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Abstract. This chapter describes the design of Hume: a domain-specific
language targeting real-time embedded systems. Hume provides a num-
ber of high level features including higher-order functions, polymorphic
types, arbitrary but sized user-defined data structures, asynchronous pro-
cesses, lightweight exception handling, automatic memory management
and domain-specific meta-programming features, whilst seeking to guar-
antee strong space/time behaviour and maintaining overall determinacy.

1 The Real-Time Embedded Systems Domain

Over the last decade, embedded systems have become a fundamental part of
everyday society in the form of systems such as automotive engine control units,
mobile telephones, PDAs, GPS receivers, washing machines, DVD players, or
digital set-top boxes. In fact, today more than 98% of all processors are used in
embedded systems [32]. The majority of these processors are relatively slow and
primitive designs with small memory capabilities. In 2002, 75% of embedded
processors used 8-bit or 16-bit architectures and a total of a few hundreds of
bytes is not uncommon in current micro-controller systems.

The restricted capabilities of embedded hardware impose strong requirements
on both the space and time behaviour of the corresponding firmware. These lim-
ited capabilities are, in turn, a reflection of the the cost sensitivity of typical
embedded systems designs: with high production volumes, small differences in
unit hardware cost lead to large variations in profit. At the same time software
production costs must be kept under control, and time-to-market must be min-
imised. This is best achieved by employing appropriate levels of programming
abstraction.



1.1 Domain-Specific Versus General-Purpose Language Design

Historically, much embedded systems software/firmware was written for specific
hardware using native assembler. Rapid increases in software complexity and
the need for productivity improvement means that there has been a transition
to higher-level general-purpose languages such as C/C++, Ada or Java. Despite
this, 80% of all embedded systems are delivered late [11], and massive amounts
are spent on bug fixes: according to Klocwork, for example, Nortel spends on
average $14,000 correcting each bug that is found once a system is deployed.
Many of these faults are caused by poor programmer management of memory
resources [29], exacerbated by programming at a relatively low level of abstrac-
tion. By adopting a domain-specific approach to language design rather than
adapting an existing general-purpose language, it is possible to allow low-level
system requirements to guide the design of the required high level language fea-
tures rather than being required to use existing general-purpose designs. This is
the approach we have taken in designing the Hume language, as described here.

Embedding a domain-specific language into a general purpose language such as
Haskell [25] to give an embedded domain-specific language has a number of ad-
vantages: it is possible to build on existing high-quality implementations and
to exploit the host language semantics, defining new features only where re-
quired. The primary disadvantage of the approach is that there may be a poor
fit between the semantics of the host language and the embedded language. This
is especially significant for the real-time domain: in order to ensure tight bounds
in practice as well as in theory, all language constructs must have a direct and
simple translation. Library-based approaches suffer from a similar problem. In
order to avoid complex and unwanted language interactions, we have therefore
designed Hume as a stand-alone language rather than embedding it into an ex-
isting design.

1.2 Language Properties

McDermid identifies a number of essential or desirable properties for a language
that is aimed at real-time embedded systems [23].

— determinacy — the language should allow the construction of determinate
systems, by which we mean that under identical environmental constraints,
all executions of the system should be observationally equivalent;

— bounded time/space — the language must allow the construction of systems
whose resource costs are statically bounded — so ensuring that hard real-time
and real-space constraints can be met;

— asynchronicity — the language must allow the construction of systems that
are capable of responding to inputs as they are received without imposing
total ordering on environmental or internal interactions;

— concurrency — the language must allow the construction of systems as com-
municating units of independent computation;
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Fig. 1. Hume Design Space

— correctness — the language must allow a high degree of confidence that con-
structed systems meet their formal requirements [1].

Moreover, the language design must incorporate constructs to allow the con-
struction of embedded software, including:

— exception handling to deal with runtime error conditions;
— periodic scheduling to ensure that real-time constraints are met;
— anterrupts and polling to deal with connections to external devices.

Finally, we can identify a number of high-level features that assist program
construction and reduce overall software costs:

— automatic memory management eliminates errors arising from poor manual
memory management;

— strong typing eliminates a large number of programming errors;

— higher-order functions abstract over common patterns of computation;

— polymorphism abstracts internal details of data structures;

— recursion allows a number of algorithms, especially involving data structures,
to be expressed in a natural, and thus robust fashion.

1.3 The Hume Design Model

The Hume language design attempts to maintain the essential properties and fea-
tures required by the embedded systems domain outlined above (especially for



transparent time and space costing) whilst incorporating as high a level of pro-
gram abstraction as possible. We aim to target applications ranging from simple
micro-controllers to complex real-time systems such as Smart Phones. This am-
bitious goal requires us to incorporate both low-level notions such as interrupt
handling, and high-level ones of data structure abstraction etc. Of course such
systems will be programmed in widely differing ways, but the language design
should accommodate these varying requirements.

We have designed Hume as a three-layer language [15]: an outer (static) declar-
ation/metaprogramming layer, an intermediate coordination layer describing a
static layout of dynamic processes and the associated devices, and an inner layer
describing each process as a (dynamic) mapping from patterns to expressions.
The inner layer is stateless and purely functional. Rather than attempting to
apply cost modelling and correctness proving technology to an existing language
framework either directly or by altering a more general language (as with e.g.
RTS;j [7]), our approach is to design Hume in such a way that we are certain that
formal models and proofs can be constructed. We envisage a series of overlapping
Hume language levels as shown in Figure 1, where each level adds expressibility
to the expression semantics, but either loses some desirable property or increases
the technical difficulty of providing formal correctness/cost models.

2 Boxes and Coordination

Figure 2 shows the (simplified) syntax of Hume. Bozxes are the key structuring
construct. They are abstractions of finite state machines mapping tuples of in-
puts to tuples of outputs. The mapping is defined in a functional style, relating
input patterns to output expressions. For example, we can define a box that acts
like a binary and-gate as:

box band in ( bl, b2 :: bit ) out ( b :: bit)
match (1,1) -> 1
| (,.) => 0;

Although the body of a box is a single function, the process defined by a box will
iterate indefinitely, repeatedly matching inputs and producing the corresponding
outputs, in this case a single stream of bits representing a binary-and of the two
input streams. Since a box is stateless, information that is preserved between
box iterations must be passed explicitly between those iterations through some
wire (Section 2.1). This roughly corresponds to tail recursion over a stream in
a functional language [22], as recently exploited by E-FRP, for example [33]. In
the Hume context, this design allows a box to be implemented as an uninter-
ruptible thread, taking its inputs, computing some result values and producing
its outputs [15]. Moreover, if a bound on dynamic memory usage can be prede-
termined, a box can execute with a fixed size stack and heap without requiring
garbage collection [14].



program ::= decly ; ... ; decl, n>1
decl ::= box | function | datatype | exception | wire
| device | operation

function ::= var matches

datatype ::= data idai ... am = constri| ... | constry, n>1
constr .:= con 7 ... Tn n>1
exception ::= exception id [ :: 7 ]

wire 1= wire linky to linky [ initially cezpr ]

link ::= connection | deviceid

connection = boxid . warid

box ::= box id ins outs fair/unfair matches

[ handle eznmatches ]|

ins/outs/ids := ( idi , ... , idn )
matches ::= match1 | ... | matchn, n>1
match ::= ( pat, , ... , pat, ) — expr
expr = int | float | char | bool | string | var | *
| con expr, ... expr, n>0
| ¢ expry , ... , expr, ) n>2
| if cond then ezpr; else expr,
| let waldecly ; ...; wvaldecl, in expr

| expr within ( time | space )

valdecl ::= id = expr
pat = int | float | char | bool | string | var | - | * | _*
| con var; ... vary n>0
| ¢ pat, , ... , pat, ) n>2
device ::= (stream | port | fifo | memory | interrupt) devdesc
devdesc ::= id | (from | to) string | within time raising id | ]
operation := operation id as string :: T

Fig. 2. Hume Syntax (Simplified)

2.1 Wiring

Boxes are connected using wiring declarations to form a static process network.
A wire provides a mapping between an output link and an input link, each of



which may be a named box input/output, a port, or a stream. Ports and streams
connect to external devices, such as parallel ports, files etc. For example, we
can wire two boxes band and bor into a static process network linked to the
corresponding input and streams as follows:

box band in ( bl, b2 :: bit ) out ( b :: bit)
box bor in ( bl, b2 :: bit ) out ( b :: bit)

stream inputl from "idevl"; stream input2 from "idev2";
stream input3 from "idev3"; stream output to "odev";

wire inputl to band.bl; wire input2 to band.b2;
wire band.b to bor.bl; wire input3 to bor.b2;
wire bor.b to output;

initial band.b = 1;

Note the use of an initialiser to specify that the initial value of the wire connected
to band.b is 1.

2.2 Asynchronous Coordination Constructs
The two primary Hume constructs for asynchronous coordination are [15] to
ignore certain inputs/outputs and to introduce fair matching. For example, a

template for a fair merge operator can be defined as:

template merge ( mtype )

in ( xs :: mtype, ys :: mtype)
out ( xys :: mtype)
fair
(x, *) > x
I G, 59 >y

This matches two possible (polymorphic) input streams xs and ys, choosing
fairly between them to produce the single merged output xys. Variables x and
y match the corresponding input items in each of the two rules. The *-pattern
indicates that the corresponding input position should be ignored, that is the
pattern matches any input on the corresponding wire, without consuming it.
Such a pattern must appear at the top level. Section 3.4 includes an example
where an output is ignored.

3 Exceptions, Timing and Devices

3.1 Exceptions

Exceptions are raised in the expression layer and handled by the surrounding
box. In order to ensure tight bounds on exception handling costs, exception



handlers are not permitted within expressions. Consequently, we avoid the hard-
to-cost chain of dynamic exception handlers that can arise when using non-real-
time languages such as Java or Concurrent Haskell [26]. The following (trivial)
example shows how an exception that is raised in a function is handled by the
calling box. Since each Hume process instantiates one box, the exception handler
is fixed at the start of each process and can therefore be called directly. A static
analysis is used to ensure that all exceptions that could be raised are handled
by each box. We use Hume’s as construct to coerce the result of the function £
to a string containing 10 characters.

exception Div0O :: string 10

f n=if n == 0 then raise Div0 "f" else (n / 0) as string 10;

box example in (¢ :: char) out (v :: string 29) handles Div0
match n -> fn

handle Div0 x -> "Divide by zero in: " ++ x;

3.2 Timing

Hume uses a hybrid static/dynamic approach to modelling time. Expressions
and boxes are costed statically using a time analysis (as outlined in Section 4
for FSM-Hume programs). Since it is not possible to infer costs for arbitrarily
complex full Hume programs, we provide a mechanism for the programmer to
introduce time information where this has been derived from other sources, or
to assert conditions on time usage that must be satisfied at runtime. Dynamic
time requirements can be introduced at two levels: inside expressions, the within
construct is used to limit the time that can be taken by an expression. Where
an expression would exceed this time, a timeout exception is raised. A fixed
time exception result is then used instead. In this way we can provide a hard
guarantee on execution time. At the coordination level, timeouts can be specified
on both input and output wires, and on devices. Such timeouts are also handled
through the exception handler mechanism at the box level. This allows hard
real-time timing constraints to be expressed, such as a requirement to read a
given input within a stated time of it being produced.

box b in (v :: int 32 ) out ( v’ :: int 32 )
match x -> complex_fn x within 20ns
handle Timeout -> O0;

3.3 Device Declarations

Five kinds of device are supported: buffered streams (files), unbuffered FIFO
streams, ports, memory-mapped devices, and interrupts. Each device has a dir-
ectionality (for interrupts, this must be input), an operating system designator,



and an optional time specification. The latter can be used to enable periodic
scheduling or to ensure that critical events are not missed. Devices may be
wired to box inputs or outputs. For example, we can define an operation to read
a mouse periodically, returning true if the mouse button is down, as:

exception Timeout_mouseport;
port mouseport from "/dev/mouse" within 1ims raising Timeout_mouseport;

box readmouse in ( mousein :: bool ) out ( clicked :: bool )
match m -> m;
handle Timeout_mouseport -> false;

wire mouseport to readmouse.mousein;
wire readmouse.clicked to mouseuser.mouse;

3.4 Interrupt Handling

This section illustrates interrupt handling in Hume using an example adapted
from [10], which shows how to write a simple parallel port device driver for Linux
kernel version 2.4. Some simplifying assumptions have been made. Like many
other operating systems, Linux splits interrupt handlers into two halves: a top-
half which runs entirely in kernel space, and which must execute in minimal time,
and a bottom-half which may access user space memory, and which has more
relaxed time constraints. For the parallel port, the top-half simply schedules the
bottom-half for execution (using the trig wire), having first checked that the
handler has been properly initialised. The IRQ and other device information are
ignored.

box pp_int -— Top half handler
in ( (irq :: Int, dev_id :: string, regs :: Regs), active :: boolean )
out ( trig :: boolean, ki :: string )
match
( _, false ) -> (%, "pp_int: spurious interrupt\n"),
| ¢ _, true ) -> ( true, * ) ;

{-# kernel box pp_int -}

The bottom-half handler receives a time record produced by the top-half trigger
output and the action generated by the parallel port. Based on the internal
buffer state (a non-circular buffer represented as a byte array plus head and tail
indexes), the internal state is modified and a byte will be read from/written to
the parallel port. In either case, a log message is generated.

box pp_bottomhalf -- Bottom half handler
in ( td :: Time, buffer :: Buffer, action :: Acts )
out ( buffer’ :: Buffer, b :: Byte, log :: String )



match ( td, (head, tail, buf), Read b ) ->
if tail < MAX_BUF then
( (head, tail+l, update buf tail b), *, log_read td )
else ( (head, tail, buf), *, "buffer overrun")
( td, (head, tail, buf), Write ) ->
if head >= tail then ( O, O, "", % )
else ( (head+1, tail, buf), buf @ head, *, log_write td );

We require an operation to trigger the bottom-half handler. This uses the stand-
ard gettimeofday Linux function to produce a time record. We also need to log
outputs from pp_int using the kernel print routine printk. This is also specified
as an operation. Finally we need to provide the parallel port interrupt routine
with information about the IRQ to be used, the name of the handler etc.

The implementation of operations uses a foreign function interface based on that
for Haskell [9] to attach a function call to a pseudo-box. The pseudo-box takes
one input, marshals it according to the type of the arguments to the external call,
executes the external call, and then unmarshals and returns its result (if any).
In this way, we use the box mechanism to interface to impure foreign functions,
and thereby ensure that box rules are purely functional without resorting to
type-based schemes such as Haskell’s monadic I/0O.

operation trigger as "gettimeofday" :: Boolean -> Time;
operation kernel_info as "printk" :: String -> ();
interrupt parport from "(7,pp_int,0)"; -- assumes base at 0x378

wire parport to pp_int.info; wire initialised to pp_int.active;
wire pp_int.trig to trigger.inp; wire pp_int.ki to kernel_info.inp;

We now define a box pp-do_write to write the output value and the necessary
two control bytes to strobe the parallel port. The control bytes are sequenced
internally using a state transition, and output is performed only if the parallel
port is not busy. We also define abstract ports (pp-action, ...) to manage the
interaction with actual parallel port.

box pp_do_write -- Write to the parallel port
in ( cr, stat :: Byte, bout :: Byte, cr2 :: Byte )
out ( bout’, cr’ :: Byte, cr’’:: Byte )
match
( *x, SP_SR_BUSY, *, *, x ) => ( *, *, * ) -- wait until non-busy
| Co*x, *, *x, *, cr ) > ( *, cr & “SP_CR_STROBE, * )
| C cr, _, bout, false, * ) -> ( bout, cr | SP_CR_STROBE, cr );

port pp_action; port pp_stat; port pp_data; port pp_ctl_in; port pp_ctl_out;

Finally, wiring definitions link the bottom-half boxes with the parallel port.



wire trigger.outp to pp_bottomhalf.td;
wire pp_bottomhalf.buffer’ to pp_bottomhalf.buffer;

wire pp_action to pp_bottomhalf.action;
wire pp_bottomhalf.b to bottomhalf.buffer;
wire pp_bottomhalf.log to kernel_info;

wire pp_ctl_in to pp_do_write.cr; wire pp_stat to pp_do_write.stat;
wire pp_do_write.bout to pp_data;

wire pp_do_write.cr’ to pp_ctl_out;

wire pp_do_write.cr’’ to pp_do_write.cr2;

wire pp_do_write.cr to pp_do_write.cr2;

4 Modelling Space Costs

A major goal of the Hume project is to provide good space and time cost models
for Hume programs. In the long term, we intend to provide cost models for all
levels of Hume up to at least PR-Hume by exploiting emerging theoretical results
concerning cost models for recursive programs [16]. We illustrate the practicality
of our general approach by describing a simple space cost model for FSM-Hume
that predicts upper bound stack and space usage with respect to the prototype
Hume Abstract Machine (pHAM) [13]. The stack and heap requirements for the
boxes and wires represent the only dynamically variable memory requirements:
all other memory costs can be fixed at compile-time based on the number of
wires, boxes, functions and the sizes of static strings. In the absence of recursion,
we can provide precise static memory bounds on rule evaluation. Predicting the
stack and heap requirements for an FSM-Hume program thus provides complete
static information about system memory requirements.

4.1 Space Cost Rules

Figure 3 gives cost rules for a representative subset of FSM-Hume expressions,
based on an operational interpretation of the pHAM implementation. The full set
of cost rules is defined elsewhere [14]. We have shown that using this analysis, it
is possible to construct programs that possess tightly bounded space behaviour
in practice for FSM-Hume. Heap and stack costs are each integer values of
type Cost, labelled h and s, respectively. Each rule produces a pair of such
values representing independent upper bounds on the stack and heap usage.
The result is produced in the context of an environment, E, that maps function
names to the heap and stack requirements associated with executing the body of
the function, and which is derived from the top-level program declarations plus
standard prelude definitions. Rules for building the environment are omitted
here, except for local declarations, but can be trivially constructed.

10
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Fig. 3. Space cost axioms for expressions

The heap cost of a standard integer is given by H;nis2 (rule 1), with other scalar
values costed similarly. The cost of a function application is the cost of evaluating
the body of the function plus the cost of each argument (rule 2). Each evaluated
argument is pushed on the stack before the function is applied, and this must
be taken into account when calculating the maximum stack usage. The cost of
building a new data constructor value such as a user-defined constructed type
(rule 3) is similar to a function application, except that pointers to the arguments
must be stored in the newly created closure (one word per argument), and fixed
costs Heon are added to represent the costs of tag and size fields. The heap
usage of a conditional (rule 4) is the heap required by the condition part plus the
maximum heap used by either branch. The maximum stack requirement is simply
the maximum required by the condition and either branch. Case expressions
(omitted) are costed analogously. The cost of a let-expression (rule 5) is the
space required to evaluate the value definitions (including the stack required

11



to store the result of each new value definition) plus the cost of the enclosed
expression. The local declarations are used to derive a quadruple comprising
total heap usage, maximum stack required to evaluate any value definition, a
count of the value definitions in the declaration sequence (used to calculate the
size of the stack frame for the local declarations), and an environment mapping
function names to heap and stack usage. The body of the let-expression is costed
in the context of this extended environment.

5 Implementations of Hume

We have constructed two prototype implementations of Hume: a proof-of-concept
reference interpreter written in the non-strict functional language, Haskell; and
a basic abstract machine compiler [13], using the same Haskell front-end, and
supported by a small runtime system written in C. We are in the process of
producing a more sophisticated abstract machine implementation, and intend to
produce fully compiled implementations in the near future. These implementa-
tions may be downloaded from http://www.hume-lang.org.

The prototype Hume abstract machine compiler (phamc) targets a novel abstract
machine for Hume supporting concurrency, timeouts, asynchronicity, exceptions
and other required constructs, the prototype Hume Abstract Machine (pHAM).
The pHAM is primarily intended to provide a more realistic target for our work
on cost modelling and analysis rather than as a production implementation.
The compiler is defined using a formal translation scheme from Hume source to
abstract machine code. We have also provided an informal operational semantics
for Hume abstract machine instructions. Our long-term intention is to use formal
methods to verify the correctness of the compiler with respect to the Hume
language semantics, and to verify the soundness of the source-level cost models
with respect to an actual implementation. The phamc compiler has been ported
to two Unix platforms: Red Hat Linux and Mac OS/X. We have also provided an
implementation for the real-time operating system RTLinux [3]. The C back-end
should prove highly portable to non-Unix platforms.

We have compared the performance of the pHAM against that of the most widely
used abstract machine implementation: the Java Virtual Machine. A number of
new embedded applications (predominantly in the mobile phone sector) are ser-
iously targeting the Java software platform, so this is a fair comparison against
an equivalent general purpose approach. Performance results [13] show that the
the performance of the pHAM implementation is consistently 9-12 times that of
the standard JVM on various test-beds, including simple tests such as loop iter-
ation. Compared with Sun’s KVM for embedded systems [30], we thus estimate
execution speed to be 12-20 times; and compared with the just-in-time KVM
implementation [31], we estimate performance at 2-4 times. We conjecture that
these performance gains arise from the use of a higher-level, more targeted ab-
stract machine design. In the embedded systems domain, we do not need to
include dynamic security checks, for example.

12



We have measured dynamic memory usage for a moderately complex control
system [13] in the pHAM at less than 9KB of dynamic memory, and total memory
usage, including static allocation, code, runtime system and operating system
code at less than 62KB (more than half of this is required by the operating system
— the pHAM implementation requires less than 32KB in total). These figures are
approximately 50% of those for the corresponding KVM implementation, and
suggest that the pHAM implementation should be suitable for fairly small-scale
embedded control systems.

We are in the process of constructing a distributed implementation of Hume
based on the pHAM implementation and mapping boxes to embedded system
components. One outstanding technical issue is how to design the scheduling
algorithm in such a way as to maintain consistency with the concurrent imple-
mentation that we have described here. We also intend to construct native code
implementations and to target a wider range of hardware architectures. We do
not foresee any serious technical difficulties with either of these activities.

6 Related Work

Accurate time and space cost-modelling is an area of known difficulty for func-
tional language designs [28]. Hume is thus, as far as we are aware, unique in being
based on strong automatic cost models, and in being designed to allow straight-
forward space- and time-bounded implementation for hard real-time systems.
A number of functional languages have, however, looked at soft real-time is-
sues (e.g. Erlang [2] or E-FRP [33], there has been work on using functional nota-
tions for hardware design (essentially at the HW-Hume level) (e.g. Hydra [24]),
and there has been much recent theoretical interest both in the problems as-
sociated with costing functional languages (e.g. [28,20,21]) and in bounding
space/time usage (e.g. [34,19]).

In a wider framework, two extreme approaches to real-time language design
are exemplified by SPARK Ada [4] and the real-time specification for Java
(RTSJ) [7]. The former epitomises the idea of language design by elimination
of unwanted behaviour from a general-purpose language, including concurrency.
The remaining behaviour is guaranteed by strong formal models. In contrast,
the latter provides specialised runtime and library support for real-time sys-
tems work, but makes no absolute performance guarantees. Thus, SPARK Ada
provides a minimal, highly controlled environment for real-time programming
emphasising correctness by construction [1], whilst Real-Time Java provides a
much more expressible, but less controlled environment, without formal guar-
antees. Our objective with the Hume design is to maintain correctness whilst
providing high levels of expressibility.

13



6.1 Synchronous Dataflow Languages

In synchronous dataflow languages, unlike Hume, every action (whether compu-
tation or communication) has a zero time duration. In practice this means that
actions must complete before the arrival of the next event to be processed. Com-
munication with the outside world occurs by reacting to external stimuli and by
instantaneously emitting responses. Several languages have applied this model
to real-time systems control. For example, Signal [5] and Lustre [12] are sim-
ilar declarative notations, built around the notion of timed sequences of values.
Esterel [6] is an imperative notation that can be translated into finite state ma-
chines or hardware circuits, and Statecharts [17] uses a visual notation, primarily
for design. One obvious deficiency is the lack of expressiveness, notably the ab-
sence of recursion and higher-order combinators. Synchronous Kahn networks [8]
incorporate higher-order functions and recursion, but lose strong guarantees of
resource boundedness.

6.2 Static Analyses for Bounding Space or Time Usage

There has been much recent interest in applying static analysis to issues of
bounded time and space, but none is capable of dealing with higher-order, poly-
morphic and generally recursive function definitions as found in full Hume. For
example, region types [34] allow memory cells to be tagged with an allocation
region, whose scope can be determined statically. When the region is no longer
required, all memory associated with that region may be freed without invok-
ing a garbage collector. This is analogous to the use of Hume boxes to scope
memory allocations. Hofmann’s linearly-typed functional programming language
LFPL [18] uses linear types to determine resource usage patterns. First-order
LFPL definitions can be computed in bounded space, even in the presence of
general recursion. For arbitrary higher-order functions, however, an unbounded
stack is required.

Building on earlier work on sized types [20, 28], we have developed an automatic
analysis to infer the upper bounds on evaluation costs for a simple, but repres-
entative, functional language with parametric polymorphism, higher-order func-
tions and recursion [35]. Our approach assigns finite costs to a non-trivial subset
of primitive recursive definitions, and is automatic in producing cost equations
without any user intervention, even in the form of type annotations. Obtaining
closed-form solutions to the costs of recursive definitions currently requires the
use of an external recurrence solver, however.

7 Conclusions and Further Work

This chapter has introduced Hume, a domain-specific language for resource-
limited systems such as the real-time embedded systems domain. The language

14



is novel in being built on a combination of finite state machine and A-calculus
concepts. It is also novel in aiming to provide a high level of programming ab-
straction whilst maintaining good formal properties, including bounded time
and space behaviour and provably correct rule-based translation. We achieve
the combination of a high level of programming abstraction with strong prop-
erties included bounded time and space behaviour through synthesising recent
advances in theoretical computer science into a coherent pragmatic framework.
By taking a domain-specific approach to language design we have thus raised
the level of programming abstraction without compromising the properties that
are essential to the embedded systems application domain.

A number of important limitations remain to be addressed:

1. space and time cost models must be defined for additional Hume layers
including higher-order functions and (primitive) recursion and these must
be implemented as static analyses;

2. we need to provide machine-code implementations for a variety of architec-
tures that are used in the real-time embedded systems domain, and to de-
velop realistic demonstrator applications that will explore practical aspects
of the Hume design and implementation;

3. more sophisticated scheduling algorithms could improve performance, how-
ever, these must be balanced with the need to maintain correctness;

4. no attempt is made to avoid deadlock situations through language con-
structs: a suitable model checker must be designed and implemented.

Of these, the most important limitation is the development and application
of more sophisticated theoretical cost models. Our sized time type-and-effect
system is already capable of inferring theoretical costs in terms of reduction steps
for higher-order polymorphic definitions [28]. Adapting the system to infer heap,
stack and time costs for Hume programs should be technically straightforward.
Moreover, we have recently extended this theoretical system to cover primitive
recursive definitions. Incorporating this analysis into Hume will go a long way
towards our goal of achieving high level real-time programming.
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