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We study reductions in orthogonal (left-linear and non-am-
biguous) Expression Reduction Systems, a formalism for Term Rewrit-
ing Systems with bound variables and substitutions. To generalise the
normalization theory of Huet and Lévy, we introduce the notion of

with respect to a set of reductions or a set of terms so that
each existing notion of neededness can be given by specifying or . We
imposed natural conditions on , called , that are sufficient and
necessary for each term not in -normal form (i.e., not in ) to have at
least one -needed redex, and repeated contraction of -needed redexes
in a term to lead to an -normal form of whenever there is one. Our
relative neededness notion is based on tracing , which
are occurrences of contexts not containing bound variable, rather
than tracing redexes or subterms.

This work was supported by the Engineering and Physical Sciences Research Council
of Great Britain under grant GR/H 41300

John Glauert and Zurab Khasidashvili

Since a normalizable term, in a rewriting system, may have an infinite reduction,
it is important to have a strategy which enables one to construct
reductions to normal form. It is well known that the leftmost-outermost strat-
egy is normalizing in the -calculus. For Orthogonal Term Rewriting Systems
(OTRSs), a general normalizing strategy, called the strategy, was found
by Huet and Lévy in [HuLé91]. The needed strategy always contracts a
redex – a redex whose residual is to be contracted in any reduction to normal
form. Huet and Lévy showed that any term not in normal form has a needed
redex, and that repeated contraction of needed redexes in leads to its normal
form whenever there is one; we refer to it as the . They
also defined the class of OTRSs where a needed redex can
efficiently be found in any term.

Barendregt et al. [BKKS87] generalized the concept of neededness to the -
calculus. They studied neededness not only w.r.t. normal forms, but also w.r.t.
head-normal forms – a redex is if its residuals are contracted in each
reduction to a head-normal form. The authors proved correctness of the two
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needed strategies for computing normal forms and head-normal forms, respec-
tively. Khasidashvili defined a similar normalizing strategy, called the
strategy, for the -calculus [Kha88] and OTRSs [Kha93]. The strategy contracts

redexes – the redexes that have under any reduction. The
notion of descendant is a refinement of that of – the descendant of a
contracted redex is its contractum, while it does not have residuals. This refined
notion allows for much simpler proofs of correctness of the essential strategy in
OTRSs and the -calculus, which generalize straightforwardly to all Orthogonal
Expression Reduction Systems (OERSs). Kennaway and Sleep [KeSl89] used a
generalization of Lévy’s labelling for the -calculus [Lév78] to adapt the proof
from [BKKS87] to the case of Klop’s OCRSs [Klo80], which can also be ap-
plied to OERSs. Khasidashvili [Kha94] showed that in OERSs, where
redex-creation is limited, one can find needed redexes in any term. Gard-
ner [Gar94] described a way of encoding neededness information using
a type assignment system in the sense that using the principal type of a term
one can find all the needed redexes in it (the principal type cannot be found effi-
ciently, as one might expect). Antoy et al. [AEH94] designed a needed narrowing
strategy.

In [Mar92], Maranget introduced a different notion of neededness, where a
redex is needed if it has a residual under any reduction that does not contract
the residuals of . This neededness notion makes sense also for terms that do
not have a normal form, and coincides with the notion of essentiality [Kha93]
(essentiality makes sense for all subterms, not only for redexes). In [Mar92],
Maranget studied also a strategy that computes a (in fact, the ‘minimal’ in
some sense) weak head-normal form of a term in an OTRS. Normalization w.r.t.
another interesting set of ‘normal forms’, that of constructor head-normal forms
in constructor OTRSs, is studied by Nöcker [Nök94].

A question arises naturally: what are the properties that a set of terms must
possess in order for the neededness theory of Huet and Lévy still to make sense?
The main contribution of this paper is to provide a solution to that question.
We introduce the notion of w.r.t. a set of reductions or a set of
terms so that each existing notion of neededness can be given by specifying

or . For example, is neededness w.r.t. the set of
normal forms, is neededness w.r.t. all fair reductions,

is neededness w.r.t. the set of head-normal forms, etc. We impose
natural conditions on , called , that are sufficient and necessary for
each term not in -normal form (i.e., not in ) to have at least one -needed
redex, and repeated contraction of -needed redexes in a term to lead to an

-normal form of whenever there is one.

A set of terms is stable if it is : for any ,
any : , and any : , the final term of , the residual of

under , is in ; and is : for any such that
and , a residual of is contracted in any reduction from to a term

in . We present a counterexample to show that the -needed strategy is not
for every stable , i.e., an -normalizable term may possess
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a reduction which never reaches a term in even though -needed redexes
are contracted infinitely many times, but -unneeded redexes are contracted
as well. Therefore, -needed reductions need not be -normalizing.
This is because a ‘non-standard’ situation – when a component under an -
unneeded component is -needed – may occur for some, call it stable
sets . However, if is a regular stable set, then the -needed strategy is again
hypernormalizing, and the multistep -needed strategy is normalizing.

Our relative neededness notion is based on tracing , which
are occurrences of contexts not containing bound variable, rather than trac-
ing redexes or subterms. We therefore introduce notions of and

for components that are invariant under Lévy-equivalence. A component of
a term is called if at least one descendant of it is ‘involved’ in any

-normalizing reduction; a redex is if so is its pattern. Besides gener-
ality, this approach to defining the neededness notion via components is crucial
from a technical point of view, because components of a term in an OERS enjoy
the same ‘disjointness’ property that subterms of a term in an OTRS possesses:
residuals of disjoint components of a term in an OERS remain disjoint, and this
allows for simpler proofs.

The rest of the paper is organized as follows. In the next section, we review
Expression Reduction Systems (ERS), a formalism for higher order rewriting
that we use here [Kha90, Kha92]; define the descendant relation for components,
and show that it is invariant under Lévy-equivalence. Section 3 establishes equiv-
alence of Maranget’s neededness and our essentiality for OERSs. In section 4, we
introduce the relative notion of neededness. In section 5, we sketch some prop-
erties of the labelling system of Kennaway&Sleep [KeSl89] for OERSs needed to
define a among redexes. We prove correctness of the -needed
strategy for finding terms of , for all stable , in section 6. The conclusions
appear in section 7.

Klop introduced (CRSs) in [Klo80] to provide a
uniform framework for reductions with substitutions (also referred to as higher-
order rewriting) as in the -calculus [Bar84]. Restricted rewriting systems with
substitutions were first studied in Pkhakadze [Pkh77] and Aczel [Acz78]. Several
interesting formalisms have been introduced later [Nip93, Wol93, OR94]. We
refer to Klop et al. [KOR93] and van Oostrom [Oos94] for a survey. Here we
use a system of higher order rewriting, (ERSs),
defined in Khasidashvili [Kha90, Kha92] (ERSs are called CRSs in [Kha92]); the
present formulation is simpler.

Let be an , comprising , denoted by ;
, also called ; and or

. Each function symbol has an , and each operator sign has
an ( ) with = 0 such that, for any sequence of pairwise



∫ ∫∫
Definition 2.2

m

m m

m

m l

m m

n n j

i

n n

n n

t

s

1

1 1

1

1 1

1 1

1 1 0

0

1 1 0

1 1 0

→

∈
∈

∈

→
→

6∈
→ ∃

∈
→ ∃ → ∃ → ∃ ∧ ∀ ∀ ∧
⇒

compound operator quantifier arity
binding variables

scope indicator
Terms

Metaterms terms metavariables
metasubstitutions

scope
simple metaterms

assignment
instance

Expression Reduction System
alphabet rewrite rules

admissible assignments

redex redex contractum
simple

σx . . . x
n x , . . . , x σx . . . x

σx . . . x σ
x . . . x k , . . . , k

σx . . . x x , . . . , x

A,B, . . .

t /x , . . . , t /x t t
x t

Σ t θ
θ tθ t t

θ
t /x , . . . , t /x t

t , . . . , t x , . . . , x t

β λ Ap λx t, s Ap
λ

f x dx x s t f x

Σ,R
Σ R
r t s t s
t

s t
r AA r

θ AA r A t s
x FV Aθ A r

x r
θ AA r tθ r R sθ

tθ R R

λ β
Ap λxA,B B/x A, A B
η λx Ax A θ

x Aθ x Aθ
λx Aθx f A x A

θ x Aθ
µ λxA µ λxA /x A xA τx A /x A xA xA x y A
y/x A x y

distinct variables, is a or a with
. Occurrences of in are called . Each

quantifier , as well as the corresponding quantifier sign and binding
variables , has a ( ) to specify the arguments in
which binds all free occurrences of . are constructed
from variables using functions and quantifiers in the usual way.

are constructed similarly from and ,
which range over terms. In addition, , expressions of the form
( ) , with arbitrary metaterms, are allowed, where the
of each is . Metaterms without metasubstitutions are . An

maps each metavariable to a term over . If is a metaterm and is
an assignment, then the - of is the term obtained from by replacing
metavariables with their values under , and by replacing metasubstitutions
( ) , in right to left order, with the result of substitution of
terms for free occurrences of in .

For example, a -redex in the -calculus appears as ( ), where is
a function symbol of arity 2, and is an operator sign of arity (1,1) and scope

indicator (1). Integrals such as ( ) can be represented as ( ) using
an operator sign of arity (1,3) and scope indicator (3).

An (ERS) is a pair ( ), where
is an , described in Definition 2.1, and is a set of

: , where and are closed metaterms (i.e., no free variables) such that
is a simple metaterm and is not a metavariable, and each metavariable that

occurs in occurs also in .
Further, each rule has a set of ( ) which, in order

to prevent undesirable confusion of variable bindings, must satisfy the condition
that:

(a) for any assignment ( ), any metavariable occurring in or ,
and any variable ( ), either every occurrence of in is in the scope
of some binding occurrence of in , or no occurrence is.

For any ( ), is an - or an - , and is the
of . We call if right-hand sides of -rules are simple metaterms.

Our syntax is similar to that of Klop’s CRSs [Klo80], but is closer to the syntax
of the -calculus and of First Order Logic. For example, the -rule is written
as ( ) ( ) where and can be instantiated by any terms;
the -rule is written as ( ) which requires that an assignment is
admissible iff ( ), otherwise an occurring in and therefore bound in

( ) would become free. A rule like ( ) ( ) is also allowed, but an
assignment with is not. The recursor rule from [AsLa93] is written as
( ) ( ( ) ) . ( ( ) ) and ! (

( ) = ) are rules corresponding to familiar definitions.
Below we restrict ourselves to the case of non-conditional ERSs, i.e., ERSs

where an assignment is admissible iff the condition (a) of Definition 2.2 is sat-
isfied. We ignore questions relating to renaming of bound variables. As usual,
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S
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a rewrite step consists of replacement of a redex by its contractum. Note that
the use of metavariables in rewrite rules is not really necessary – free variables
can be used instead, as in TRSs. We will indeed do so at least when giving TRS
examples.

To express substitution, we use the -reduction rules

( ) = 1 2 ,
where is the with arity ( +1) and scope in-
dicator ( +1), and and are pairwise distinct variables
and metavariables. Thus binds free variables only in the last argument. The
difference with -rules is that -reductions can only perform -developments of
-terms [Kha92].

We use for constants, for terms and metaterms,
for redexes, and for reductions. We write if is a subterm of

. A one-step reduction in which a redex is contracted is written as

or or just . We write : or if denotes a reduction of
to . denotes the length of . + denotes the concatenation of and .

Let : be a rule in an ERS and let ( ). Subterms of a
redex = that correspond to metavariables of are the of ,
and the rest is the of . Subterms of rooted in the pattern are called
the of . If is a simple ERS, then arguments, pattern, and
pattern-subterms are defined analogously in the contractum of .

We now recall briefly the definition of of subterms as introduced
in [Kha88, Kha93, Kha92] for the -calculus, TRSs, and ERSs, respectively.
First, we need to split an ERS into a and the

. For any ERS , which we assume does not contain symbols ,
is the ERS obtained from by adding symbols in the alphabet and

by replacing in right-hand sides of the rules all metasubstitutions of the form
( ) by , respectively. For example, the
rule would be ( ) . If is simple, then = = .

Otherwise = . For each step [ ] [ ] in there is a re-
duction : [ ] [ ] [ ] in , where [ ] [ ] is
the rightmost innermost normalizing -reduction. We call the of
. The notion of generalizes to -reductions with 0 or more steps.

Let be an -reduction step and let be the contractum of in . For
each argument of there are 0 or more arguments of . We will call them -

of . We refer to the -th (from the left, 0) descendant of also as
the ( )- of . Correspondingly, subterms of have 0 or more

. By definition, the , referred to also as the ( )- , of
each pattern-subterm of is . It is clear what is to be meant by the
of a subterm that is not in . We call it also the ( )- of .

In an -reduction step [ ] [( ) ], the
argument and its subterms have the same number of descendants as the num-
ber of free occurrences of in ; the -th descendant is referred to as the
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, path , path
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C
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C s
s , path

t e t path e
C s, t, e, o
s t s t

R C t R

s C s , . . . , s C t t t R
o t u u pat u

cpat u u C
u C

C u C C u
u, C u, s u,
s C , path u,

C o u
u, i C u, i

o o u C
u u, i C u, i

s o

descendant
descendent

descendent

indexes
residuals

descendant residual
indexes

ancestor

component any

position
empty component empty occurrence

connection top

corresponding subterm
arguments

in non-top

descendent

-descendants

( )- . Every subterm of has exactly one descendant, the ( 0)-
(in particular, the ( 0)-descendants of free occurrences of

in are the substituted subterms). The descendant or ( )- of the
contracted redex itself is its contractum. The pairs ( ) and ( ) are called
the of corresponding descendants. The descendants of all redexes except
the contracted one are called .

The notions of and extend by transitivity to arbitrary
-reductions; of descendants and residuals are sequences of indexes of

immediate (i.e., under one step) descendants and residuals in the chain leading
from the initial to the final subterm. If is an -reduction, then descen-
dants are defined to be the descendants under the refinement of . The
relation is the converse of the descendant relation.

We call a an occurrence of a context that does not contain
bound variables; that is, neither variables bound from above in the term, nor
variables for which the binder is in the component, belong to the component.
Since we also consider occurrences of the empty context [ ], which has an arity 1,
we will think of a component as a pair ( ), where the path charac-
terizes the of the component in the term (usually, a position is a chain
of natural numbers). Thus an or is a pair
([ ] ). If terms are represented by trees, then the empty occurrence ([ ] )
can be seen as the at the of the symbol at the position .

Obviously, a component can be considered as its
(the subterm rooted at the position of ), with some subterms (the
of ), removed. In particular, a subterm with itself removed becomes the empty
occurrence at the position of . We say that an empty occurrence ([ ] ) in a
term is a subterm or component in if is a position of . We
use and the letters used for terms to denote components as well. We
write if is a component of .

The concept of can be extended to components in the following
way:

Let be an ERS, be a component of a term in , let

= [ ] be the corresponding subterm of in , let in , and
let be the contractum of . The pattern of will be denoted by ( )
and the pattern of the contractum by ( ). We define of by
considering all relative positions of and .

(1) = (so if is an empty component, is not in ). Then the
( )-descendant of is the ( )-descendant of with the ( )-descendants
of removed. (If is an empty occurrence ([ ] ), then its ( )-descendant
is the same pair.)

(2) is the empty occurrence at the top of an argument of . Then the
( )-descendant of is the empty occurrence at the top-position of the ( )-
descendant of , if the latter exists; if doesn’t have -descendants, then
doesn’t have -descendants either. (Thus, the ( )-descendant of is the ( )-
descendant of its corresponding subterm = with itself removed.)



Rf
cpat(u)

C

pat(u)

AA
AA
AA
AA

x x

s1

s2

S

Ce
Ce

Co

Co

s2

s1 s1

s3

s3

C'

C

Sx

Ce

′

′

′

≥

≥

∗
∗

∅ ∗

∗ ∗

2

1
2

+1
2

+1

Fig. 1.

Fig. 2.

f

j

j

f

j

e k l o l m n

e o e k l o l m

j e

e o

-descendant

collapsed

-descendants

collapsed

u R C u u, i
C u, i s u, i s i

u S C u u, i
C u, i s u, i s i

u R pat u C u, C
u, s s

C pat u C cpat u u,
C o

u S u S x e o
C s C s , . . . , S xC s , . . . , s C s , . . . , s , . . . , s

C C . . . , S xC C , . . . , e C s , . . . , s o C s , . . . , s
u, C u, s

s C
k l l m C Pat u S

C C C
u

(3) is an -redex and is in an argument of . Then the ( )-descendant
of is the ( )-descendant of with the ( )-descendants of removed ( 1).

(4) is an -redex and is in an argument of . Then the ( )-descendant of
is the ( )-descendant of with the ( )-descendants of removed ( 0).

(5) is an -redex and ( ) is in . Then the ( ) of is
the ( )-descendant of with the descendants of removed (see Figure 1). In
particular, if is , i.e. ( ) = and ( ) = , then the ( )-
descendant of is the empty occurrence at the position of .

(6) is an -redex, say with two arguments (for simplicity) = , with
the top in , and let = [ [ ] [ ] ],
with = [ [ ] [ ] ] = [ ], and = [ ].
Then, the ( ) of are the ( )-descendant of with the descen-
dants of the subterms removed, and the descendants of , as defined in (4)
(see Figure 2, where = = 1 and +1 = = 2). Note that if = ( ) = ,
then and are empty components, is , and its descendants are
the empty occurrences at the top positions of the descendants of and its argu-
ments.



Rf

C

sn sn

pat(u) cpat(u)

s1

s1
s1

pat(u)

Rf
C

s1

cpat(u)

s1s1

′

′

′

′

f

i

f

i

f

∗ ∗

∗
∗

∗ ∗

∗
∗

∗

Fig. 3.

Fig. 4.

u R pat u C
u C

u, C u, s
u C s

pat u
o u, C

o u, C

u R pat u C C
u u, C u, s

s pat u
u C

o u,
C o u, C

u R pat u C C
u, C u

(7) is an -redex, ( ) and partially overlap (i.e., neither contains
another), and the top of is (not necessarily strictly) below the top of . Then
the ( )-descendant of is the ( )-descendant of with the descendants
of the arguments of that do not overlap with and the descendants of
that do not overlap with ( ) removed (see Figure 3). In addition, if the top
symbol of doesn’t belong to the (above) ( )-descendant of , then the empty
component at the top of is also a ( )-descendant of .

(8) is an -redex, ( ) and partially overlap, and the top of is
below the top of . Then the ( )-descendant of is the ( )-descendant of
with the descendants of that do not overlap with ( ) and the descendants
of the arguments of that do not overlap with removed (see Figure 4). In
addition, if the top symbol of doesn’t belong to the (above) ( )-descendant
of , then the empty component at the top of is also a ( )-descendant of .

(9) is an -redex and ( ) contains ( may be an empty component).
Then the ( )-descendant of is the contractum-pattern of (the latter may
also be empty) (see Figure 5).
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The notion of descendant for components generalises by transitivity to all
reductions and via refinements to all -reductions.

In [Klo92], Klop also introduced a notion of
for the case of TRSs. According to Klop’s definition, descendants

of every symbol in the pattern of the contracted redex are symbols in the
contractum pattern. We extend this also to empty occurrences in the pattern
of the contracted redex. If the rule is collapsing, i.e., the right-hand side is a
variable, then Klop defines the descendant of pattern-symbols of the contracted
redex to be the topmost symbol of the contractum. We define the descendant
of the pattern-symbols in that case to be the empty occurrence at the position
of the contractum. We can define the notion of descendant of a symbol in the
same spirit for -reduction steps by declaring that the descendants of the top
-symbol of a contracted -redex are the empty occurrences at the positions of

the descendant of and the descendants of its arguments. We define the descen-
dants of other symbols, in particular of bound variables, to be the top-symbols
of the descendants of the corresponding subterms. This gives us a definition
of descendant for symbols for all ERSs. Now, it is not difficult to check that
descendants of a component are composed of the ‘corresponding’ descendants
of its symbols and occurrences, and similarly for the descendants of subterms.
Note that, according to Klop’s definition, the descendants of a pattern-subterm

are all subterms rooted in the contractum-pattern, not just the contractum
of the redex, as in our definition; so descendants of need not be composed of
descendants of the symbols in , which is less natural.

Co-initial reductions : and : are called
, written , if = and the residuals of a redex of

under and are the same occurrences. We call and respectively
[Kha92], or , written ,

, or , if = and -descendants and -descendants of respec-
tively any symbol, subterm, or component of are the same occurrences in
and .

A rewrite rule in an ERS is if is linear, i.e.,
no metavariable occurs more than once in . is if each rule in is
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3 Neededness, Essentiality and Unabsorbedness

Theorem 2.1
: Church-Rosser for residuals
: Church-Rosser for subterms
: Church-Rosser for symbols
: Church-Rosser for components

Definition 3.1

Definition 3.2

Definition 3.3

R r i I
r u r u i j u

u i j u
u R

λ P Q
P Q P/Q

P Q P/Q P Q
P Q P Q

Q P / P Q
P P /Q P/Q P / Q/P

P/ Q Q P/Q /Q

P Q R

CR res P Q/P Q P/Q

CR sub P Q/P Q P/Q

CR sym P Q/P Q P/Q

CR com P Q/P Q P/Q

P Q

u t
t u

u u
t u

s t ES s, t s
t

IE s, t

s t P t e
s P

P s t
t t

non-ambiguous non-overlapping

orthogonal

residual of under
development

Lévy-embedding
Lévy-equivalent permutation-equivalent

Proof.

Huet&Lévy-needed

Maranget-needed

essential
inessential

unabsorbed in a reduction

absorbed in unabsorbed in
absorbed in

so. = is or if in no term redex-
patterns can overlap, i.e., if -redex contains an -redex and = , then
is in an argument of , and the same holds if = and is a proper subterm
of . is (OERS) if it is left-linear and non-overlapping.

As in the the -calculus [Bar84], for any co-initial reductions and , one
can define in OERSs the notion of , written , due
to Lévy [Lév80], via the notion of of a set of redexes in a term.
We write if = ( is the relation); and are
called or (written ) if
and . It follows immediately from the definition of that if and are
co-initial reductions in an OERS, then ( + ) + ( ) and

( + ) ( ) .

Let and be co-initial reductions in an OERS . Then:
(1) ( ( ) ) + + .
(2) ( ( ) ) + + .
(3) ( ( ) ) + + .
(4) ( ( ) ) + + .

(1) is proved in [Klo80]. (2) is obtained in [Kha92]. The proof of (3)
is routine (it is enough to consider the case when = = 1). (4) follows
both from (3) and (2), since descendants of a component can be defined both
via descendants of symbols and via descendants of subterms. (Note that (2) can
also be derived from (3) for the same reason.)

In this section, we recall Huet&Lévy and Maranget’s notion of neededness, and
relate them to the notion of essentiality, in OERSs. We also prove existence of
an essential redex in any term, in an OERS, not in normal form.

A redex in is [HuLé91, Lév80] if in each
reduction of to normal form (if any) at least one residual of is contracted;

is [Mar92] if has at least one residual under any reduction
starting from that does not contract residuals of .

A subterm in is (written ( )) if has at least
one descendant under any reduction starting from and is (written

( )) otherwise [Kha93, Kha88].

A subterm of a term is :
if none of the descendants of appear in redex-arguments of terms in , and is

otherwise; is if it is unabsorbed in any reduction
starting from and otherwise [Kha93].
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∅
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external

deletes

erased
fair

strictly cofinal

Proof.

Remark 3.1

Definition 3.4

Definition 3.5

Lemma 3.1

Lemma 3.2

Notation

Definition 3.6

u t u
t

P t s o t
P o o P

P t t . . . u t u
P j > i u t P

t P

P t Q t e
P t s P Q e s

P Q Q

P t
t

CR sub

CR sub

P t t s t IE s, t P
s t

t t e s t u e
u s

e s t ES e, t ES s, t

s u t ES u, t ES s, t

t t //s , . . . , t //s s s , . . . , s
s t s t , . . . , t

t t //s , . . . , t //s s R P s

e e . . . R P t t o

o . . .

v R s , . . . , s
u v t o

v R s , . . . , s
s , . . . , s u

v S u
S t

v s , . . . , s u

It is easy to see that a redex is unabsorbed iff is
[HuLé91] in . Clearly, unabsorbedness implies essentiality, and Huet&Levy- and
Maranget-neededness coincide for normalizable terms.

Let : and be a subterm or a component in . Then
we say that if doesn’t have -descendants.

(1) Let : and . Then is called in
if there is such that does not have residuals in . is if each

redex in any is erased in [Klo92].
(2) We call a reduction starting from if for any :

there is an initial part : of , and a reduction : such that
+ .

Any strictly cofinal reduction starting from deletes all inessen-
tial subterms of .

Immediate from Definitions 3.2 and 3.5.

For example, fair reductions are strictly cofinal: Klop’s proof of cofinality of
fair reductions (Theorem 12.3 in [Klo80]) can be modified to a proof of strict
cofinality of fair reductions by using ( ) (Theorem 2.1.(2)) instead of the
CR theorem.

The following lemma from [Kha94] follows from ( ) (Theorem 2.1.(2));
the proofs are same as for OTRS [Kha93].

(1) Let : and . Then ( ) iff all -descendants
of are inessential in .

(2) Let and . Then any -descendant of is contained in some
-descendant of .

(3) Let and ( ). Then ( ).
(4) Let be a pattern-subterm of a redex . Then ( ) iff ( ).

We write = ( ) if are disjoint subterms
in and is obtained from by replacing them with , respectively.

Let = ( ) in an OERS and let : =

be an -reduction. We define the reduction ( ) : =

as follows.
(1) If is an -redex and its pattern does not overlap with , then
is the corresponding subterm of in = .
(2) If is an -redex that is not inside the subterms and its

pattern does overlap with some of , then = .
(3) If is an -redex that is outside the replaced subterms, then is the

corresponding -redex in .
(4) If is in some of subterms , then = .
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Lemma 3.3

Corollary 3.1

Proposition 3.1

1 1

1 1

1 1 0

0

0

1 1

1 1

1 1 1

1 1

1

1

1

1 1 1

1 1

1 1

1

1

1

1

1

1 1

o e
s , . . . , s t , . . . , t

o e v
o

s v
t o e

s , . . . , s t , . . . , t
o e s , . . . , s

t , . . . , t o
u P t P

t s , . . . , s

s , . . . , s s R t
t //s , . . . , t //s s t , . . . , t t

Q R Q s o
s , . . . , s Q t t , . . . , t Q

Q v Q s e s , . . . , s v s , . . . , s
s e v t t o o
e s , . . . , s

t , . . . , t o
o

t , . . . , t o
t , . . . , t t

t

t R u t
u t t

IE u, t FV u x , . . . , x f
n

s f x , . . . , x //u t IE f x , . . . , x , s

In the first case, is obtained from by replacing the descendants of
with the corresponding descendants of , respectively; in the

second case, is obtained from by replacing the descendant of by the
descendant of its corresponding subterm in , and by replacing the descendants
of the subterms that do not overlap with by the corresponding descendants
of ; in the third case, is obtained from by replacing outermost descen-
dants of with the corresponding descendants of ; in the fourth
case, is obtained from by replacing the descendants of with the
corresponding descendants of , respectively. Thus, in we can choose
the redex analogously, and so on. (Note that ( ) depends not only on
and , but also on the choice of , but the notation does not give rise to
ambiguity.)

Let be inessential in , in an OERS , and let =
( ) . Then are inessential in .

We show by induction on that if an -reduction : deletes
, then ( ) deletes ; such a exists by Lemma 3.1. Let

= + , , and be all the -descendants of . By
Lemma 3.2.(1), are inessential in . By Definition 3.6, if ( ) : , then
is obtained from by replacing some inessential subterms that contain ,
and all the descendants of also are in the replaced subterms of . By
the induction assumption, the replaced subterms in are inessential. Hence,
by Lemma 3.2.(3), all the descendants of in are inessential and, by
Lemma 3.2.(1), are inessential in .

It follows immediately from Definition 3.6 and the proof of Lemma 3.3 that
replacement of inessential subterms in a term does not effect its normal form.

Any term not in normal form, in an OERS, contains an essential
redex.

If all redexes in were inessential, their replacement by fresh variables
would yield a term in normal form containing inessential subterms, a contradic-
tion.

Existence of an unabsorbed redex in any term not in normal form can be
proved exactly as in OTRSs [Kha93] (the proof does not use the proof of Corol-
lary 3.1).

Let be a term in an OERS and let be a redex in . Then
is essential in iff it is Maranget-needed in .

( ) Let ( ). Further, let ( ) = , let be a fresh
-ary function symbol that does not occur in the left-hand sides of rewrite

rules (we can safely add such a symbol to the alphabet, if necessary), and let
= ( ( ) ) . By Lemma 3.3, ( ( ) ), i.e., there is some
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Π
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P
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u t P t s
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pat v v P
pat u pat u pat v u

t

reduction starting from such that ( ) does not have -descendants.
Let : ( ) be a rule and : be the -reduction step. Obvi-
ously, is orthogonal. Hence + + and therefore does
not have -descendants. But does not contract the residuals of . Thus

is not Maranget-needed. ( ) From Definitions 3.2 and 3.1.

In this section, we introduce notions of neededness relative to a set of reductions
and to a set of terms . We show how all existing notions of neededness can

be obtained by specifying or ; -neededness is also a special case of -
neededness. We introduce of a set of terms, in an OERS, and show that
if is not stable, contraction of -needed redexes in a term need not terminate
at a term in even if can be reduced to a term in . It is the aim of the last
section to show that if is stable, then a -needed strategy is -normalizing.

(1) We call a reduction starting from a term in an OERS
to a component if there is no redex executed in whose pattern

overlaps with a descendant of ( can be empty). We call to a redex
if is external to ( ), i.e., if doesn’t contract the residuals of .

(2) Let be a set of reductions. We call - if there is no
starting from that is external to , and call it - otherwise.

(3) We call if it is -(un)needed, where is the
set of all reductions Lévy-equivalent to .

(4) Let be a set of terms in , and let be the set of
reductions, i.e., reductions that end at a term in . We call
if it is .

(5) If , then we call ( -) ( ) if so is ( ), the
component obtained from the subterm by removing bound variables. How-
ever, if not otherwise stated, we say that a redex (which is a subterm) is
( -) ( ) if so is its pattern.

(6) We say that : if is -normalizing and
is external to . We say that if it -suppresses ( ),
i.e., is -normalizing and is external to . (Obviously, a redex or component is

-unneeded iff it is -suppressed by some -normalizing reduction.)
We write ( ) ( ( )) if is ( )-needed (unneeded).

If and : is external to , then we call the descendants of
also the of . A component that does overlap with the pattern of a
contracted redex does not have residuals. Note that if , then : is
external to ( ) iff does not contract the residuals of , because orthogonality
of the system implies that if the pattern ( ) of a redex contracted in does
overlap with a residual of ( ), then ( ) = ( ). Hence is -needed iff
at least one residual of it is contracted in each reduction from to a term in
(the intended notion of neededness). Obviously, any redex in a term that is not

-normalizable is -needed; we call such redexes .
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stable
closed under parallel moves

closed under unneeded expansion

none

closed under ( )-normalization

t P t o
Q t e P/Q

e o e
o u

R f x g x, x , a b g a, a , g b, b
g a, b g b, b g b, a g b, b f a g a, a

f b g b, b

g b, b
g a, a g b, a

g a, a g b, a a g a, a
g b, a

f a ,

g a, b g b, a

f b ,

G s s

G I x , x I x
I I x I x

I I x x I I x

The following definition introduces the property of sets of terms for which it
is possible to generalise the Normalization Theorem:

We call a set of terms if:
(a) is : for any , any : , and

any : , the final term of is in ; and

(b) is : for any such that and
, is -needed.

Of course, a set closed under reduction is closed under paral-
lel moves as well. But a set closed under parallel moves, even if closed un-
der unneeded expansion, need not be closed under reduction. Indeed, consider

= ( ) ( ) , and take = ( ) ( ) . The only one-step
-normalizing reductions are ( ) ( ), ( ) ( ), ( ) ( ),

and ( ) ( ). Therefore, one can check that is closed under unneeded
expansion. Also, is closed under parallel moves, since the right-bottom term
( ) in the diagram below, which is the only non-trivial diagram to be checked,

is in . However, is not closed under reduction, since, e.g., ( ) ( ),
( ) , but ( ) . Note that the second occurrence of in ( ) is
-unneeded, but its residual in ( ) is -needed.

( ) ( )

( ) ( )

( ) ( )

The most appealing examples of stable sets, for an OERS, are the set of
normal forms [HuLé91], the set of head-normal forms [BKKS87], the set of weak-
head-normal forms (a partial result is in [Mar92]), and the set of constructor-
head-normal forms for constructor TRSs [Nök94]. The sets of terms having (resp.
not having) (head-, constructor-head-) normal forms are stable as well. The
graph of a term (which consists of terms to which is reducible) is closed
under reduction, but need not be closed under unneeded expansion. For example,
the graph = ( ) of ( ) is closed under reduction but is not closed
under unneeded expansion: ( ( )) can be reduced to ( ) by reducing either
-redex (according to the rule ( ) ). Hence of the redexes in ( ( ))

are -needed. Thus the closure of under unneeded expansion is a necessary
condition for the normalization theorem.

We say that a set of terms is if any reduct
of every -normalizable term is still -normalizable. Obviously, sets closed un-
der parallel moves are closed under normalization as well. Even if is closed
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R f x g x, x , a b, b a g a, b

f a g a, a
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f b g b, b

f a f b
f a f b f a . . .

f a g a, a g a, b

f b g b, b g b, b

u t
t

u t P t
u u

Q t e u
u Q Q Q Q

u Q

under unneeded expansion, closure of under normalization is also necessary
for the normalization theorem to be valid for . Indeed, consider = ( )
( ) , take = ( ) , and take = ( ). Then ( ) ( )

is an -needed -normalizing reduction, while after the -needed step ( ),
the term ( ) is not -normalizable any more (the only redex in ( ) is only triv-
ially -needed). However, the following example shows that closure of under
normalization (even in combination with closure of under unneeded expansion)
is not enough; closure of under parallel moves is necessary.

Let = ( ) ( ) and = ( ) .
Since the reduction preserves the height of a term and the property to be a
ground term, only the terms in the following diagram are -normalizable.

( ) ( )

( ) ( )

( ) ( )

Therefore, it is clear from the diagram that is closed under normalization.
It is easy to see that, in ( ) and ( ), all the redexes are -needed; hence
( ) ( ) ( ) is an infinite -needed reduction that never reaches
(there are many others). One can check that is closed under unneeded

expansion. Thus the reason for the failure of the normalization theorem is that,
as it can be seen from the following diagram, is not closed under parallel
moves.

( ) ( ) ( )

( ) ( ) ( )

A redex is Maranget-needed iff it is needed w.r.t. the
set of all fair reductions starting from .

( ) Let be Maranget-needed in . Then any fair starting from
should contract a residual of (to erase it). ( ) If is not Maranget-needed,
i.e., there is a reduction : in which is erased and that does not
contract the residuals of , then there is a reduction such that = +
is fair and obviously is not -needed, a contradiction.
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5 A Labelling for OERSs

Proposition 4.2

Lemma 4.1

Proposition 4.3

Proposition 5.1

Proof.

Proof.

Proof.

label
base

string
initial

signature

redex-index
index

u t u pat u
t

P t s e t o t
e o P
P e

P e

s t
Int s

x , . . . , x
s f n

t
f x , . . . , x //s t IE s, t Q t s

P Q t t Int s

λ

R R
R

R R

Ind P
P

t s R v s

t t t s
R v l l u

Ind u < Ind v w s w t w
w Ind w Ind w

A redex is essential iff (or ( )) is needed w.r.t. the
set of all fair reduction starting from .

An immediate corollary of Proposition 3.1 and Proposition 4.1.

Let : be external to , and let be the subterm
corresponding to . Then any descendant of along is the subterm corre-
sponding to some -descendant of .

Immediate from Definition 2.3, since is external to .

A subterm is inessential iff there is a reduction that is
external to ( ) and deletes it.

( ) Immediate from Lemma 4.1. ( ) Let be the list of oc-
currences of bound variables in from left to right, let be a fresh -ary
function symbol not occurring in left-hand sides of rewrite rules, and let =
( ( ) ) . Since ( ), there is starting from that deletes .
Therefore, it follows from Definition 3.6 that = (( ) ) is external to ( )
and deletes it.

In Kennaway&Sleep [KeSl89] a labelling is introduced for OCRSs, based on the
labelling system of Klop [Klo80], which is in turn a generalization of the la-
belling system for the -calculus introduced by Lévy [Lév78]. Each of Ken-
naway&Sleep [KeSl89] is a tuple of labels, built up from a set of labels.
For any OERS , terms in the corresponding labelled OERS are those of

where each subterm has one or more labels, represented as a of labels.
A labelling of a term is if all its subterms are labelled by different base
labels. The of a labelled term is the tuple of all its labels, from left
to right. Rules of are those of where pattern-symbols in left-hand sides
are labelled by a string of labels except for the head-symbol, which has just one
label (a string of length one). Each subterm (including metavariables) in the
right-hand side of a rule bears the signature of the corresponding left-hand side.
Further, a of a redex is the maximal depth of nesting in the labels
of the corresponding left-hand side of the rule. The ( ) of a reduction

is the maximal redex-index of redexes contracted in it.
The crucial properties of the labelling are given by the following propositions.

[KeSl89] If a step in an OERS creates a redex ,

then, for any labelling of , the corresponding step in the corresponding
labelled OERS creates a redex whose label contains the label of .
Thus ( ) ( ). If is a residual of a redex , then and

have the same labels, thus ( ) = ( ).
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with history copy
zig-zag

family
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Proof.

Corollary 5.1

Proposition 5.2

Remark 5.1

Definition 5.1

Lemma 6.1

Corollary 6.1

Lemma 6.2

P Q P
u Q t

P u/ Q/P P/Q Q/P
u

P Q Qv
Q v Q Pu P Q

P Q/P Q v Q/P u

P Q Qv Pu
labelling P Q

t s v t o t pat v o v s
w v o s w o pat v o

F t v F
s t F s

t s P t o e t v e v/P
P e

[KeSl89] Let and be co-initial reductions such that creates
a redex and does not contract residuals of any redex of having a residual
contracted in . Then the redexes in ( ) are created by and is
external to .

[Klo80, Lév78] Any reduction in which only redexes with a
bounded redex-index are contracted is terminating.

The above propositions are obtained for OCRS, but it is straight-
forward to carry them over OERSs.

(1) For any co-initial reductions and , the redex in the
final term of (read as ) is called a of a redex if ,
i.e., + , and is a -residual of ; the relation is the
symmetric and transitive closure of the copy relation [Lév80]. A relation
is an equivalence relation among redexes with histories containing the zig-zag
relation.

(2) For any co-initial reductions and , the redexes and are in the
same if for any initial labelling of the initial term of and ,
they bear the same labels.

Proposition 5.1 implies that the labelling-family relation is indeed a family
relation. As pointed out in [AsLa93], for OERSs in general the zig-zag and la-
belling family relations do not coincide. Below by family we always mean the
labelling-family.

In this section, we present a uniform proof of correctness of the needed strategy
that works for all stable sets of ‘normal forms’. Our proof is different from
all known proofs because properties of needed and unneeded components are
different in the general case (the main difference is that a component under an
unneeded component may be needed). However, the termination argument we
use is the same as in [KeSl89] and in [Mar92], and is based on Proposition 5.2.
The main idea and a proof in the same spirit is already in [Lév80].

Below in this section always denotes a stable set of terms.

Let , , , and let ( ) = . Further, let
be a -residual of and be a -descendant of . Then ( ) = .

Immediate from Definition 2.3.

Let be a set of redexes in , and let every redex be
external to . Then any development of is external to .

Let , : , , and be external to . Then is
external to every -descendant of .
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By Lemma 6.1, every -residual of is externa to each -descendant of
, and the lemma follows from Corollary 6.1.

(1) Let be disjoint, let : = be external
to , let : , let be all -descendants of
in , and let = : . Then is external to .

(2) If -suppresses , then -suppresses .

(1) By induction on . Let = + , let be -descendants
of , and let be -descendants of . By ( )
(Theorem 2.1.(4)), are -descendants of . By the in-
duction assumption, ( ) is external to . But by Lemma 6.2

is external to ; hence = + ( ) is external to
.

( )

(2) By (1) and closure of under parallel moves.

(1) Descendants of -unneeded redexes of remain -
unneeded.

(2) Residuals of -unneeded redexes of remain -unneeded.

(1) Let and . Then any -descendant of is con-
tained in some -descendant of .

(2) Let and ( ). Then ( ).
(3) Let and let ( ). Then ( ) iff ( ).

(1) By Definition 2.3.
(2) By (1) and Definition 4.1.
(3) From Definition 4.1, since a reduction -suppresses iff it -suppresses

(orthogonality of the system implies that any redex whose pattern contains
a symbol from a residual of ( ) coincides with ( ) and hence contains a
symbol from a residual of as well).

Note that if a component is below , then ( ) does not
necessarily imply ( ), although the inessentiality of the subterm corre-
sponding to implies that of the subterm corresponding to (Lemma 3.2.(3)).
Take for example = ( ) ( ) , and take for the set of terms not
containing occurrences of . Then is stable, is -needed in ( ), but ( ) is
not.
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Lemma 6.5

Theorem 6.1 Relative Normalization

Lemma 6.6
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Let , , ( ), and let be a -new redex. Then
( ).

( ) implies existence of : that -suppresses ( ); thus
is external to . By Corollary 5.1, is external to . Also, is -

normalizing since is closed under parallel moves. Hence is -unneeded.

We call : if it contracts only -needed redexes.

( ) Let be a stable set of terms in an
OERS .

(1) Any -normalizable term in contains an -needed redex.

(2) If is -normalizable, then any -needed reduction starting from
eventually ends at a term in .

(1) Let : be an -normalizing reduction that doesn’t contain
terms in except for . By the stability of , is -needed. By Corollary 6.2.(2)
and Lemma 6.5, it is either created by or is a residual of an -needed redex in
, and (1) follows by repeating the argument.

(2) Let : be an -normalizing reduction that doesn’t contain

terms in except for , and let : be an -needed reduction. Fur-

ther, let : and = ( 1). By Proposition 5.1,
( ) ( ). Since is -needed and is -normalizing (by the closure

of under parallel moves), at least one residual of is contracted in . There-
fore, again by Proposition 5.1, ( ) ( ). Hence ( ) ( ) and

is terminating by Proposition 5.2.

Let be -normalizable, let , , ( ), and ( ) =
. Then has at least one -needed -residual in . In particular, any -needed

redex different from has an -needed residual.

Let : be an -needed -normalizing reduction; there is one by
Theorem 6.1. Then if all -residuals of were -unneeded, would -suppress
them, and + would -suppress , a contradiction.
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