
Dactl: An Experimental Graph Rewriting
Language*

J.R.W.Glauert , J.R.Kennaway and M.R.Sleep

Declarative Systems Project, UEA, Norwich NR4 7TJ, U.K.

1 Introduction.
Term (or tree) rewriting systems have proved useful both as specifications and — though less
commonly — as practical systems for symbolic computation (see [HO82] for a practical system
with a sound theoretical underpining). Klop [Klo90] and Dershowitz and Jouannaud [Der89]
provide comprehensive treatments of term rewriting theory, which is now reasonably well
understood.

The idea of studying transformation systems based on graphs (as opposed to trees) dates back
at least to [Ros72], and a significant body of theory has been developed, most notably by the
Berlin school of Ehrig and others: [Ehr89] gives an authoritative overview.

Practical uses of ‘graph rewriting’ date back at least to Wadsworth [Wad71], which develops a
graph based representation of lambda terms and an associated implementation method for
normal order evaluation of lambda calculus expressions. The relation between tree and graph
rewriting has been studied in some detail [Sta80a, Sta80b, Bar87, Hof88, Far90]. The main
result is that sharing implementations produce the correct semantics at least for orthogonal term
rewrite systems1.

New generation Logic languages of the committed choice variety (for example Concurrent
Prolog [Sha86] and Parlog [Gre87]) may be viewed as specialised graph rewriting languages,
as may actor models such as DyNe [Ken85]. More recently Lafont [Laf89] has proposed an
interaction net model of computation which again may be viewed as specialised graph
rewriting, whose constraints are inspired by Girard’s work on Linear Logic.

In 1983 the authors undertook an ambitious project aimed at designing a common model of
computation which would be general enough to support a range of more restricted
computational models such as those required for functional, logic and actor-like languages. The
primary aim of the project was to produce a common target language (CTL) for a range of
symbolic processing languages, particularly functional languages and committed choice logic
languages. The project chose graph rewriting as the basis for its work.

The main success of the project was the design and implementation of a general model of
computation based on graph rewriting. The model is called DACTL (for Declarative Alvey
Compiler Target Language). The main failure of the project was that it proved difficult within
the timescale to develop the compiler technology necessary for Dactl to act as an efficient CTL:
we seriously underestimated the work needed here. Nevertheless, it was possible to
demonstrate working compilers for a surprisingly wide range of languages including HOPE,
LISP, PARLOG, GHC, ML and CLEAN within the timescale [Ham88,Gla88a,Gla88b],
[Ken90a].

The CTL motivations of the Dactl project are now mainly historical. What remains is one of the

* This work was partially supported by ESPRIT project no. 2025 (European Declarative System) and basic
research action no. 3074 (Semagraph).

1An orthogonal Term Rewrite System is both left linear, and non-overlapping.

Dactl: An Experimental Graph Rewriting Language Page 2

few genuine graph rewriting language implementations in existence. There is a stable,
reasonably engineered implementation of Dactl for the Sun with modular compilation facilities
and a comprehensive Unix interface, and a more recent implementation for Macintosh
computers which is in regular use. Our experience of the language design process, together
with our experience in using Dactl in its present form suggest that others may find it useful as
an experimental tool for exploring practical graph rewriting systems.

The paper is organised as follows. The remainder of this introductory section outlines the main
features of Dactl, and briefly describes the history of the Dactl project. The body of the paper
consists of a more detailed description of Dactl, and a variety of illustrations of its use. Finally,
the relationship between the operational semantics of a Dactl rewrite and categorical semantics
of graph rewriting is briefly discussed.

1.1 Main features of the Dactl language.
a. Dactl graphs are term graphs in the sense of [Bar87]1. That is, every node has a symbol
(or label) together with zero or more directed out-arcs to other nodes. Thus Dactl nodes
together with their symbols and out-arcs correspond to the labelled hyperedges used to model
term graph rewriting in the Jungle evaluation model developed more recently by Hoffmann and
Plump[Hof88].

b. A Dactl rewrite is atomic. This is expressed by requiring that every valid outcome of a
Dactl computation must correspond to an outcome which could be reached by sequential
execution. The great benefit of atomicity is that invariance of properties across individual rules
also holds for all valid executions. The cost is that an implementation must ensure that co-
existing conflicting rewrites are not executed concurrently. This may be done for example by
locking critical nodes. For certain classes of rule systems, it is possible to show that no locking
is needed to ensure the correctness of concurrent execution of rewrites[Ken88].

c. A Dactl rewrite may contain a multiple reassignment of out-arcs (called redirections in
Dactl terminology). It is this feature which gives Dactl much of its expressive power, allowing
non-declarative behaviours to be expressed.

d. Dactl graphs include control markings on the nodes and the arcs. These allow a wide
range of evaluation strategies and synchronization conditions to be expressed. The control
markings are an integral part of Dactl: a graph which contains no control markings is not
rewritable according to Dactl semantics, even if the graph contains redexes in the usual TRS
sense. Techniques for generating appropriate markings automatically are reported by
Kennaway [Ken90a], and Hammond and Papadopoulos [Ham88].

e. Dactl supports separate compilation, and a classification scheme for symbol usage
which allows the writer of a Dactl module to constrain external use of exported symbols by
appropriate symbol class declarations.

f. The implementation supports a comprehensive interface to Unix.

g. The implementation gathers statistics and execution traces corresponding to both
sequential and parallel execution.

Whilst it is clear that the design could be improved, we believe that this is best delayed until
there is significantly more experience with the present design. The current definitive reference
document for Dactl is Final Specification of Dactl [Gla88c], obtainable from the authors.

1.2 Project History.
In 1983 a number of ad-hoc meetings were held in the U.K. in an attempt to identify a common
basis for the development of parallel machines suited to the needs of the ‘new generation’

1In fact Dactl graphs are more general than those arising naturally from terms: Dactl graphs may be cyclic,
whereas 'term graphs' are DAGs.

Dactl: An Experimental Graph Rewriting Language Page 3

languages, particularly those based on logic formalisms (the logic languages) and those based
on the lambda calculus (the functional languages).

In April 1984 the U.K. Alvey directorate sponsored a meeting at the Royal Society of key
workers from academia and industry to consider a proposal to develop a common model of
parallel computation. The meeting identified strong polarization between those who believed
that efficiency was paramount, and those who believed that the benefits of working towards a
common model outweighed potential performance drawbacks. It was recognised that many
specialist parallel architectures would evolve which required specialist interfaces The outcome
of the meeting was a decision to proceed with a project whose aims were limited to identifying
a common model for ‘declarative’ languages.

By May 1985, work had reached the stage where a preliminary proposal for such an interface
could be given limited circulation. This was followed in September 1985 by the first release of
a reference interpreter for the preliminary version of the interface, which was given the title
Dactl (for Declarative Alvey Compiler Target Language).

During this period a consortium involving ICL, Imperial College, Manchester University and
East Anglia was formed to develop this early work in the context of the Alvey Flagship[Wat87]
project which focussed on declarative languages and parallelism. Alvey funded work on Dactl,
based at UEA, began in May 1986. The technical aims of the work were primarily concerned
with developing a precisely defined graph rewriting model of computation and exploring its
properties, working closely with the Flagship team. The development of the model was to be
expressed as a series of reports defining the model, together with a number of releases of
reference interpreters.

Work on the more formal aspects was aided by collaboration with the Dutch Parallel Reduction
Machine Project led by Prof.H.P.Barendregt. This collaboration led to a number of joint
publications[Bar87,Bar89], including a paper specifying a common abstract model of graph
rewriting called LEAN (which, apart from syntax, is essentially Dactl without the control and
synchronization markings).

This formal work with the Dutch, together with modified requirements input from the Flagship
team, led to a fundamental redesign of the computational model. A specification of the core
model resulting from this work was released in March 1987 (the Core Dactl report) and
accepted by Flagship shortly afterwards. A preliminary definition of a revised design of Dactl
was completed in June 1987. This was augmented by a release of the design in December 1987
which included a very detailed UNIX interface.

The final design of the language was released early in January 1989, and a consistent
supporting version of the reference interpreter followed shortly afterwards.

2 The Dactl Graph Rewriting Model of Computation.
We start by considering the canonical representation of graphs used by Dactl, and then describe
the form of rewriting rules in the language. Later we discuss the details of rewriting and control
of the rewriting process.

2.1 Dactl Graphs
A Dactl program manipulates directed graphs. Each node is labelled with a symbol which may
be interpreted as a function, predicate, or constructor according to the requirements of the
computation being implemented. From nodes will originate an ordered sequence of zero or
more directed arcs leading to successor nodes. Graphs may be cyclic and need not be
connected, but there is a distinguished node in the graph known as the root.. When considering
the final form of a graph, only nodes reachable from the root are (by definition) of interest.
Hence unreachable nodes which cannot affect the final form may be removed from the graph
along with their successor arcs.

The following examples give the textual and pictorial representation of two graphs.

Dactl: An Experimental Graph Rewriting Language Page 4

Pictorial form:
r:Append

s:Cons

z:0 n:Nil

Example 1: A DAG

Shorthand textual form: Append[s:Cons[0 Nil] s]

Equivalent longhand textual form: r: Append[s s],

s: Cons[z n],
z: 0, n: Nil

The longhand form is a tabular representation of the graph. A node is
made up of a symbol and a list of the identifiers of successor nodes.
Each node is given an identifier beginning with a lower-case letter. Integers and identifiers
beginning with an upper-case letter represent symbols. The root of the graph is taken to be the
first node specified. In the shorthand form we may combine the definition of a node with one
of its occurrences and may omit unnecessary node identifiers. Note that a graph equivalent to a
ground term may be described without using node identifiers.

Pictorial form:

c:Cons

o:1

Example 2: A Cyclic Structure
Shorthand textual form: c: Cons[1 c]

Equivalent longhand textual form: c: Cons[o c], o: 1

2.2 Dactl Rewriting Rules
The reduction relation for a Dactl system is described by a set of rewriting rules which describe
graph transformations.

The left-hand side of a rule consists of a pattern which is a generalisation of a Dactl graph. Any
Dactl graph as described above is a Dactl pattern. In addition, a pattern may contain special
pattern symbols, which match a class of symbols, and pattern operators. The simplest special
pattern symbol is ANY, which identifies a variable node. The pattern operators of Dactl are +, -
and & and represent union, difference and intersection respectively.

Before rewriting can take place, it is necessary to establish a match between a subgraph of the
program graph called a redex, and the pattern of a rule. Formally, this means identifying a
structure preserving mapping between the nodes on the pattern and the graph undergoing
rewriting.

The right-hand side of a rule includes the contractum graph, and a number of redirections.
Rewriting involves building the contractum, a copy of the right hand side of the rule, and
connecting it into the original graph according to the redirections specified as part of the rule.
Very frequently only a single redirection of the root is intended, and the syntax of Dactl
provides a special connective => between the left and right hand side of a Dactl rule for this
purpose.

The following example rules model the appending of lists. In shorthand form, the rules are:

Append[Cons[h t] y] => Cons[h Append[t y]] |
Append[Nil y] => y

Apart from the square brackets and the => and | symbols, these rules take the form of term
rewrite rules. It is a principle of Dactl design that the meaning of all shorthand is given by
translation to longhand canonical form. For the above rules, this involves a tabular listing of
the nodes in the pattern and the contractum, and the explicit inclusion of redirections, which
take the syntactic form of conventional assignment statements.

r: Append[c y], c: Cons[h t], h: ANY, t: ANY, y: ANY
-> s: Cons[h b], b: Append[t y], r:=s |

a: Append[n y], n: Nil, y: ANY -> a:=y

Dactl: An Experimental Graph Rewriting Language Page 5

2.3 Graph rewriting in Dactl.
The general form of a (longhand) Dactl rule is:

Pattern –> Contractum, Redirections, Activations

A single Dactl rewrite takes place in four phases, namely match, build, activate, and redirect..

The match phase identifies a graph homomorphism — that is, a structure-preserving mapping
— between the pattern and the graph undergoing rewriting.

The build phase adds new nodes (as specified by the contractum) to the graph. Where the
contractum contains occurrences of variable nodes these are replaced by their bindings

The redirect phase performs redirections which change the destination of some arcs of the
original graph, allowing the ‘gluing in’ of new contractum nodes into the existing graph.

The activate phase adds active node control markings to the nodes specified. This allows a rule
to propagate zero or more control loci.

These phases are described in more detail below.

2.3.1 Matching
A match is a graph homomorphism from the pattern of a rule to the program graph. Structure is
preserved by this mapping, except at variable nodes. There is a match between the pattern of
the rule:

r: Append[c:Cons[h:ANY t:ANY] y:ANY] => s:Cons[h b:Append[t y]]

and the following example graph:

Cons[0 r:Append[c:Cons[h:1 t:Nil] y:Nil]]

The subgraph of the program graph onto which the nodes of the pattern are mapped is known
as the redex. The root of the pattern has a special significance. We say that a pattern matches at
a node if the node in question is the root of a redex for the pattern. The matching process
identifies bindings for the variable nodes in the pattern: in the example given, the binding is
{y–>y, h–>h, t–>t} and takes this simple form because of the careful choice of node identifiers
in the subject graph.

Note that the atomic rewriting principle of Dactl allows us to ignore the operation of other
parallel rewriting activities in the graph in describing a rewrite.

c:Cons

r:Append

h:ANY t:ANY

y:ANY

c:Cons

r:Append

h:1 t:Nil

y:Nil

Cons

0

Dactl: An Experimental Graph Rewriting Language Page 6

2.3.2 Building

s:Cons

c:Cons

r:Append

h:1 t:Nil

y:Nil

Cons

0

b:Append

The second phase of rewriting builds a copy of
the contractum of the rule matched. The
contractum contains no pattern symbols, but
may contain occurrences of identifiers from the
pattern. During building, such occurrences
become arcs to the corresponding nodes
matched in the first phase. After building, the
example graph has the form:

Cons[0 r:Append[c:Cons[h:1 t:Nil] y:Nil]],
s: Cons[h b:Append[t y]]

where the new graph is on the second line. The build phase is missing for ‘selector’ rules, such
as the second rule of Append.

2.3.3 Activation
There are two means of propagating control loci in Dactl. One means is to specify some of the
new nodes in the contractum as active: this mechanism is sufficient for many applications.

The second means is to alter the control state of a pre-existing node in the graph undergoing
rewriting, and which has been matched to a node variable in the pattern. This is the function of
the activate phase of Dactl rewriting. Operationally it can be thought of as following a reference
acquired during the match phase, and changing the control marking of the relevant node to
indicate that a rewrite is to be attempted by the execution mechanism.

There is no implicit priority mechanism in Dactl: the execution mechanism may select any active
node available, and it is the responsibility of the Dactl programmer to program in any notion of
‘fairness’.

2.3.4 Redirection
The build phase allows the new portion of the graph to contain references to parts of the subject
graph. The purpose of the redirection phase is to allow references in the old graph to be
changed consistently to refer to parts of the new structure. Very general transformations are
possible, as any or all of the nodes identified by pattern variables may be redirected within a
single atomic rewrite1.

Following a rewrite according to the first rule of the Append example, we expect to find
references to the new Cons node, s, in place of references to the Append node. In other
words, we wish all arcs referencing the root node, r, to be redirected to reference s. Hence, all
occurrences of r as a successor of another node are replaced by s. The resulting graph,
including all the ‘garbage’ not reachable from the root, is:

1Whilst very general multiple redirections are allowed in Dactl, there are restrictions designed to ensure that a
Dactl rewrite is well defined. These restrictions very roughly correspond to the gluing conditions in the classical
double pushout model.

Dactl: An Experimental Graph Rewriting Language Page 7

s:Cons

c:Cons

r:Append
h:1

t:Nil y:Nil

Cons

0

b:Append

Cons[0 s:Cons[h:1 b:Append[t:Nil
y:Nil]]],
r: Append[c:Cons[h t] y]

In this case the original Append node may be
garbage collected. A common implementation
technique is to overwrite the Append node with
the contents of s, thus avoiding in practice the
overhead of supporting genuine physical
redirection of pointers.

Performing the redirections is the final phase of rewriting. Nodes from which arcs are
redirected are always nodes from the original graph. The target of the redirection may be in the
original graph, or in the contractum as in our example. The graph is left in a state where a redex
for the second rule exists. As before, we give the rule:

a: Append[n:Nil y:ANY] => y

and the graph, showing the match:
Cons[0 Cons[1 a:Append[n:Nil y:Nil]]]

No graph is built in the redirection phase of rewriting. The right hand side of the rule indicates
that the graph should be rewritten so that in place of the Append node at the root of the redex,
we now see the node referenced by the second argument, y. This parallels term rewriting
theory in which, following a corresponding rewrite, the original parent of a would find the
subterm rooted at y as its direct descendant in place of a. The effect of replacing all references
to a by y is the following graph:

Cons[0 Cons[1 y:Nil]], a:Append[n:Nil y]

No references to the Append node will now remain. It is common for implementations to re-
use the node by changing it to an indirection to y.

2.3.5 Pattern Operators
The Dactl rules illustrated so far are left-linear: the patterns can be expressed in shorthand form
with no repeated node identifiers. However, Dactl does allow repeated pattern identifiers in
which case each occurrence must match the same program graph node. This interpretation
arises naturally from the definition of matching in terms of a graph homomorphism.

In addition to the pattern symbol ANY, Dactl also provides three pattern operators. These are
expressed in infix notation. If Π and Σ are patterns, then the following are also patterns:

(Π + Σ) (Π - Σ) (Π & Σ)
A pattern can be regarded as defining a set, being the set of all Dactl graphs which will match
the pattern with the root of the graph being the root of the redex. The first two pattern operators
act like union and difference operators on such sets. Hence, the first form of pattern matches at
a node if either Π or Σ matches at the node and the second requires that Π matches, but Σ does
not. The & operator corresponds to set intersection.

These pattern operators will not be considered in detail in this paper, but they prove useful in
restricting cases where more than one rule may apply. For illustration, we give rules for the
ubiquitous factorial function in which we wish to exclude graphs matching the first rule from
matching the second:

Fac[0] => 1 |
Fac[n:(INT-0)] => IMul[n Fac[ISub[n 1]]]

Nearly all practical term rewriting languages are designed as priority rewrite systems [BEG87],
in which the textual ordering of the rules expresses rule priority. In Dactl it is possible to
disambiguate such rule systems by careful use of pattern expressions, and Dactl is unusual in
this respect.

However, priority rewrite semantics is both common and convenient, and so syntactic sugar is
provided in Dactl to support it. Rules separated by a semi-colon are matched in order, whereas

Dactl: An Experimental Graph Rewriting Language Page 8

rules separated by | may be dealt with in any order.
Fac[0] => 1 ;
Fac[n:INT] => IMul[n Fac[ISub[n 1]]]

There is an implicit use of the pattern difference operator to exclude graphs matching the pattern
of the first rule from matching the second rule. The obvious implementation, which has
significant performance benefits, is to consider the rules in the given textual order.

The graph rewriting framework, based on pattern-matching rules, gives great expressive power
to Dactl. Ambiguity required by languages allowing non-deterministic results is expressed by
systems in which redexes overlap. When disjoint redexes exist in a graph, concurrency can be
exploited by an implementation. Imperative and Object-oriented code which manipulates
program state can be implemented using rules which redirect references to nodes not at the
redex root. This technique can also be used to implement logic variables. The graphical basis
enables sharing of subterms to be expressed and exploited.

2.4 Control of evaluation in Dactl.
Dactl is concerned with control of evaluation as well as the properties of an abstract rewriting
system. During the design of Dactl we observed that differences in evaluation strategy
markedly affect both the ‘look and feel’ of a given language, and also the semantics. Even the
more modern ‘lazy’ functional languages include some operational rules about the way in
which pattern matching is handled in their semantics. Laville [Lav87], Kennaway [Ken90c]
and others have examined this problem, but in terms of language design the expression of
strategy and control remains a subtle problem. This is partly a human factors problem of
course, and hence not amenable to theory in its present state.

Faced with these problems we decided to include fine grain control and synchronization
markings as an integral part of Dactl. It was recognised at the time that contemporary
technology for parallel computing was easiest to exploit using coarse grain parallelism: our
work on the ZAPP architecture[McB87] did just that in the context of transputers. But
technology advances, and fine grain parallelism may look much more realistic quite soon.

The intuitive basis of Dactl’s control markings is that each agent executing a Dactl rule is a
locus of control of some process. In the von Neumann model, there is exactly one process and
exactly one locus of control. Each instruction appoints a unique successor. In a Dactl rule, zero
or more successor ‘control loci’ may be appointed either by creating new nodes active during
the build phase, or by activating nodes in the original graph during the activate phase. The
single syntactic token * serves for both purposes in Dactl.

An active node can be thought of as a process, and processes need to communicate and
synchronise. This leads to Dactl’s notification markings on arcs, which specify reverse
communication paths in the graph, and suspension markings on nodes to enable the expression
of processes suspended awaiting a certain number of events.

A fundamental design question for Dactl was ‘when should rewriting agents communicate?’.
The decision taken was to adopt a single, very simple rule:

Dactl rewriting agents communicate when they attempt a match at an active node, and the match
fails.

Intuitively, failure to match indicates that some sort of temporally local normal form has been
reached: it’s not in general a normal form, because future Dactl rewrites may make it a redex.
But failure to match at a node is a key event, worth signalling to all who have marked
references to the node and this is the principle adopted in Dactl.

2.4.1 Dactl Markings
Dactl encodes the strategy in a pattern of markings on the nodes and arcs of the program graph.
There are two forms of node marking and a single form of arc marking:

Dactl: An Experimental Graph Rewriting Language Page 9

The most important node marking is the activation denoted by *. Only activated nodes are
considered as the starting points of rule matching. Once a Dactl program graph contains no
activations, execution is complete and the graph viewed from the root is the result of
computation. It may, or may not, be in normal form with respect to the rewrite rules stripped of
markings.

The marking # indicates a suspended node, and a node may have one or more such markings
enabling it to await a specified number of notification events before becoming active again. The
node concerned will not be considered for matching immediately, but will be reconsidered
when the corresponding number of notifications is received.

The arc marking ^ is used in conjunction with # for such synchronization purposes. It
indicates a notification path between the target of the arc and its source. When evaluation of the
target is complete in the sense that rule matching fails (for example because it has been
redirected to a node with a constructor symbol) the arc marking is removed along with a #
marking on the source node, if present. When the last # is removed, it is replaced by *, thus
making the node active. This supports a model of evaluation close to dataflow since operators
wait until their operands are available before being rewritten.

The operator * may also be used on the right hand side before the identifier of a node matched
by the pattern. This is taken as an instruction to activate the corresponding node if it is currently
neither active nor suspended.

All the markings, including both uses of * are illustrated by the following version of the
Append rules:

Append[Cons[h t] y] => #Cons[h ^*Append[t y]] |
Append[Nil y] => *y

2.4.2 Dactl Rewriting with Markings
If matching succeeds at an active node, the * marking is removed, the contractum is built,
required nodes are activated, and redirections are performed. Most rules redirect references to
the original root node which may then be garbage collected.

The criterion for notification is failure to match an active node to any rule. The activation
marker is removed from the node and any notifications required by direct ancestors are
performed. Matching failure most commonly occurs with constructor nodes for which there are
no rules. To return a result therefore, a rule will usually redirect its root to an activated
constructor node. Considering the marked rules given above with a new graph of the form:

a:*Append[k:Cons[o:1 n:Nil] k]

We see that there is a redex for the first rule with the node k in the graph matched by more than
one part of the pattern. It is perfectly consistent for a tree-structured pattern to match a graph
with sharing. After rewriting, the structure is:

m:#Cons[o:1 ^b:*Append[n:Nil k:Cons[o n]]], a:Append[k k]

The original node a is now garbage and can be removed. There is now a redex for the second
rule and the graph is rewritten to:

m:#Cons[o:1 ^k:*Cons[o n:Nil]], b:Append[n k]

The node b is now garbage. Evaluation is now complete, but notification of the ancestors of an
Append node is delayed until the whole operation is complete. This is achieved by suspending
the Cons node m waiting for evaluation of the rest of the list. Cons is a constructor so
matching fails and the parent node, m, is notified and hence activated:

m:*Cons[o:1 k:Cons[o n:Nil]]

Again, the Cons node, m, will match nothing, so the final graph will be:
m:Cons[o:1 k:Cons[o n:Nil]]

The examples used display no concurrency during evaluation. Concurrency arises when the
right-hand side of a rule contains several active nodes so that the rule nominates many
successors to receive control. Also, several nodes may be suspended awaiting notification from

Dactl: An Experimental Graph Rewriting Language Page 10

the same node, and all will be activated once it is evaluated.

3 Some Dactl Examples.

3.1 Sorting.
MODULE SortModule;
IMPORTS Arithmetic; Logic; Lists;
SYMBOL REWRITABLE PUBLIC CREATABLE Sort;
SYMBOL REWRITABLE Insert;Compare;
RULE

Sort[x:Nil] => *x;
Sort[Cons[h t]] => #Insert[h ^ *Sort[t]];

Insert[n x:Cons[h t]] => #Compare[^*IGt[n h] n x];
Insert[n Nil] => #Cons[^ *n Nil];
Insert[n x:(ANY-Nil-Cons[ANY ANY])] => #Insert[n ^ *x];

Compare[True n x:Cons[h t]] => #Cons[h ^*Insert[n t]];
Compare[False n x] => *Cons[n x];

ENDMODULE SortModule;

The following module illustrates the use of the sort module.
MODULE SortTest;
IMPORTS SortModule;
RULE

INITIAL => *Sort[Cons[5 Cons[2 Cons[9 Cons[3 Cons[1 Nil]]]]]];
ENDMODULE SortTest;

3.2 A simple Head Normal Form reducer for Combinatory Logic
We use explicit binary application, and define patterns for HNF (Head Normal Form) and also
for redexes. This allows us to write just 3 rules, two for the redex cases and one for the
(ANY–Redex–Hnf) case.

MODULE SK1;
SYMBOL REWRITABLE PUBLIC CREATABLE Ap;
SYMBOL CREATABLE PUBLIC CREATABLE S; K;
PATTERN PUBLIC Hnf = (S+K+Ap[(S+K) ANY]+Ap[Ap[S ANY] ANY]);
PATTERN Redex = (Ap[Ap[K ANY] ANY] + Ap[Ap[Ap[S ANY] ANY] ANY]);
RULE

Ap[Ap[K x] y] => *x;
Ap[Ap[Ap[S f] g] x] => *Ap[Ap[f x] Ap[g x]];
(Ap[x y]&(ANY-Redex-Hnf)) => #Ap[^x y], *x;

ENDMODULE SK1;

If we activate a combinatory term in the presence of these rules, it will notify if and when it
reaches a head normal form. For example,

*Ap[Ap[Ap[S S] K] Ap[Ap[K S] K]]

(representing the combinatory term which would conventionally be denoted by SSK(KSK))
will when evaluated by these rules notify when it reaches the form

Ap[Ap[S x] Ap[K x]], x:Ap[Ap[K S] K]

(representing the term S x (K x) where x=KSK). To obtain a normalising reducer we add the
following rules:

Ap[K x] –> *x;
Ap[S x] –> *x;
Ap[Ap [S f] g] –> *f, *g;

The left-hand sides of these rules together match all terms in head normal form, and only such
terms. They do not do any redirection, but merely activate their components. The effect is to
obtain the normal form of any term which has one; however, the parents of such a computation

Dactl: An Experimental Graph Rewriting Language Page 11

will not be notified when it has completed. A notifying solution can be obtained at the expense
of slightly complicating the rule set.

3.3 Graph Copying.
It is something of a surprise to newcomers to graph rewriting that graph copying is not
automatically a primitive operation. The primary reason is that graph rewriting models such as
Dactl seek primitives which are bounded at least by the size of rule. Provided such primitives
can be used to express copying as a graph reasonably efficiently with respect to the primitives,
the lack of a graph copy primitive is not seen as a cause for concern. We give two solutions to
the graph copying problem.

3.3.1 Non-notifying solution.
Here is a simple Dactl program which copies a graph constructed from the symbols Pair and
Leaf. It creates two copies of a graph, but does not restore either copy to the original context,
nor does is notify when the copying operation is complete.

MODULE CopyGraph;
SYMBOL GENERAL Leaf;Pair;L;R;Copy;D;
RULE

INITIAL => *Copy[r:Pair[s:Pair[t:Pair[u:Pair[r t] s] r] u]];
Copy[r:Leaf] -> r':D[Leaf Leaf], r:=r';
Copy[r:Pair[a b]] -> r':D[*Pair[a b L] *Pair[a b R]], r:=r',

 *Copy[a], *Copy[b];
Pair[D[ll lr] D[rl rr] L] => Pair[ll rl];
Pair[D[ll lr] D[rl rr] R] => Pair[lr rr];

ENDMODULE CopyGraph;

The essential feature of the program is to perform a recursive scan of the graph from the root,
replacing all references to the nodes encountered by references to copies 'guarded' by the
symbol D. Besides inheriting all references to the original node, the guard acts as a stopper for
the copying processes in the case of circular graphs. The two copies of a Pair node made under
a D guard are distinguished by the additional symbols L or R, thus exploiting Dactl’s freedom
to use the symbol Pair with differing arities (2 and 3 in this case). The rules for the ternary use
of the Pair symbol extract two distinct copies of the graph.

3.3.2 A full solution.
The solution above illustrates the basic principle of graph copying in Dactl, but fails to preserve
a version of the original graph in context. The following solution does this, and in addition
notifies when the operation is complete.

MODULE GraphRestore;
SYMBOL OVERWRITABLE Nay; Yea;
SYMBOL REWRITABLE CopyRestore; RestoreCopy; Copy; Restore; Sync;
SYMBOL CREATABLE MPair; MLeaf; Hold;
RULE

INITIAL => Hold[*CopyRestore[r] r s l],
 r: MPair[s s:MPair[r l:MLeaf[Nay] Nay] Nay];

CopyRestore[g] => #RestoreCopy[^*Copy[g] g];
RestoreCopy[n o] => #Hold[n ^*Restore[o]];
Copy[MPair[l r n:Nay]] =>

##Sync[^ml:*Copy[l] ^mr:*Copy[r] y],
n := Yea[y:MPair[ml mr Nay]];

Copy[MPair[l r Yea[p]]] => *p;
Copy[MLeaf[n:Nay]] => y:*MLeaf[Nay], n := Yea[y];
Copy[MLeaf[Yea[y]]] => *y;
Restore[p:MPair[l r y:Yea[n]]] =>

##Sync[^*Restore[l] ^*Restore[r] p], y := Nay;
Restore[p:MPair[l r Nay]] => *p;
Restore[l:MLeaf[y:Yea[n]]] => *l, y := Nay;

Dactl: An Experimental Graph Rewriting Language Page 12

Restore[l:MLeaf[Nay]] => *l;
Sync[a b c] => *c;

ENDMODULE GraphRestore;

Note that this solution assumes that each node supports a housekeeping argument (set to Yea or
Nay). This is not an unrealistic assumption in practical implementations.

4 Translating other languages to Dactl.
The translation of strongly sequential term rewrite systems to Dactl (complete with correct
control markings) is described in [Ken90a]. Translation schemes for both functional and logic
languages to Dactl are described in [Ham88]. Here we give some brief examples intended to
illustrate the techniques used.

4.1 Strict Evaluation
We gave some rules for evaluating the Append The form of evaluation illustrated earlier for
Append will fail to rewrite if the first argument has yet to be evaluated to a list. An extra rule of
this form would ensure evaluation:

Append[x y] => #Append[^*x y]

Although the first argument will be evaluated, rewriting may complete without evaluating the
second argument to a list. To force the function to be strict, we should add rules to coerce the
result to a list. The full set would be:

RULE
Append[Cons[h t] y] => #Cons[h ^*Append[t y]] |
Append[Nil y] => *ForceList[y] ;
Append[x y] => #Append[^*x y] ;

RULE
ForceList[n:Nil] => *n |
ForceList[Cons[h t]] => #Cons[h ^*ForceList[t]] ;
ForceList[a] => #ForceList[^*a] ;

4.2 Lazy Evaluation
It is common to use a more lazy form of evaluation to head-normal form. Roughly, this means
that evaluation proceeds until the outermost node of the expression is a constructor. The rules
would be:

RULE
Append[Cons[h t] y] => *Cons[h Append[t y]] |
Append[Nil y] => *y ;

The recursive application of Append is not reduced by the first rule. The result of the second
rule is activated, however, and should reduce to a constructor. A default rule could be
employed in case the first argument was not a Cons or Nil. Techniques have been developed
at UEA for the translation of the functional language Clean which ensure that arguments have
always been evaluated sufficiently so that such default rules are not needed[Ken90a].

4.3 Early Completion
To allow for stream parallelism an early completion scheme can be used. In this, we notify
when a head-normal form has been produced, but continue to evaluate to normal form at the
same time:

RULE
Append[Cons[h t] y] => *Cons[h *Append[t y]] |
Append[Nil y] => *ForceList[y] ;
Append[x y] => #Append[^*x y] ;

RULE
ForceList[n:Nil] => *n |
ForceList[Cons[h t]] => *Cons[h *ForceList[t]] ;

Dactl: An Experimental Graph Rewriting Language Page 13

ForceList[a] => #ForceList[^*a] ;

4.4 Examples from moded Logic programming.
Translating flat concurrent logic languages to Dactl has been studied at UEA and by the Parlog
group at Imperial College. We illustrate the flavour of these translations using an alternative
technique for Append. The rule will attempt to instantiate the third argument with the result of
appending the second argument to the first. The symbol Var1 indicates an uninstantiated
variable. This may be replaced by a data value by redirection of arcs to a non-root node. This is
the basis of many techniques in Dactl for handling logic and object-oriented programming.

The rule set used would be as follows:
RULE

root:Append[Nil y:(ANY-root) v:Var] => *Succ, v:=*y |
Append[Cons[h t] y v:Var] => *Append[t y n:Var],

 v:=*Cons[h n] |
Append[x:Var y v:Var] => #Append[^x y v] ;
Append[x y v] => *Fail ;

In the first case the variable, v, is instantiated to the second argument. By firing it, we force a
notification to be passed to any node suspended waiting for this instantiation. The second rule
is similar, but we notify those awaiting v with a Cons node whose second argument is a
variable which will be instantiated eventually by the evaluation of the new Append.

The third rule suspends on the variable, but does not activate it. Activation would be pointless
since there are no rules for Var and notification would return immediately. However,
notification will be provoked eventually by the rule which instantiates the variable. The final,
failure case indicates that the first argument is some data value, but not a list, or that the third
argument is not a variable. We will illustrate evaluation of the following graph:

Res[r], *Append[a Cons[2 Nil] r:Var], *Append[Nil Cons[1 Nil] a:Var]

Taking the first active node:
=> Res[r], #Append[^a Cons[2 Nil] r:Var],

*Append[Nil c:Cons[1 Nil] a:Var]

The term suspends until the variable is instantiated:

*Append #Append Res

r:Vara:Var Cons

2 Nil

Cons

1 Nil

Nil

^

=> Res[r], #Append[^c Cons[2 Nil] r:Var],
*Succ, c:*Cons[1 Nil]

*Succ #Append Res

r:VarCons

2 Nil

*Cons

1 Nil

^

1Note that Var is not a special symbol in Dactl: we could have chosen other symbols for this example. It is the
rule system, together with the graph rewriting semantics of Dactl, which make Var have some of the properties
of a logic variable.

Dactl: An Experimental Graph Rewriting Language Page 14

=> Res[r],
*Append[c:Cons[h:1 t:Nil] y:Cons[2 Nil] r:Var]

=> Res[d], *Append[t:Nil y:Cons[2 Nil] n:Var],
d:*Cons[h:1 n]

*Append Res

d:*ConsCons

2 Nil

Nil

1 n:Var

=> Res[Cons[1 y]], *Succ, y:*Cons[2 Nil]

And Finally:
=> Res[Cons[1 Cons[2 Nil]]]

5 Categorical Semantics.
The semantics of Dactl can be divided into two parts:

a. the semantics of an individual graph rewrite.

b. the semantics associated with Dactl’s control markings.

In [Ken90b] one of us has presented a category-theoretic definition of graph rewriting in the
category of jungles. It unifies the two previous categorical models of [Rao84,Ken87] and
[Ehr79].. Our concern in that paper was to describe term graph rewriting, but in fact the
definitions given there are general enough to describe Dactl rewrites as well, at least for part
(a). In fact, the semantics thus obtained is the “overwriting” of the final version of Dactl,
rather than the “redirection” previously used in earlier versions. This may be seen as
confirming the decision to make this change.

We have not yet addressed the question of a more mathematical semantics for control
markings. One approach is to consider them as function symbols in their own right. However,
this might result merely in an intractable encoding of their role, a more direct treatment being
preferable.

6 Conclusion.
We have described a practical language of graph rewriting, and given a wide range of examples
of its use. These range from graph manipulation algorithms to translations from functional and
logic languages. The semantics of an individual Dactl rewrite agrees with that obtained from the
categorical constructions of [Ken90b]1. Both the design and implementations of Dactl are
reasonably stable.

7 Acknowledgements.
Nic Holt, Mike Reeve and Ian Watson made major contributions to the design of Dactl. Kevin
Hammond designed the Unix interface. The implementation work was done mainly by Geoff
Somner more recently by Ian King. Much of the early work on Dactl was supported by SERC
grant no. GR/D59502. Ian King contributed with helpful comments on early drafts of this
paper.

1This correspondence holds only for the final version of the Dactl design, which was significantly influenced by
the theoretical work.

Dactl: An Experimental Graph Rewriting Language Page 15

8 References.
[Bar87] Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plasmeijer, M.J., and

Sleep, M.R., 1987, “Term graph rewriting”, Proc. PARLE conference, Lecture Notes in Computer
Science, 259, 141–158, Springer.

[Bar89] Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plasmeijer, M.J., and
Sleep, M.R., 1989, “Lean: An Intermediate Language Based on Graph Rewriting” Parallel
Computing, 9, 163-177.

[BEG87] Baeten J.C.M, Bergstra J.A. and Klop J.W., "Term Rewriting Systems with Priorities", Rewriting
Techniques and Applications, Bordeaux France 1987, Lecture Notes in Computer Science, 257, 83–
94, Springer

[Der89] Dershowitz, N., and Jouannaud, J.P., 1989, “Rewrite Systems”, Chap. 15. in Handbook of
Theoretical Computer Science, B, North-Holland.

[Ehr79] Ehrig H, "Tutorial introduction to the algebraic approach of graph grammars", in Lecture Notes in
Computer Science, 73, 83–94, Springer

[Ehr89] Ehrig, H., and Löwe, M., (eds), 1989, “GRA GRA: Computing by Graph Transformation”, report of
ESPRIT Basic Research Action Working Group 3299.

[Far90] Farmer, W.M., Ramsdell, J.D., and Watro, R.J., 1990 “A correctness proof for combinator
reduction with cycles”, ACM TOPLAS, 12, 123-134

[Gla88a] Glauert, J.R.W., Hammond, K., Kennaway, J.R., and Papadopoulos, G.A., 1988, “Using Dactl to
Implement Declarative Languages”, Proc. CONPAR 88.

[Gla88b] Glauert, J.R.W., and Papadopoulos, G.A., 1988, “A Parallel Implementation of GHC”, Proc.
International Conference on Fifth Generation Computer Systems 1988. ICOT, Tokyo.

[Gla88c] Glauert, J.R.W., Kennaway, J.R., Sleep, M.R., and Somner, G.W., 1988, “Final Specification of
Dactl”, Report SYS-C88-11, School of Information Systems, University of East Anglia, Norwich,
U.K.

[Gre87] Gregory, S., 1987, “Parallel Logic Programming in PARLOG – The Language and its
Implementation”, Addison-Wesley, London.

[Ham88] Hammond, K., and Papadopoulos, G.A., 1988, “Parallel Implementations of Declarative Languages
based on Graph Rewriting” UK IT 88 Conference Publication, IEE.

[HO82] Hoffmann C. and O'Donnell M.J., 1982, "Programming with equations", ACM Transactions on
Programming Languages and Systems, 83-112.

[Hof88] Hoffmann, B., and Plump, D., 1988, “Jungle Evaluation for Efficient Term Rewriting”, Proc. Joint
Workshop on Algebraic and Logic Programming, Mathematical Research, 49, 191-203, Akademie-
Verlag, Berlin.

[Ken85] Kennaway,J.R. and Sleep,M.R. Syntax and informal semantics of DyNe. in The Analysis of
Concurrent Systems, LNCS207, Springer-Verlag 1985.

[Ken87] Kennaway, J.R., 1987, “On ‘On graph rewritings’”, Theor. Comp. Sci., 52, 37–58

[Ken88] Kennaway, J.R., 1988, “The correctness of an implementation of functional Dactl by parallel
rewriting”, Proc. Alvey Technical Conference.

[Ken90a] Kennaway, J.R., 1990, “Implementing Term Rewrite Languages in Dactl”, Theor. Comp. Sci., 72,
225-250.

[Ken90b] Kennaway, J.R., 1990, “Graph rewriting in a category of partial morphisms”, paper presented at the
Fourth International Workshop on Graph Grammars, Bremen, 1990.

[Ken90c] Kennaway, J.R., 1990, “The specificity rule for lazy pattern-matching in ambiguous term rewrite
systems”, Third European Symposium on Programming, LNCS v.432, pp 256–270, Springer-
Verlag.

[Klo90] Klop, J.W., 1990, “Term rewriting systems”, Chap. 6. in Handbook of Logic in Computer Science,
1, (eds. Abramsky, S., Gabbay, D., and Maibaum, T.), Oxford University Press.

[Laf89] Lafont Y, "Interaction Nets", LIENS report, Paris 1989 (also 1990 POPL).

[McB87] McBurney, D.L., and Sleep, M.R., 1987, “Transputer-based experiments with the ZAPP
architecture”, Proc. PARLE conference, Lecture Notes in Computer Science, 258, 242–259,
Springer.

Dactl: An Experimental Graph Rewriting Language Page 16

[Pap89] Papadopoulos, G.A., 1989, “Parallel Implementation of Concurrent Logic Languages Using Graph
Rewriting Techniques”, Ph.D. Thesis, University of East Anglia, UK.

[Rao84] Raoult, J.C., 1984, “On graph rewritings”, Theor. Comp. Sci., 32, 1–24.

[Ros72] Rosenfeld A and Milgram D.L., "Web automata and web grammars", Machine Intelligence 7 (1972),
307-324.

[Sha86] Shapiro, E.Y., 1986, “Concurrent Prolog: A Progress Report”, Fundamentals of Artificial
Intelligence - An Advanced Course, Lecture Notes in Computer Science, 232, Springer.

[Sta80a] Staples, J., 1980, “Computation on graph-like expressions”, Theor. Comp. Sci., 10, 171-185.

[Sta80b] Staples, J., 1980, “Optimal evaluations of graph-like expressions”, Theor. Comp. Sci., 10, 297-
316.

[Wad71] Wadsworth, C.P., 1971, Semantics and pragmatics of the lambda-calculus, Ph.D. thesis, University
of Oxford.

[Wat87] Watson, I, Sargeant, J., Watson, P., and Woods, V., 1987, “Flagship computational models and
machine architecture”, ICL Technical Journal, 5, 555–594.

