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1 The problem

An Orbital consists of a ribbon of matter formed into a ring spinning in its
own plane, while orbiting a star. The inner surface is inhabited, centrifugal
force substituting for gravity.

If the ring plane is inclined to the orbital plane, the star exerts a torque
on the ring, causing it to precess. What effects will this have? Under what
conditions is the precession of sufficient magnitude to keep the ring in a
constant attitude towards the star?

2 Definitions

2.1 Constants defining the system

m mass of Orbital
r radius of Orbital
ω angular velocity of Orbital about its centre
θ tilt of Orbital
M mass of star
R radius of orbit
Ω angular velocity of Orbital about the star
G gravitational acceleration due to the star at the distance of the Orbital
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2.2 Derived quantities

g centrifugal acceleration experienced by inhabitants of the Orbital
T tidal torque exerted by the star on the Orbital
J angular momentum of the Orbital about its centre
ψ precessional angular velocity
y number of days in the Orbital’s year

3 Symbolic calculation

g = rω2 (1)
G = RΩ2 (2)
J = mr2ω (3)

T =
∫ 2π

α=0
r sinα sin θ

mdα

2π
2G
R

r sinα cos θ (4)

=
Gmr2

R
sin θ cos θ (5)

= mr2Ω2 sin θ cos θ (6)

ψ =
T

J sin θ
=

G cos θ
Rω

=
Ω2 cos θ

ω
(7)

y = ω/Ω (8)

The above expression for T is for the case where the ring plane and the
orbital plane intersect along a line tangent to the orbit. We consider other
configurations later. The components of the integral are:

r sinα sin θ displacement of mass element from orbital plane
mdα/2π mass element
2G/R tide

r sinα cos θ displacement of mass element along orbital radius
For one precession per year, we must have ψ = Ω, from which we derive:

ω = Ω cos θ (9)

In other words, y = cos θ, and the year is less than a day long. However, the
tide in such a case would be strong enough to distort the ring into a straight
line (assuming it has effectively zero bending resistance). We conclude that
a precession-locked orbit is not possible.

4 Numerical calculation

We shall try to duplicate Earth living conditions.

g = 9.81m/s2 (10)
ω = 2π/86400 = 7.27 · 10−5 s−1 (11)
θ = 23 deg = 0.401 rad (12)
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The choice of θ means that everyone on the Orbital experiences the equiva-
lent exposure to the sun as people in the tropics on Earth.

This gives us the radius of the Orbital:

r = g/ω2 = 1.89 · 109m (13)

This is about 5 times the distance from the Earth to the Moon.
Assume an Earth-like star and Earth-like orbit:

R = 1.49 · 1011m (14)
Ω = 2π/31000000 = 2.02 · 10−7 s−1 (15)

Then the precession rate is

ψ =
Ω2 cos θ

ω
= 5.14 · 10−10 s−1 (16)

Ω/ψ = 396 (17)

So the precession of the angular momentum, if it were to be constant, would
rotate it once every four centuries. But it is not constant, as we shall see
later.

5 The universal night

As the precession cannot be synchronised to the orbit, the planet will expe-
rience seasons alternating between summer and some sort of colder season,
depending on the axial tilt, twice per orbit. In addition, when the ring is
edge-on to the star at the peak of summer, the entire inner surface is in
shadow, one half being eclipsed by the other. How long will the eclipse last?

Let the transverse width of the ring be w. To an inhabitant on the
oppposite side of the ring from the sun, the sun will be eclipsed for the time
it takes the ring to traverse an angle of its orbit equal to that subtended by
a width w/ sin θ at a distance of 2r. This time is w

2rΩsin θ seconds.
For Earth-like conditions, this comes to 3460 seconds (just under an

hour) per thousand km of width.
Note that this is not affected by the amount of precession, since there is

no precession when the ring is edge-on to the star.

6 Tension in the ring

The tension in the ring is τ = mrω2/2π = mg/2π. In other words, the
material must be strong enough to suspend a column of itself of length r in
a uniform gravitational field g. We have seen that r is 5 times the distance
to the Moon, which in turn is about 10 times geosynchronous orbital radius.
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Thus the demands on the material exceed by two orders of magnitude those
necessary for the building of a space elevator on Earth.

There is also a tension in the ring due to the tidal force. This is:∫ π/2

α=−π/2

mdα

2π
2Ω2r cosα =

2mrΩ2

π

The ratio of tidal tension to spin tension is therefore 4Ω2/ω2 = 2/y2. When
this ratio is a significant fraction of 1, that is, when the spin period is a sig-
nificant fraction of half the orbital period, the ring will become significantly
elongated along the orbital radius, assuming the material has negligible stiff-
ness. How does the ring behave under these conditions?

7 Variation of precession with attitude

The precession varies with the attitude of the ring. When the ring is edge-
on to the star, the tide exerts no torque. At 90 degrees to those config-
urations, the torque takes its maximum at the value computed above. In
between, when the intersection line of the ring and the orbit plane make
an angle γ with the orbit radius, the torque is given by an integral sim-
ilar to the previous one, in which the subterm r sinα cos θ is replaced by
r sinα sin γ(cos θ sinα− cosα). Writing Tmax for the value of T computed
earlier, we obtain

Tγ = Tmax sin γ (18)

The torque vector is always parallel to the orbit. We adopt the convention
that a positive value means a torque vector in the same direction as the
orbital motion. This requires γ to be defined as increasing when the ring
undergoes a translation in the direction of orbital motion, and zero at the
edge-on moment when the leading edge of the ring is above the orbital plane.
“Above” means the side to which the orbital rotation vector points.

What will be the effect of this varying torque on the plane of the ring
and its spin velocity? Mathematically, the relationship is simply:

J̇ = Tγ (19)

where J̇ and Tγ are the vector quantities. Tγ depends on both γ and θ,
which both depend on the direction of J . Thus we can obtain a rather
complicated differential equation for J .

In the limit of low precessional torque (defined as Tmax/Ω << J , i.e. the
maximum torque applied over one year would make only a small change to
J), we can consider instead the average torque over a single orbit. This is
Tmax/2, directed towards the star from the position of the ring at time 0.
After one orbit, J will be changed by Tmax/2Ω in that direction. This rotates
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J by an angle Tmax/2ΩJ (to first order), which is equal to Ω
2ω sin θ cos θ. This

in turn rotates the intersection of the ring plane with the orbital plane by an
angle Ω

2ω cos θ in the opposite direction to the orbital spin. For this precession
of the eclipses to go once round the orbit therefore takes a number of orbits
equal to 4πω/Ω cos θ = 4π

cos θy, or upwards of 12 times as many years as there
are days in a year. For the earth-like Orbital, this is about 5,500 years.

The precise long-term evolution of the system remains to be studied.
Can it be set up in such as way that the tilt and spin vary only within
small bounds indefinitely, or does it tend to some limit, or can it tumble
chaotically?

To be continued.
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