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Abstract

This work presents a novel approach to speech enhancement by
exploiting the bimodality of speech and the correlation that ex-
ists between audio and visual speech features. For speech en-
hancement, a visually-derived Wiener filter is developed. This
obtains clean speech statistics from visual features by modelling
their joint density and making a maximum a posteriori estimate
of clean audio from visual speech features. Noise statistics for the
Wiener filter utilise an audio-visual voice activity detector which
classifies input audio as speech or nonspeech, enabling a noise
model to be updated. Analysis shows estimation of speech and
noise statistics to be effective with speech quality assessed objec-
tively and subjectively measuring the effectiveness of the result-
ing Wiener filter. The use of this enhancement method is also
considered for ASR purposes.

Index Terms: Audio-visual, speech enhancement, Wiener filter,
AVSR, MAP

1 Introduction

Modern communication devices enable not just an audio signal to
be captured from a speaker but also a visual signal. The visual
signal provides both additional information that is not present in
the audio and also a visual representation of some of the informa-
tion that is present in the audio. One of the main advantages of
this visual speech is that it is unaffected by acoustic noise. This
has led to speech recognition systems that combine audio and vi-
sual speech features to achieve robust performance in noise [1].
One way of achieving this robustness is by enhancing the noisy
audio features [2, 3]. This method of enhancing audio features
has also been investigated to enhance noisy speech and improve
the quality of speech [4, 5,6, 7].

Many audio-only methods of speech enhancement have been
proposed [8, 9]. However, this work aims to exploit clean speech
information that is available in visual features to create a novel
method of speech enhancement. This relies on correlation exist-
ing between visual features and the audio signal. This is supported
by the generation process of speech which is related to move-
ments of articulators (tongue, lips, etc) and gives rise to significant
correlation between the resulting speech and visual shape of the
mouth [10, 11]. Higher correlation is observed when measuring
correlation within individual phoneme sounds rather than across
all speech [6, 12]. Therefore, from knowledge of mouth shape,
information regarding the audio speech being produced can be
inferred. Of course, spectrally detailed audio signals cannot be
estimated from mouth shape (source information is not present in
lip shape) but a spectral envelope can be estimated.

Recently, audio-visual speech enhancement within a Wiener
filtering framework has been examined [5, 6, 7]. One of the main

problems in Wiener filtering is obtaining clean speech statistics
and these methods exploit visual features to obtain them. In this
work, previous work is extended by first deriving the Wiener filter
more formally by making separate estimates of the clean speech
statistics and noise statistics directly from audio-visual features.
Noise statistics are estimated by employing an audio-visual voice
activity detector (VAD) that identifies nonspeech frames that up-
date a noise model. Clean speech estimation uses a network of
phoneme-specific estimators that provide clean speech statistics
from audio-visual features. A detailed analysis of the resulting
speech quality is also made through some objective measures and
a series of human listening tests that explicitly measure speech
distortion, noise intrusiveness and overall speech quality. The ro-
bustness to noise of the enhanced audio features was also investi-
gated for ASR purposes.

The remainder of this work begins in section 2 with a descrip-
tion of the proposed visually-derived Wiener filter. For imple-
mentation, this requires both a clean speech estimate and a noise
estimate. Section 3 describes how the clean speech estimate is ob-
tained from visual speech vectors. Section 4 introduces an audio-
visual VAD which is used to obtain the noise estimate. Experi-
mental results are presented in section 5 which first examine the
accuracy of clean speech filterbank and noise filterbank estima-
tion. Secondly, the effectiveness of the visually-derived Wiener
filter is analysed through both objective and subjective speech
quality measures and the usability of the enhanced speech in im-
proving ASR performance in noisy conditions is also examined.

2 Visually-derived Wiener filter

This section proposes a visually-derived Wiener filter for speech

enhancement that exploits correlation between audio and visual

speech features. In the frequency domain the Wiener filter, W ( f),

is defined,

_ Pxx(f)
Pxx(f)+ Pyn(f)

Two challenges in Wiener filtering are to obtain: i) — the clean
speech power spectrum Px x (f), and ii) — the noise power spec-
trum Py (f). Obtaining the clean speech power spectrum is one
of the main problems in Wiener filtering and many methods have
been proposed to achieve this [9]. This work proposes estimat-
ing the clean speech statistics from visual speech features by ex-
ploiting the audio-visual correlation of speech. Estimating a clean
speech power spectrum from visual features is difficult due to the
limit of audio-visual correlation, so instead a filterbank-domain
Wiener filter is estimated, W 2 (i)

W(f) M

WEB @) = - a: (i) 1<i<23 2)

) + ()



AVSP 2009, Norwich, Sept 10th-13th, 2009

135

Noisy Wi ZY(f) N Enhanced
audio indow IFFT speech
& x‘ overlap >
FET [ |Y(H))? and add

W(f)
128 128

Interpolation| |Interpolation

. A
| 1| Filterbank | ai)
estimator 23

A+ i)

A

NN :
234 nyi)

Mel filterbank Noi
features voise
estimation

Visual
features, v

Figure 1: Visually-derived Wiener filter for speech enhancement

a¢ (i) is the i** channel of the t'" clean speech filterbank, esti-
mated from visual features, and 7 (¢) is the ith channel of the
noise filterbank estimate. The filterbank-domain noise estimate
is obtained by averaging filterbank frames from periods of non-
speech, which are identified by an audio-visual VAD [13].

For speech enhancement, the /-dimensional filterbank-domain
Wiener filter, WP (i), is transformed into a 128-dimensional
power spectral-domain Wiener filter, Wt( f), using cubic spline
interpolation. The Wiener filter is applied to the power spectrum
of the noisy input signal, |Y;(i)|?, to give an enhanced power
spectrum estimate, | X (7)|?

[ Xe(HIP = Ve (NI*Welf) ©)

The power spectrum estimate is combined with the phase of the
noisy speech, ZY;(f), and an inverse Fourier transform applied
to obtain a frame of time-domain samples. Overlap and adding of
these frames gives the enhanced time-domain waveform. Figure
1 illustrates the general process of speech enhancement using the
visually-derived Wiener filtering. The next two sections describe
estimation of the clean speech and noise filterbanks required by
the Wiener filter.

3 Clean speech filterbank estimation

Estimation of clean filterbank vectors from visual vectors is
achieved by modelling the joint density of audio-visual features.
This begins by defining an /+.J-dimensional audio-visual feature
vector, z;

z = [ag, vy @

a: and v are the audio and visual features, which in this work are
log filterbank audio vectors and 2-D DCT visual features, as these
were found to exhibit high levels of audio-visual correlation [10].
Given a model of the joint density of the audio-visual vectors,
®*Y a MAP estimate of the audio vector, a., can be made from a
visual vector, v;

a; = argmax (p (alvi, ©**)) )

Previous work established that audio-visual correlation was max-
imised when measured within individual phonemes rather than
measured across all speech [6, 12]. Therefore, the MAP esti-
mation is constrained to make a localised estimate from a set of

phoneme-specific models of the joint density of audio-visual fea-
tures. Localising prediction in this way is achieved by a network
of audio-visual HMMs which first decode input audio-visual vec-
tors into a phoneme sequence, from which estimates of clean au-
dio features are made.

3.1 Modelling phoneme-specific audio-visual vectors

Phoneme-specific joint densities of audio and visual vectors are
modelled by first creating a set of monophone HMMs. These
are trained on audio-visual vectors, based on equation 4, but with
the filterbank component transformed into an MFCC vector aug-
mented by velocity and acceleration. A set of W=36 3-state, 16-
mode diagonal covariance matrix monophone HMMs are created,
together with a 3-state silence HMM.

Using the set of phoneme HMMs, forced Viterbi alignment is
applied to each training data utterance to determine the phoneme
allocation for each audio-visual feature vector. Therefore, for
a training data utterance, zZ = [zé, - z;, - z(T,l] (the dash
indicates the transform of the filterbank to an MFCC vec-
tor and inclusion of temporal derivatives), a phoneme alloca-
tion, m = [mo, ..., m¢, ..., mr—1] is computed that indicates the
phoneme, my, that the tth feature vector is allocated, where
m¢ € {0,...,W}. Using the phoneme allocation for each fea-
ture vector in the training database, Z, a set of phoneme specific
audio-visual vector pools, €2,,, are created for each phoneme w

Quw={zt € Z:my =w} (6)

For the audio-visual vectors in each phoneme pool, expectation-
maximisation (EM) clustering is applied to create a K cluster
Gaussian mixture model (GMM), ®%7, that models the joint den-
sity of the audio-visual vectors for phoneme w,

K K
Oo(2) = akdiw =y o N(zpi, Z0) (D)
k=1

k=1

The k" cluster is represented by a prior probability, ar , Gaussian
probability density function (PDF), ¢j, ,, with mean vector, p7,
and covariance matrix, 37,

a aa av
Wi = { Hw } and B, = [ - } ®)
ll‘k,w Zk,w k,w

Each mean vector comprises an I-dimensional mean filterbank
audio vector, p , and a J-dimensional mean 2-D DCT visual vec-
tor, o, . The covariance matrices comprises four components; the
IxI-dimensional covariance matrix of the audio vector, 3%, the
Jx.J-dimensional covariance of the visual vector, 3}", and the
IxJ and JxI-dimensional cross-covariances of the audio and vi-
sual vectors, X%" and 33;.

3.2 Estimation of clean speech filterbank vectors

Estimating clean speech filterbank vectors, using the phoneme-
specific GMMs, begins by using the audio-visual speech recog-
niser to determine the phoneme sequence from the input noisy
audio and visual features. Within the audio-visual speech recog-
niser, the signal-to-noise ratio (SNR) is used to adjust the contri-
bution made by the audio and visual observation probabilities

bp(zf,) _ blpl(at)"/(SNRt)b;(,Ut)lf"/(SNRt) )
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by(z¢) is the observation probability of the audio-visual vector,
zt, in state p. b5 (a:) and b}, (v¢) are the observation probabilities
from the audio and visual streams respectively and (SN Ry) is a
nonlinear function that maps the SNR into a weight in the range
0 < y(SNR:) < 1. Atlow SNRs, v(SNR;) approaches zero
which reduces the contribution made by the audio features. Spe-
cific details are given in [14]. From an input sequence of audio-
visual vectors, Z = [zo, ..., Z¢, ..., zr—1], a phoneme sequence
m = [mo, ..., M4, ...,mr—_1] is computed using an uncontrained
phoneme grammar which provides, for each audio-visual vector,
2, the phoneme-specific GMM, ®,,,, , from where the clean fil-
terbank vector, a, will be estimated. A weighted MAP estimate
of the filterbank vector, a, is made using each of the K clusters,
@k my»in the GMM, ®F

K

a; = th,mt(vt)argmax {p (at|vt,¢§,w)} (10)
k=1 et

hi,m, (v¢) is the posterior probability of the visual vector, vy, in
the kth cluster of the GMM associated with phoneme m;

Ak.my P (vt ‘(f)z,mt)
K

Z Ak,my P (’Uth,mt)

k=1

(11

hk,mt (vt) =

where p(vi|¢} ., ) is the marginal distribution of visual vectors
for the kth cluster in the GMM specific to phoneme m.

4 Noise filterbank estimation

The noise filterbank estimate for the Wiener filter is obtained by
averaging nonspeech filterbank vectors preceeding speech. To
identify these nonspeech vectors an audio-visual VAD is pro-
posed. This classifies input vectors as speech or nonspeech using
a pair of GMMs, one modelling speech and the other nonspeech.
Audio-visual vectors from a set of training data, Z, are first pooled
into two sets, one corresponding to speech, W7 and the other
nonspeech, W"**

% = {2, € Z : ¢y = speech}
"% = {2z, € Z : ¢; = nonspeech} (12)

¢ is a reference label associated with each feature vector and in-
dicates whether the signal is speech or nonspeech. From the two
vector pools, EM clustering is applied to create two GMMs each
comprising D clusters, one modelling speech, ©°**, and the other
modelling nonspeech, ©™>*.

Classification of audio-visual vectors as speech or nonspeech
could be made from the GMM probabilities directly. However,
in noisy speech, audio features become less reliable which in-
creases classification errors. To improve robustness, the GMMs
are decomposed in a similar way to the audio-visual observation
probabilities in equation 9, and the relative contribution of the au-
dio and visual components adjusted by a function, 3, of the SNR.
Thus the scaled probabilities of an audio-visual vector, z; being
speech or nonspeech can be computed

p(Zt‘S) _ @s,a(at)ﬁ(SNRi)@s,v(vt)l—ﬁ(SNRt)
(13)
p(zt\ns) _ @ns,a(at)ﬁ(SNRr,)Qns,v(,vt)lfﬁ(SNRf,)

Estimation RMSE
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Figure 2: RMS speech and noise filterbank estimation error

The terms ©*“ and ©™*“ represent the audio components of
the speech and nonspeech GMMs, while ©%¥ and ©™*"" repre-
sent the visual components. Classification of an audio-visual vec-
tor, 2z, as speech or nonspeech can then be made from the two
scaled GMM probabilities

. 7{ speech

>
. plals) 2 p(zlns)
nonspeech

p(ze]s) < p(zi|ns)

For audio-visual vectors labelled as nonspeech, the filterbank
components are extracted and averaged to provide the filterbank-
domain noise estimate, 7+, used in the Wiener filter of equation 2.
The SNR estimate in equation 13 uses a noise estimate taken from
the first few frames of the signal which are assumed noise. The
noise estimate produced by the audio-visual VAD is also used to
provide the SNR estimate in equation 9.

5 Experimental results

The experiments first examine the accuracy of clean filterbank
estimation and noise filterbank estimation, which are used by the
Wiener filter. The quality of the enhanced speech from the Wiener
filter is then analysed using both objective and subjective meth-
ods. For all experiments a set of 277 utterances, spoken by a UK
male speaker have been used, with 200 utterances used for train-
ing and 77 for testing, providing T' = 38, 728 test vectors [10].
The audio was sampled at a rate of 8kHz and processed at a rate
of 100 vectors per second. Recordings were made using a cam-
era mounted on a helmet worn by the speaker showing the head
and shoulders. Active appearance models provided the centre of
the mouth region. The video was originally recorded at 25 frames
per second and was upsampled to 100 vectors per second at the
feature level to be equal to the audio frame rate. A total of 36
phonemes occur in the database which was manually aligned to
provide phoneme reference labels for each utterance.

5.1 Clean speech and noise filterbank estimation

This section examines the accuracy of clean speech filterbank es-
timation and noise filterbank estimation from audio-visual speech
features. Estimation accuracy is measured using the root mean
square (RMS) error. As noise is added artificially in these exper-
iments, reference clean speech and noise values are available for
the RMS error calculation. Figure 2 shows clean filterbank and
noise filterbank RMS errors at SNRs of 20dB, 10dB and 0dB in
car noise.

Clean speech filterbank estimation is relatively stable, even in
low SNRs. This is attributed to significant use of the visual com-
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Figure 3: VAD classification accuracy and HMM phoneme de-
coding accuracy in clean speech and noisy speech
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Figure 4: Spectrogram of utterance “The match was a washout as
the pitch was heavily soiled”, a) contaminated with car noise at
an SNR of 10dB, b) after visual Wiener filtering

ponent of the audio-visual vector being used in clean speech fil-
terbank estimation (equation 10) which is independent of noise.
Audio features are used in the decoding to determine the phoneme
sequence used in estimation, but the effect of noise is minimised
by the SNR-dependent adjustment of the audio and visual obser-
vation probability components (equation 9). To illustrate this,
figure 3 shows audio-visual phoneme decoding accuracy, which
reduces from 58% in clean conditions to 30% at OdB. As SNRs
reduce, the visual features make more contribution than audio fea-
tures and hence performance stabilises at the visual-only perfor-
mance of 30%.

Figure 2 also shows noise filterbank estimation to be stable
across SNRs with lower RMS error than clean speech filterbank
estimation. The noise estimates are obtained by averaging audio
frames identified as being noise-only by the AV-VAD, thus mak-
ing VAD accuracy important in noise estimation. Figure 3 shows
AV-VAD accuracy to reduce from 98% in clean speech to 95%
in noisy speech, which is equal to visual-only VAD performance.
As with phoneme decoding, the lower limit on performance is
visual-only performance, which avoids the typical breakdown in
performance that audio features suffer in noise.
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Figure 5: Objective measures a) PESQ, b) LLR and c) IS com-
paring visual Wiener filter (VW) and visual Wiener filter forced
alignment (VWF) to spectral subtraction (SS) and no noise com-
pensation (NNC)

5.2 Speech enhancement evaluation

Test set utterances were first contaminated by car noise at SNRs of
20dB, 10dB, 5dB, and 0dB. The speech was then passed through
the visually-derived Wiener filter for enhancement. Figure 4 de-
picts the spectrogram of the utterance “The match was a washout
as the pitch was heavily soiled” contaminated with car noise at an
SNR of 10dB and after the application of visual Wiener filtering.
It can be seen that large amounts of the noise has been success-
fully removed. This is particularly evident in nonspeech periods,
but good noise reduction is also achieved in speech periods.

For further analysis, the process was repeated but with the

audio-visual vectors forced to the correct phoneme sequence for
visually-derived Wiener filtering. As a comparison, the spectral
subtraction method of speech enhancement was also applied to
the speech [8].
This section now examines the effectiveness of the proposed
speech enhancement method in terms of objective and subjective
measures. The improvement of ASR performance using the re-
sulting enhanced speech is also examined.
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5.2.1 Objective measures

Three well-known objective speech quality measures are consid-
ered here, namely, the Perceptual Evaluation of Speech Quality
(PESQ), the Log-Likelihood Ratio (LLR), and the Itakura-Saito
distance (IS) [15]. Contrary to PESQ, the lower scores of LLR
and IS the better quality of speech. Figure 5 shows scores of
the three objective measures for no noise compensation (NNC),
spectral subtraction (SS), visual Wiener filtering (VW) and vi-
sual Wiener filtering with forced phoneme alignment (VWF). The
three plots show better speech quality for visual Wiener filter (VW
& VWF) compared to no noise compensation and spectral sub-
traction. The only exception is the IS score at 0dB where spec-
tral subtraction is slightly better than VW but not VWF. How-
ever, it can be seen that the advantage of the visual Wiener filter
is much clearer with LLR measure than with IS and PESQ mea-
sures. Spectral subtraction performs better than no noise compen-
sation at all SNRs with the three measures and lowest and highest
improvement shown by LLR and IS respectively.

A slight benefit of visual Wiener filter with forced phoneme
alignment over visual Wiener filter with unconstrained decoding
is also demonstrated by PESQ and LLR measures and more with
IS measure which is attributed to the more accurate clean filter-
bank estimates that derive the Wiener filter, although the gain in
having 100% phoneme accuracy compared to accuracies between
60% and 30% (figure 3) is small and suggest the system is inher-
ently robust to phoneme decoding errors.

5.2.2 Subjective measures

This section uses a series of human listening tests to anal-
yse speech quality following visually-derived Wiener filtering at
SNRs of 20dB, 10dB and 5dB. Thirty native English speakers
took part in the tests which were carried out in a soundproof room
and each listener was played 60 speech utterances. The listeners
were asked to make three ratings on a scale of 1 to 5 for each utter-
ance: the level of signal distortion, the level of background noise
intrusiveness, and the overall quality. For the three ratings a high
score indicates a better signal [16]. Figure 6 shows Mean Opinion
Scores of the three measures for no noise compensation (NNC),
spectral subtraction (SS), visual Wiener filtering (VW) and visual
Wiener filtering with forced phoneme alignment (VWF). Analysis
of variance is carried out on the scores collected at each SNR level
and showed the difference amongst the enhancement methods and
no noise compensation to be statistically significant (p<0.05).

At 20dB, scores for signal distortion rate no noise compen-
sation as being the most undistorted with the noise compensa-
tion methods adding small amounts of distortion, leading to a re-
duction of about 0.3 points. In terms of noise intrusiveness, the
visual Wiener methods perform equally well, scoring about 1.1
points higher than NNC. Spectral subtraction performs slightly
worse and this is attributed to it introducing musical noise. Over-
all quality scores rate the two Wiener filtering methods about 0.5
points higher than NNC and spectral subtraction. However, as
SNRs fall, the speech distortion imposed by the Wiener filter-
ing increases, resulting in reduced scores. Noise removal by the
Wiener filtering remains robust with only small variations even as
SNRs reduce to 5dB. This is attributed to the robustness of the vi-
sual features. Overall quality also reduces as SNRs fall. For both
the speech distortion and overall speech quality, the forced align-
ment Wiener filter (VWF) outperforms slightly the unconstrained
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Figure 6: MOS for a) speech distortion, b) noise intrusiveness
and c) overall quality, for: no noise compensation (NNC), spec-
tral subtraction (SS), visual Wiener filter (VW) and visual Wiener
filter forced alignment (VWF)

decoding Wiener filter (VW) especially at low SNRs. It is inter-
esting to observe the tolerance of listeners towards the presence
of background noise but not the distortion incurred on the speech
signal by the enhancement methods. This observation was also
reported in [15].

5.2.3 ASR performance

This section now examines the ASR performance obtained using
the enhanced audio features. As reported in section 5.1, noisy au-
dio features are combined with visual features to provide robust
phoneme decoding. However, the enhanced audio features can
also be used to improve the accuracy of the phoneme decoding
when combined again with visual features. Figure 7 shows the
audio-only phoneme decoding accuracy attained by the uncom-
pensated noisy audio features (AV V) and the visual Wiener fil-
ter enhanced audio features (A""). Results are also shown when
combining these two audio features with visual features (labelled
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Figure 8: The audio stream weighting factor, v(SN Ry), for no
noise compensation (ANNC) and visual Wiener filtered (AVYW)
audio features

as ANNCV and AYW V). The results show that combining noisy
audio features with visual features (ANNCV) provides signifi-
cant robustness to noise. However, similar performance can be
achieved by using the enhanced audio features only (AV"). Bet-
ter performance is achieved when the enhanced audio features are
combined with visual features (A" V) when applying a higher
contribution of the audio stream at lower SNRs. Figure 8 shows
the two audio stream weightings, v(SNR);, for the uncompen-
sated and enhanced audio features.

6 Conclusion

A visually-derived Wiener filter has been proposed for speech en-
hancement. This utilises both audio-visual correlation and the ro-
bustness of visual features to noise, to provide estimates of the
clean speech and noise statistics needed by the Wiener filter. RMS
error analysis shows the estimation of both of these to be relatively
robust to noise. Objective and subjective speech quality analysis
of the enhanced speech revealed the visually-derived Wiener fil-
ter to be effective at reducing noise levels, but at the expense of

introducing distortion onto the speech signal during the filtering
operation. The enhanced audio features were found to be effec-
tive for ASR especially when integrated with visual features. This
represents initial work at utilising visual speech information for
enhancing audio speech and several directions to reduce this dis-
tortion can be identified, centring primarily on obtaining more
accurate clean filterbank estimates from audio-visual features.
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