3.2.(3), all the descendants of ¢1,...,¢, in o are inessential and, by
Lemma 3.2.(1), t,...,t, are inessential in ¢.

It follows immediately from Definition 3.6 and the proof of Lemma 3.3 that
replacement of inessential subterms in a term does not effect its normal form.

Corollary 3.1 Any term not in normal form, in an OERS, contains an essential
redex.

Proof. If all redexes in ¢t were inessential, their replacement by fresh variables
would yield a term in normal form containing inessential subterms, a contradic-
tion.

Existence of an unabsorbed redex in any term not in normal form can be
proved exactly as in OTRSs [Kha93] (the proof does not use the proof of Corol-
lary 3.1).

Proposition 3.1 Let ¢ be a term in an OERS R and let u be a redex in ¢. Then
u is essential in t iff it is Maranget-needed in ¢.

Proof. (<) Let IE(u,t). Further, let FV(u) = {1,...,2,}, let f be a fresh
n-ary function symbol that does not occur in the left-hand sides of rewrite
rules (we can safely add such a symbol to the alphabet, if necessary), and let
s=(f(z1,...,2,)//u)t. By Lemma 3.3, IE(f(z1,...,2n),s), i.e., there is some

reduction P starting from s such that f(z1,...,x,) does not have P-descendants.
Let r: f(z1,...,2,) — u be a rule and @ : s — ¢ be the r-reduction step. Obvi-
ously, RU {r} is orthogonal. Hence P+ Q/P =4 Q + P/Q and therefore u does
not have P/Q)-descendants. But P/Q does not contract the residuals of u. Thus
u is not Maranget-needed. (=) From Definitions 3.2 and 3.1.

4 Relative Notions of Neededness

In this section, we introduce notions of neededness relative to a set of reductions
IT and to a set of terms S. We show how all existing notions of neededness can
be obtained by specifying IT or S; S-neededness is also a special case of IT-
neededness. We introduce stability of a set of terms, in an OERS, and show that
if § is not stable, contraction of S-needed redexes in a term ¢ need not terminate
at a term in S even if ¢ can be reduced to a term in S. It is the aim of the last
section to show that if S is stable, then a S-needed strategy is S-normalizing.

Definition 4.1 (1) We call a reduction P starting from a term ¢ in an OERS R
external to a component e C ¢ if there is no redex executed in P whose pattern
overlaps with a descendant of e (e can be empty). We call P external to a redex
u C t if P is external to pat(u), i.e., if P doesn’t contract the residuals of u.

(2) Let IT be a set of reductions. We call e C ¢ IT-needed if there is no P € IT
starting from ¢ that is external to e, and call it IT-unneeded otherwise.

(3) We call e C t P-(un)needed if it is (P)r-(un)needed, where (P)y, is the
set of all reductions Lévy-equivalent to P.

(4) Let S be a set of terms in R, and let IIs be the set of S-normalizing
reductions, i.e., reductions that end at a term in S. We call e C t S-(un)needed
if it is ITs-(un)needed.

(5) If o C t, then we call o (P, II, S-)unneeded (needed) if so is Int(o), the
component obtained from the subterm o by removing all bound variables. How-
ever, if not otherwise stated, we say that a redex u C ¢ (which is a subterm) is
(P, I, S-)unneeded (needed) if so is its pattern.

(6) We say that P : ¢ —» o S-suppresses e C t if P is S-normalizing and
is external to e. We say that P S-suppresses u C t if it S-suppresses pat(u),
i.e., is S-normalizing and is external to u. (Obviously, a redex or component is
S-unneeded iff it is S-suppressed by some S-normalizing reduction.)

We write NE(p,,a)(e,t) (UN(e,t)) if e is (P, II, M)-needed (unneeded).

If oC tand P:t —» s is external to o, then we call the descendants of o
also the residuals of o. A component that does overlap with the pattern of a
contracted redex does not have residuals. Note that if u C ¢, then P : ¢t —» s is
external to pat(u) iff P does not contract the residuals of u, because orthogonality
of the system implies that if the pattern pat(v) of a redex v contracted in P does
overlap with a residual of pat(u), then pat(u) = pat(v). Hence u is S-needed iff
at least one residual of it is contracted in each reduction from ¢ to a term in S
(the intended notion of neededness). Obviously, any redex in a term that is not
S-normalizable is S-needed; we call such redexes trivially S-needed.

The following definition introduces the property of sets of terms for which it
is possible to generalise the Normalization Theorem:

Definition 4.2 We call a set S of terms stable if:

(a) S is closed under parallel moves: for any t € S, any P :t —» 0 € S, and
any @ :t —» e, the final term of P/Q is in §; and

(b) S is closed under unneeded expansion: for any e—»o such that e ¢ S and
0 €S, uis S-needed.

Remark 4.1 Of course, a set closed under reduction is closed under paral-
lel moves as well. But a set closed under parallel moves, even if closed un-
der unneeded expansion, need not be closed under reduction. Indeed, consider
R ={f(z) = g(z,x), a — b}, and take S = {g(a, a), g(b,b)}. The only one-step
S-normalizing reductions are g(a,b) — g(b,b), g(b,a) — g(b,b), f(a) = g(a,a),
and f(b) — g(b,b). Therefore, one can check that S is closed under unneeded
expansion. Also, S is closed under parallel moves, since the right-bottom term
g(b,b) in the diagram below, which is the only non-trivial diagram to be checked,
is in 8. However, S is not closed under reduction, since, e.g., g(a,a) — g(b, a),
g(a,a) € S, but g(b,a) ¢ S. Note that the second occurrence of a in g(a,a) is
S-unneeded, but its residual in g(b, a) is S-needed.

f(a) /(37 a)\
g(a, b)\ ‘/g(b7 a)
f(®) g(b,b)

O

The most appealing examples of stable sets, for an OERS, are the set of
normal forms [HuLé91], the set of head-normal forms [BKKS87], the set of weak-
head-normal forms (a partial result is in [Mar92]), and the set of constructor-
head-normal forms for constructor TRSs [N6k94]. The sets of terms having (resp.
not having) (head-, constructor-head-) normal forms are stable as well. The
graph G of a term s (which consists of terms to which s is reducible) is closed
under reduction, but need not be closed under unneeded expansion. For example,
the graph G,y = {I(z), x} of I(x) is closed under reduction but is not closed
under unneeded expansion: I(I(z)) can be reduced to I(x) by reducing either
I-redex (according to the rule I(xz) — z). Hence none of the redexes in I(I(z))
are S-needed. Thus the closure of & under unneeded expansion is a necessary
condition for the normalization theorem.

We say that a set S of terms is closed under (S)-normalization if any reduct
of every S-normalizable term is still S-normalizable. Obviously, sets closed un-
der parallel moves are closed under normalization as well. Even if S is closed

under unneeded expansion, closure of & under normalization is also necessary
for the normalization theorem to be valid for S. Indeed, consider R = {f(z) —
g(z,x), a — b}, take S = {g(a,b)}, and take t = f(a). Thent — g(a,a) — g(a,b)
is an S-needed S-normalizing reduction, while after the S-needed step t — f(b),
the term f(b) is not S-normalizable any more (the only redex in f(b) is only triv-
ially S-needed). However, the following example shows that closure of S under
normalization (even in combination with closure of S under unneeded expansion)
is not enough; closure of S under parallel moves is necessary.

Example 4.1 Let R = {f(z) — g(z,2),a — b,b — a} and S = {g(a,d)}.
Since the reduction preserves the height of a term and the property to be a
ground term, only the terms in the following diagram are S-normalizable.

f(a) g(a,a)

g(a, b)\ /(b, a)
f(®) g9(b,b)

Therefore, it is clear from the diagram that S is closed under normalization.
It is easy to see that, in f(a) and f(b), all the redexes are S-needed; hence
f(a) = f(b) = f(a) — ... is an infinite S-needed reduction that never reaches
S (there are many others). One can check that S is closed under unneeded
expansion. Thus the reason for the failure of the normalization theorem is that,
as it can be seen from the following diagram, S is not closed under parallel
moves.

fla) —— g(a,a) —— g(a,d)

f(®) g(b,b) 9(b,b)

O

Proposition 4.1 A redex u C t is Maranget-needed iff it is needed w.r.t. the
set of all fair reductions starting from ¢.

Proof. (=) Let u be Maranget-needed in ¢t. Then any fair P starting from ¢
should contract a residual of u (to erase it). (<) If u is not Maranget-needed,
i.e., there is a reduction @ : t — e in which u is erased and that does not
contract the residuals of u, then there is a reduction @’ such that Q* = Q + Q’
is fair and obviously u is not Q*-needed, a contradiction.

Proposition 4.2 A redex u C t is essential iff u (or pat(u)) is needed w.r.t. the
set of all fair reduction starting from t.

Proof. An immediate corollary of Proposition 3.1 and Proposition 4.1.

Lemma 4.1 Let P :t —» s be external to e C ¢, and let o C ¢ be the subterm
corresponding to e. Then any descendant of o along P is the subterm corre-
sponding to some P-descendant of e.

Proof. Immediate from Definition 2.3, since P is external to e.

Proposition 4.3 A subterm s C t is inessential iff there is a reduction that is
external to Int(s) and deletes it.

Proof. (<) Immediate from Lemma 4.1. (=) Let x4, ...,z, be the list of oc-
currences of bound variables in s from left to right, let f be a fresh n-ary
function symbol not occurring in left-hand sides of rewrite rules, and let t* =
(f(z1,...,xy)//s)t. Since IE(s,t), there is @ starting from ¢ that deletes s.
Therefore, it follows from Definition 3.6 that P = ((Q||t*)||t) is external to Int(s)
and deletes it.

5 A Labelling for OERSs

In Kennaway&Sleep [KeSI89] a labelling is introduced for OCRSs, based on the
labelling system of Klop [Klo80], which is in turn a generalization of the la-
belling system for the A-calculus introduced by Lévy [Lév78]. Each label of Ken-
naway&Sleep [KeSI89] is a tuple of labels, built up from a set of base labels.
For any OERS R, terms in the corresponding labelled OERS R” are those of
R where each subterm has one or more labels, represented as a string of labels.
A labelling of a term is initial if all its subterms are labelled by different base
labels. The signature of a labelled term is the tuple of all its labels, from left
to right. Rules of RY are those of R where pattern-symbols in left-hand sides
are labelled by a string of labels except for the head-symbol, which has just one
label (a string of length one). Each subterm (including metavariables) in the
right-hand side of a rule bears the signature of the corresponding left-hand side.
Further, a redez-index of a redex is the maximal depth of nesting in the labels
of the corresponding left-hand side of the rule. The index Ind(P) of a reduction
P is the maximal redex-index of redexes contracted in it.

The crucial properties of the labelling are given by the following propositions.

Proposition 5.1 [KeSI89] If a step t—s in an OERS R creates a redex v C s,

then, for any labelling ¢ of ¢, the corresponding step tlisl” in the corresponding
labelled OERS R” creates a redex v!” whose label I* contains the label I’ of .
Thus Ind(u') < Ind(v'"). If w C s is a residual of a redex w’ C #!, then w and
w’ have the same labels, thus Ind(w) = Ind(w’).

Corollary 5.1 [KeSl189] Let P and @ be co-initial reductions such that P creates
a redex u and @ does not contract residuals of any redex of ¢ having a residual
contracted in P. Then the redexes in u/(Q/P) are created by P/Q and Q/P is

external to u.

Proposition 5.2 [Klo80, Lév78] Any reduction in which only redexes with a
bounded redex-index are contracted is terminating.

Remark 5.1 The above propositions are obtained for OCRS, but it is straight-
forward to carry them over OERSs. a

Definition 5.1 (1) For any co-initial reductions P and @, the redex Qu in the
final term of @ (read as v with history @) is called a copy of a redex Pu if P4 Q),
ie, P+ Q/P =y Q, and v is a Q/P-residual of u; the zig-zag relation ~, is the
symmetric and transitive closure of the copy relation [Lév80]. A family relation
is an equivalence relation among redexes with histories containing the zig-zag
relation.

(2) For any co-initial reductions P and @, the redexes Qu and Pu are in the
same labelling-family if for any initial labelling of the initial term of P and @,
they bear the same labels.

Proposition 5.1 implies that the labelling-family relation is indeed a family
relation. As pointed out in [AsLa93], for OERSs in general the zig-zag and la-
belling family relations do not coincide. Below by family we always mean the
labelling-family.

6 The Relative Normalization Theorem

In this section, we present a uniform proof of correctness of the needed strategy
that works for all stable sets of ‘normal forms’. Our proof is different from
all known proofs because properties of needed and unneeded components are
different in the general case (the main difference is that a component under an
unneeded component may be needed). However, the termination argument we
use is the same as in [KeSI89] and in [Mar92], and is based on Proposition 5.2.
The main idea and a proof in the same spirit is already in [Lév80].
Below in this section S always denotes a stable set of terms.

Lemma 6.1 Let t5s, v C t, 0 C t, and let pat(v) No = (). Further, let v’ C s
be a w-residual of v and o' C s be a w-descendant of o. Then pat(v') N o’ = 0.

Proof. Immediate from Definition 2.3.

Corollary 6.1 Let F' be a set of redexes in ¢, and let every redex v € F be
external to s C ¢. Then any development of F' is external to s.

Lemma 6.2 Let t—>s, P:t — 0, e C t, and v be external to e. Then v/P is
external to every P-descendant of e.

Proof. By Lemma 6.1, every P-residual of v is externa to each P-descendant of
e, and the lemma follows from Corollary 6.1.

Lemma 6.3 (1) Let s1,...,s, C s be disjoint, let P : s — e # 0 be external
t0 S1,...,8n, let P*:s —» s let s7,..., s}, be all P*-descendants of s, ..., s,
in s*, and let @ = P/P*: s* —» e*. Then Q@ is external to s7,..., sk,.

*

(2) If P S-suppresses s, .. ., Sp, then) S-suppresses s7,...,sk,.

Proof. (1) By induction on |P|. Let P = v+ P’, let s7,..., s, be v-descendants

of s1,...,8pn, and let 87", ..., s be P*/v-descendants of s/, ..., s;. By CR(com)
(Theorem 2.1.(4)), si*,..., s} are v/P*-descendants of sj,...,s,. By the in-
duction assumption, P’/(P*/v) is external to si*,...,s}". But by Lemma 6.2

v/P* is external to s}, ..., sk ; hence P/P* = v/P* + P'/(P*/v) is external to

» Omo
* *
S15+3Sm-

v P’

v/ P* P'/(P*/v)
(2) By (1) and closure of S under parallel moves.

Corollary 6.2 (1) Descendants of S-unneeded redexes of ¢ ¢ S remain S-
unneeded.
(2) Residuals of S-unneeded redexes of t € S remain S-unneeded.

Lemma 6.4 (1) Let t5¢ and e C s C t. Then any u-descendant of e is con-
tained in some u-descendant of s.

(2) Let e C s C ¢t and NEg(e,t). Then NEs(s,t).

(3) Let u C t and let s C pat(u). Then NEs(u,t) iff NEs(s,t).

Proof. (1) By Definition 2.3.

(2) By (1) and Definition 4.1.

(3) From Definition 4.1, since a reduction S-suppresses s iff it S-suppresses
u (orthogonality of the system implies that any redex whose pattern contains
a symbol from a residual of pat(u) coincides with pat(u) and hence contains a
symbol from a residual of s as well).

Note that if a component s C ¢ is below o C ¢, then UNg(o,t) does not
necessarily imply UNgs(s,t), although the inessentiality of the subterm corre-
sponding to o implies that of the subterm corresponding to e (Lemma 3.2.(3)).
Take for example R = {f(z) — g(z), a — b}, and take for S the set of terms not
containing occurrences of a. Then § is stable, a is S-needed in f(a), but f(a) is
not.

Lemma 6.5 Lett ¢ S, t-t', UNs(u,t), and let ' C ¢’ be a u-new redex. Then
UNs(u,1').

Proof. UNs(u,t) implies existence of P : ¢ — e that S-suppresses pat(u); thus
P is external to u. By Corollary 5.1, P/u is external to u’. Also, P/u is S-
normalizing since S is closed under parallel moves. Hence u' is S-unneeded.

We call P:ty — t; — ... S-needed if it contracts only S-needed redexes.

Theorem 6.1 (Relative Normalization) Let S be a stable set of terms in an
OERS R.

(1) Any S-normalizable term ¢t ¢ S in R contains an S-needed redex.

(2) If t ¢ S is S-normalizable, then any S-needed reduction starting from ¢
eventually ends at a term in S.

Proof. (1) Let P :t — s—e be an S-normalizing reduction that doesn’t contain
terms in S except for e. By the stability of S, u is S-needed. By Corollary 6.2.(2)
and Lemma 6.5, it is either created by or is a residual of an S-needed redex in
s, and (1) follows by repeating the argument.

(2) Let P : t —» s be an S-normalizing reduction that doesn’t contain
terms in S except for e, and let Q : t=3¢;= ... be an S-needed reduction. Fur-
ther, let Q; : t=3t; 5% .. V5% and P = P/Q; (i > 1). By Proposition 5.1,
Ind(P;) < Ind(P). Since @ is S-needed and P; is S-normalizing (by the closure
of § under parallel moves), at least one residual of u; is contracted in P;. There-
fore, again by Proposition 5.1, Ind(u;) < Ind(P;). Hence Ind(Q) < Ind(P) and
@ is terminating by Proposition 5.2.

Lemma 6.6 Let ¢t be S-normalizable, let t-5s, e C t, N Es(e,), and pat(u)Ne =
(). Then e has at least one S-needed u-residual in s. In particular, any S-needed
redex v C t different from u has an S-needed residual.

Proof. Let P:s —» o be an S-needed S-normalizing reduction; there is one by
Theorem 6.1. Then if all u-residuals of e were S-unneeded, P would S-suppress
them, and u + P would S-suppress e, a contradiction.

We call a stable set S regular if S-unneeded redexes cannot duplicate S-
needed ones. One can show using Lemma 6.6 (e.g., as in [KeSI89] or in [Kha88])
that, for any regular stable S, the S-needed strategy is S-hypernormalizing.
That is, a term is S-normalizing iff it does not have a reduction which contracts
infinitely many S-needed redexes. However, this is not the case for some irreg-
ular stable S. Indeed, consider the OTRS R = {f(z) — h(f(z), f(z)), a — b}
and take for S the set of terms not containing occurrences of a. Then the
reduction f(a) — h(f(a), f(a)) — h(f(b), f(a)) — h(f(b),h(f(a), f(a))) —
h(f(b), h(f(b), f(a))) — ... contracts infinitely many S-needed redexes, while
f(a) = f(b) is S-normalizing. This example shows also that multistep S-needed
reductions need not be S-normalizing — just omit in the above reduction the
initial step and group each pair of consecutive steps as a single multistep. Recall
that multistep needed reductions are normalizing in the A-calculus [Lév80]. The
same holds for all regular stable S; this follows immediately from hypernormal-
ization of the S-needed strategy for such S.

7 Conclusions and Future Work

We have introduced a relative notion of neededness and proved the Relative
Normalization Theorem in OERSs. We expect that this and other results of
this paper can be proved for other higher-order rewriting systems too. Analo-
gous questions arise for other strategies. For example, how can one construct
reductions that avoid head-normal forms? Besides strong sequentiality for nor-
mal forms studied in Huet&Lévy [HuLé91], strong sequentiality is studied w.r.t.
head-normal forms in Kennaway [Ken94]. Investigation of relative strong sequen-
tiality and related to it strictness analysis (see e.g., [N6k94]) seems also as an
interesting topic for future research. In forthcoming papers, we extend the the-
ory of relative normalization in two directions: we study minimal and optimal
relative normalization in OERSs, and study relative normalization in an abstract
setting (in Deterministic Residual Structures and in Family Structures).

Acknowledgements

We thank J. R. Kennaway, F. van Raamsdonk, and M. R. Sleep for useful dis-
cussions, and J.-J. Lévy, L. Maranget, and P.-A. Melliés for help in overcoming
difficulties in an early version of the paper. The use of empty descendants in the
definition of descendants of components was suggested by L. Maranget. Some of
the diagrams were drawn using P. Taylor’s diagram package.

References

[Acz78] Aczel P. A general Church-Rosser theorem. Preprint, University of Manch-
ester, 1978.

[AEH94] Antoy S., Echahed R., Hanus M. A needed narrowing strategy. In: Proc. of
the 215 ACM Symposium on Principles of Programming Languages, POPL’94,
Portland, Oregon, 1994.

[AsLa93] Asperti A., Laneve C. Interaction Systems I: The theory of optimal reduc-
tions. Mathematical Structures in Computer Science, vol. 11, Cambridge Univer-
sity Press, 1993, p. 1-48.

[Bar84] Barendregt H. P. The Lambda Calculus, its Syntax and Semantics. North-
Holland, 1984.

[BKKS87] Barendregt H. P., Kennaway J. R., Klop J. W., Sleep M. R. Needed Reduc-
tion and spine strategies for the lambda calculus. Information and Computation,
v. 75, no. 3, 1987, p. 191-231.

[DeJo90] Dershowitz N., Jouannaud J.-P. Rewrite Systems. In: J. van Leeuwen ed.
Handbook of Theoretical Computer Science, Chapter 6, vol. B, 1990, p. 243-320.

[Gar94] Gardner P. Discovering needed reductions using type theory. In: Proc. of
the 2"? International Symposium on Theoretical Aspects of Computer Software,
TACS’94, Springer LNCS, v. 789, M. Hagiya, J. C. Mitchell, eds. Sendai, 1994,
p. 555-574.

[HuLé91] Huet G., Lévy J.-J. Computations in Orthogonal Rewriting Systems. In:
Computational Logic, Essays in Honor of Alan Robinson, J.-L. Lassez and
G. Plotkin, eds. MIT Press, 1991.

[Ken94] Kennaway J. R. A conflict between call-by-need computation and parallelism.
Workshop on conditional (and typed) term rewriting systems, Jerusalem, 1994.

[KeS189] Kennaway J. R., Sleep M. R. Neededness is hypernormalizing in regular com-
binatory reduction systems. Preprint, School of Information Systems, University
of East Anglia, Norwich, 1989.

[Kha88] Khasidashvili Z. -reductions and (-developments of A-terms with the least
number of steps. In: Proc. of the International Conference on Computer Logic
COLOG’88, Tallinn 1988, Springer LNCS, v. 417, P. Martin-L6f and G. Mints,
eds. 1990, p. 105-111.

[Kha90] Khasidashvili Z. Expression Reduction Systems. Proceedings of I. Vekua Insti-
tute of Applied Mathematics of Thilisi State University, vol. 36, 1990, p. 200-220.

[Kha92] Khasidashvili Z. The Church-Rosser theorem in Orthogonal Combinatory Re-
duction Systems. Report 1825, INRIA Rocquencourt, 1992.

[Kha93] Khasidashvili Z. Optimal normalization in orthogonal term rewriting systems.
In: Proc. of the 5" International Conference on Rewriting Techniques and Appli-
cations, RTA’93, Springer LNCS, vol. 690, C. Kirchner, ed. Montreal, 1993, p. 243-
258.

[Kha94] Khasidashvili Z. On higher order recursive program schemes. In: Proc. of the
19" International Colloquium on Trees in Algebra and Programming, CAAP’94,
Springer LNCS, vol. 787, S. Tison, ed. Edinburgh, 1994, p. 172-186.

[Klo80] Klop J. W. Combinatory Reduction Systems. Mathematical Centre Tracts
n. 127, CWI, Amsterdam, 1980.

[Klo92] Klop J. W. Term Rewriting Systems. In: S. Abramsky, D. Gabbay, and
T. Maibaum eds. Handbook of Logic in Computer Science, vol. II, Oxford Uni-
versity Press, 1992, p. 1-116.

[KOR93] Klop J. W., van Oostrom V., van Raamsdonk F. Combinatory reduction sys-
tems: introduction and survey. In: To Corrado Béhm, J. of Theoretical Computer
Science 121, 1993, p. 279-308.

[Lév78] Lévy J.-J. Réductions correctes et optimales dans le lambda-calcul, These de
I’Université de Paris VII, 1978.

[Lév80] Lévy J.-J. Optimal reductions in the Lambda-calculus. In: To H. B. Curry:
Essays on Combinatory Logic, Lambda-calculus and Formalism, Hindley J. R.,
Seldin J. P. eds, Academic Press, 1980, p. 159-192.

[Mar92] Maranget L. La stratégie paresseuse. Thése de 1'Université de Paris VII, 1992.

[Nip93] Nipkow T. Orthogonal higher-order rewrite systems are confluent. In: Proc.
of the 1°* International Conference on Typed Lambda Calculus and Applications,
TLCA’93, Springer LNCS, vol. 664, Bazem M., Groote J.F., eds. Utrecht, 1993,
p. 306-317.

[Nok94] Nocker E. Efficient Functional Programming. Compilation and Programming
Techniques. Ph. D. Thesis, Katholic University of Nijmegen, 1994.

[O0s94] Van Oostrom V. Confluence for Abstract and Higher-Order Rewriting. Ph. D.
Thesis, Free University of Amsterdam, 1994.

[OR94] Van Oostrom V., van Raamsdonk F. Weak orthogonality implies confluence:
the higher-order case. In: Proc. of the 3"¢ International Conference on Logical
Foundations of Computer Science, ‘Logic at St. Petersburg’, LFCS’94, Springer
LNCS, vol. 813, Narode A., Matiyasevich Yu. V. eds. St. Petersburg, 1994. p. 379-
392.

[Pkh77] Pkhakadze Sh. Some problems of the Notation Theory (in Russian). Pro-
ceedings of 1. Vekua Institute of Applied Mathematics of Thilisi State University,
Thilisi, 1977.

[Wol93] Wolfram D.A. The Clausal Theory of Types. Cambridge Tracts in Theoretical
Computer Science, vol. 21, Cambridge University Press, 1993.

This article was processed using the INTEX macro package with LLNCS style

