
Audio-Visual Mutual Dependency Models for Biometric Liveness Checks 

Girija Chetty, Roland Göcke and Michael Wagner 
 National Center for Biometric Studies,  

Faculty of Information Sciences and Engineering 
University of Canberra 

girija.chetty@ canberra.edu.au, roland.goecke@canberra.edu.au, 
michael.wagner@canberra.edu.au   

 

Abstract 
In this paper we propose liveness checking technique for 
multimodal biometric authentication systems based on audio-
visual mutual dependency models. Liveness checking ensures 
that biometric cues are acquired from a live person who is 
actually present at the time of capture for authenticating the 
identity. The liveness check based on mutual dependency 
models is performed by fusion of acoustic and visual speech 
features which measure the degree of synchrony between the 
lips and the voice extracted from speaking face video 
sequences. Performance evaluation in terms of DET (Detector 
Error Tradeoff) curves and EERs(Equal Error Rates) on  
publicly available audiovisual speech databases show a 
significant improvement in performance of proposed fusion of 
face-voice features based on mutual dependency models. 
 
Index Terms: multimodal, face-voice, speaker verification, 
ancillary speaker characteristics,  

1. Introduction 
Most of the commercial biometric identity authentication 
systems currently deployed are based on modeling the identity 
of a person based on unimodal information, i.e. face, voice, or 
fingerprint features. Also, many current interactive civilian 
human computer interaction applications are based on speech 
based voice features, which achieve significantly lower 
performance for operating environments with low signal-to-
noise ratios (SNR). For a long time, use of acoustic 
information alone has been a great success for several 
automatic speech processing applications such as automatic 
speech transcription or speaker authentication, while face 
identification systems based visual information alone from 
faces also proved to be of equally successful. However, in 
adverse operating environments, performance of either of 
these systems could be suboptimal. Use of both visual and 
audio information can lead to better robustness, as they can 
provide complementary secondary clues that can help in the 
analysis of the primary biometric signals [1]. In extreme cases, 
primary biometric (visual or acoustic) information can even be 
used on its own. For instance, it is well known that deaf 
people can learn how to lip read. The joint analysis of acoustic 
and visual speech improves the robustness of automatic 
speech recognition systems [2, 3]. 
 
There have been several systems proposed on use of joint 
face-voice information for improving the performance of 
identity authentication systems. However, most of these state-
of-the-art approaches are based on independently processing 
the voice and face information and then fusing the scores – 
score fusion [4,5,6].  A   major weakness of these systems is 

that they do not take into account fraudulent replay attack 
scenarios into consideration, leaving them vulnerable to  
spoofing  by recording the voice of the target in advance and 
replaying it in front of the microphone, or simply placing a 
still picture of the target’s face in front of the camera. This 
problem can be addressed with liveness checking, which 
ensures that biometric cues are acquired from a live person 
who is actually present at the time of capture for 
authenticating the identity. With the diffusion of Intenet based 
authentication systems for day-to-day civilian scenarios at a 
astronomical pace [7], it is high time to think about the 
vulnerability of traditional biometric authentication 
approaches and consider inclusion of liveness checks. Though 
there is some work in finger print based liveness detection 
techniques [8,9], there is hardly any work in liveness checks  
based on user-friendly biometric identifiers (face and voice), 
which enjoy more acceptability for civilian access control 
scenarios.  
 
A significant progress however, has been made in independent 
processing of face only or voice only based authentication 
approaches [1,2,3,4,5,6], without taking into consideration an 
inherent coupling that exists between jointly occurring some 
primary biometric identifiers. Some preliminary approaches 
(such as the one described in [7, 8] address liveness checking 
problem by jointly modeling the acoustic and visual speech 
features for testing liveness. They involve the fusion of 
acoustic, appearance and shape based lip features for jointly 
modeling the co-occurring face-voice dynamics in speaking 
face video sequences. The method introduced in [7] fuses the 
speech and lip parameters in a single audiovisual feature 
vector stream, and then used to model each client within a 
Gaussian mixture model (GMM). The results obtained with 
this method were impressive (1% equal error rate). However, 
easy replay attacks were considered - a voice recording and a 
still photograph, and no tests for more complex replay attacks 
were shown. Another method described in [8] uses co-inertia 
analysis (CoIA) based on correlation evolution to extract the 
statistical relationship between audio and visual speech.  
 
In this paper we propose mutual dependency models for joint 
analysis of acoustic and visual speech features for 
incorporating liveness information in the authentication 
approach. The rest of the paper is organized as follows. 
Section 2 describes the motivation for using mutual 
dependency models, and the proposed liveness check 
approach is described in Section 3. Section 4 details the data 
corpora used and the experimental evaluation of the proposed 
mutual dependency models and subsequent fusion approach, 
with Section 5 summarizing the conclusions drawn from this 
work and plans for further research.    



2. Motivation for mutual dependency 
modeling  

The motivation to use mutual dependency models is based on 
the following two observations: The first observation is in 
relation to any video event, for example a speaking face video, 
where the content usually consists of the co-occurring audio 
and the visual elements. Both the elements carry their 
contribution to the highest level semantics, and the presence of 
one has usually a “priming” effect on the other: when hearing 
a dog barking we expect the image of a dog, seeing a talking 
face we expect the presence of her voice, images of a waterfall 
usually bring the sound of running water etc. A series of 
psychological experiments on the mutually dependent cross-
modal influences [9, 10] have proved the importance of 
synergistic fusion of the multiple modalities in the human 
perception system. A typical example of this kind is the well-
known McGurk effect [9]. Several independent studies by 
cognitive psychologists suggest that the type of multi-sensory 
interaction between acoustic and orafacial articulators 
occurring in the McGurk effect involves both the early and 
late stages of integration processing [9,10]. It is likely that a 
human brain uses a hybrid form of fusion that depends on the 
availability and quality of different sensory cues.   
 
Yet, in audiovisual speech and speaker verification systems, 
the analysis is usually performed separately on different 
modalities, and the results are brought together using different 
fusion methods. However, in this process of separation of 
modalities, we lose valuable cross-modal information about 
the whole event or the object we are trying to analyze and 
detect. There is an inherent association between the two 
modalities and the analysis should take advantage of the 
synchronised appearance of the relationship between the audio 
and the visual signal. The second observation relates to 
different types of fusion techniques used for joint processing 
of audiovisual speech signals. The late-fusion strategy, which 
comprises decision or the score fusion, is effective especially 
in case the contributing modalities are uncorrelated and thus 
the resulting partial decisions are statistically independent. 
Feature level fusion techniques, on the other hand, can be 
favoured (only) if a couple of modalities are highly correlated.  
 
However, jointly occurring face and voice dynamics in 
speaking face video sequences, is neither highly correlated 
(mutually dependent) nor loosely correlated nor totally 
independent (mutually independent). A complex and nonlinear 
spatiotemporal coupling consisting of highly coupled, loosely 
coupled and mutually independent components may exist 
between co-occurring acoustic and visual speech signals in 
speaking face video sequences [11, 12].  The compelling and 
extensive findings by authors in [11] validate such complex 
relationship between external face movements, tongue 
movements, and speech acoustics when tested for consonant 
vowel (CV) syllables and sentences spoken by male and 
female talkers with different visual intelligibility ratings. They 
proved that the there is a higher correlation between speech 
and lip motion for C/a/ syllables than for C/i/ and C/u/ 
syllables. Further, the degree of correlation differs across 
different places of articulation, where lingual places have 
higher correlation than bilabial and glottal places. Also, 
mutual coupling can vary from talker to talker; depending on 
the gender of the talker, vowel context, place of articulation, 
voicing, and manner of articulation and the size of the face. 
Their findings also suggest that male speakers show higher 

correlations than female speakers. Further, the authors in [12] 
also validate the complex, spatiotemporal and non-linear 
nature of the coupling between the vocal-tract and the facial 
articulators during speech production, governed by human 
physiology and language-specific phonetics. They also state 
that most likely connection between the tongue and the face is 
indirectly by way of the jaw. Other than the biomechanical 
coupling, another source of coupling is the control strategy 
between the tongue and cheeks. For example, when the vocal 
tract is shortened the tongue does not get retracted.  
 
Due to such a complex nonlinear spatiotemporal coupling 
between speech and lip motion, this could form a good 
candidate for detecting liveness, and modelling the speaking 
faces by capturing this information can make the biometric 
authentication systems less vulnerable to spoof and fraudulent 
replay attacks, as it would be almost impossible to spoof a 
system which can accurately distinguish the artificially 
manufactured or synthesized speaking face video sequences 
from the live video sequences. We propose an approach based 
on mutual dependency models and subsequent Bayesian 
fusion to address this problem. Next section briefly describes 
the proposed approach. 

3. Mutual dependency models  
Mutual Dependency modelling based on Canonical 
Correlation Analysis (CCA), as first proposed by Hotelling 
[13], is a method of determining a linear space where the 
correlations between two sets of variables are maximized. This 
approach has been successfully applied to sets of variables 
that are manifestations of a set of hidden variables, examples 
of this are fMRI and image retrieval[14]. There is an 
obviously similarity with audio-visual speaking face 
modelling since the motions of articulators and the speech 
produced are fundamentally linked. However, CCA is derived 
as a linear process and this limitation becomes apparent in the 
cases where the underlying relationship is non-linear [15], 
such as the complex nonlinear spatiotemporal correlations 
between the speech and lip-motion in speaking face video 
sequences. To circumvent this linearity constriction, we have 
used a  “kernel trick”, which allows replacing an inner product 
by a projection of the data into a higher dimensional space, 
and performing CCA in this realized dual representation [15]. 
 
We perform a kernel Canonical Correlation Analysis (kCCA) 
on Mel Frequency Cepstral Coefficients (MFCC) voice 
features and the lip motion features extracted from a 
biological inspired optical flow algorithm called Multi 
Channel Gradient Model (MCGM).  
 
The MCGM is a neurophysiological and psychophysical 
inspired unified motion algorithm [15].  In MGCM approach,  
the behaviour of V1/V2 cells is modelled by MGCM functions 
and the ratio of temporal and spatial gradients is computed to 
establish local velocity estimates. From one sequence of lip 
region images it is possible to derive two sets of visual 
information from MCGM, initially a sequential series of 
frames are anlaysed by MCGM algorithm, calculating the 
relative motions between successive frames. Additionally, a 
current frame of data is processed against a fixed open mouth 
frame, calculating the absolute motions of the mouth. MCGM 
processing results in a matrices of equal size to the input 
frames, each containing speed and angular information for a 
given pixel. Applying (linear) Principal Component Analysis 
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(PCA) produces a linear space onto which the motions can be 
mapped, reducing the dimensionality of the visual features. 
 
Mel-Frequency Cepstral Coefficients (MFCC) are classical 
acoustic speech features used in automatic speech processing 
[16]. They are state-of-the-art features in many applications, 
including automatic speech recognition and speaker 
verification systems. For obtaining a MFFC feature vector, the 
voice signal is transformed into the frequency domain via 
windowed Fast Fourier Transform and then mapped on to the 
Mel scale, a human perceptual scale of frequency [16]. A 
(logarithmically spaced) filter bank is constructed over this 
Mel frequency spectrum, and from this the logarithm of the 
power spectrum is determined. A discrete time cosine 
transform is performed over the power spectrum and the 
MFCCs are calculated. Most of the information about human 
voice from speech can be captured by retaining 10-12 most 
significant MFCC features, the  first-order time-
derivatives(delta features), the pitch and the signal energy.  
 
To account for the lack of synchronization between speech 
features and lip motion features, rate interpolation can be done 
by up sampling the MCGM features to obtain the 
synchronized MCGM-MFCC features. Once the acoustic 
MFCC features and MCGM lip motion features are obtained, 
kCCA is implemented by first mapping them onto the kernel 
space using polynomial kernels and then performing CCA. 
Since, the kCCA involves, implementing CCA in a higher 
dimensional nonlinear space, it has the capability to capture 
and track the nonlinear correlations between different features. 
Parameter tuning for kCCA can be performed offline on an 
independent data set. 
 
For extracting the mutually independent components of the 
audio and visual signals, another powerful statistical technique 
called independent component analysis (ICA) is performed, 
which treats the observed variables as a mixture of 
independent sources. Two different approaches can be used 
for Independent Component Analysis, ICA1 and ICA2 [17, 
18]. In ICA1, the basis images are independent, whereas in 
ICA2 the mixing coefficients are independent. We utilize the 
ICA2 approach, where each pixel for lip images are 
considered as a mixture of independent coefficients. If X is a 
data matrix incorporating the measured variables, then it can 
be split as: X = AS where A is the mixing matrix and S 
contains the independent coefficients. The columns of A form 
a basis for the database and the columns of S provide ICA-
features for the corresponding lip images residing in the 
columns of the data matrix X. 
 
For each pixel, all x and  y coordinates of a lip image are 
concatenated to a single vector. Its dimensionality is then 
reduced by applying PCA to the training set of x-y co-ordinate 
vectors. Each face is then represented by the first K PCA 
coefficients. The columns of the data matrix X for the ICA 
analysis are constituted of PCA coefficient vectors. Then, the 
Fast ICA algorithm described by [17, 18] is applied to obtain 
the basis A and the independent coefficients S.  
Next section describes the subsequent fusion technique used to  
combine various features. 

4. Bayesian Audio-visual Fusion  
First, we derive the algorithm for performing the Bayesian 
fusion  for liveness checks using multiple features described in 
the previous Section. Let us denoted the projection of audio 

and lip features in each of the closely coupled (kCCA), and 
mutually independent (ICA) subspaces as kCCAf  and ICAf . 
We also include the projection of visual information in the 
PCA subspace as Eigenlip features PCAf   as the static spatial 
information in face images contains identity specific 
information. In Bayesian framework, the most generic way of 
performing the fusion is to compute the joint scores expressed 
as a weighted summation [19, 20]: 
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r# , and nw denotes the weighting coefficient for modality n, 

such that 1!% nn w . Here nf  could be kCCAf , ICAf  or 

PCAf  features.  Then the fusion problem reduces to a 
problem of finding the optimal weight coefficients for the 
nonlinear highly correlated components, loosely coupled 

PCAf  components and mutually independent  ICAf  
components. Though an adaptive fusion weight calculation 
would be ideally required, we selected the weights empirically 
and fused them using RWS (Reliability Weighted Summation) 
rule [19]. Since the statistical and the numerical range of these 
likelihood scores can vary from one modality to another, the 
likelihood scores were normalised within the (0, 1) interval 
before the RWS fusion process using a sigmoid and variance 
normalization as described in [20].  
 

5. Experimental Results  
 
Preliminary experimental results with an audio-visual 
speaking face video corpora VidTIMIT [21] and DaFEx 
[22,23] showed a significant improvement in  liveness 
checking performance due to the detailed modelling of 
speaker liveness based on multiple correlation features. Figure 
1 shows some images from the two corpora. The details of the 
two corpora are given in [21] , [22] and [23]. 
 
In this section, different experiments conducted to evaluate the 
performance of the proposed correlation features, and the 
Bayesian fusion of the MFCC, lip features in different 
subspaces PCA, kCCA and ICA for liveness checking are 
described. The testing stage for the liveness checking scenario 
is different from the tradition biometric identity verification 
scenarios, where the replay attack test data emulating 
fraudulent attacks needs to be artificially synthesised. Two 
different types of replay attacks were tested, one static replay 
attacks used in and other dynamic replay attacks, where 
artificial speaking face sequences are synthesised from still 
photo, few key frames from the video sequences, lip-synched 
with pre-recorded speech signals. 
 
Liveness checking experiments involved two phases, the 
training phase and testing phase. In the training phase a 10-
mixture Gaussian mixture model ! of a client’s audiovisual 
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feature vectors was built, reflecting the probability densities 
for the combined phonemes and visemes (lip shapes) in the 
audiovisual feature space. In the testing phase, the clients’ live 
test recordings were first evaluated against the client’s model 
! by determining the log likelihoods log p(X|!) of the time 
sequences X of audiovisual feature vectors under the usual 
assumption of statistical independence of successive feature 
vectors. 

 
(a) VidTIMIT corpus images 

 

 
(b) DaFeX corpus images 

 
Figure 1: Face Images from VidTIMIT and DaFex Corpus 

 
For testing static replay attacks, a number of “fake” or 
synthetic recordings were constructed by combining the 
sequence of audio feature vectors from each test utterance 
with ONE visual feature vector chosen from the sequence of 
visual feature vectors and keeping that visual feature vector 
constant throughout the utterance. Such a synthetic sequence 
represents an attack on the authentication system, carried out 
by replaying an audio recording of a client’s utterance while 
presenting a still photograph to the camera. Four such fake 
audiovisual sequences were constructed from different still 
frames of each client test recording. Log-likelihoods log 
p(X’|!) were computed for the fake sequences X’ of 
audiovisual feature vectors against the client model !. In order 
to obtain suitable thresholds to distinguish live recordings 
from fake recordings, detection error trade-off (DET) curves 
and equal error rates (EER) were determined. For testing 
dynamic replay attacks artificially synthesized speaking face 
video sequences were used instead of actually recorded video 
sequences in the data corpora.  
 
Since the liveness checking is a two-class decision task, the 
system can make two types of errors.  The first type of error is 
a False Acceptance Error (FA), where an impostor (fraudulent 
replay attacker) is accepted. The second error is a False 
Rejection (FR), where a true claimant (genuine client) is 
rejected. Thus, the performance is measured in terms of False 

Acceptance Rate (FAR ) and False Reject Rate (FRR ), as 
defined as (Eqn. 2) : 
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where IA is the number of impostors classified as true 
claimants, IT is the total number of impostor classification 
tests, CR  is the number of true claimants classified as 
impostors, and CT is the total number of true claimant 
classification tests. The implications of this is minimizing the 
FAR increases the FRR and vice versa, since the errors are 
related. The trade-off between FAR and FRR is adjusted using 
the threshold ", an experimentally determined speaker-
independent global threshold from the training/enrolment data. 
The trade-off between FAR and FRR can be graphically 
represented by a Receiver Operating Characteristics (ROC) 
plot or a Detection Error Trade-off (DET) plot. The ROC plot 
is on a linear scale, while the DET plot is on a normal-deviate 
logarithmic scale. For DET plot, the FRR is plotted as a 
function of FAR. To quantify the performance into a single 
number, the Equal Error Rate (EER) is often used. Here the 
system is configured with a threshold, set to an operating point 
when FAR % = FRR %.  
 
It must be noted that the threshold " can also be adjusted to 
obtain a desired performance on test data (data unseen by the 
system up to this point). Such a threshold is known as the 
aposteriori threshold. However, if the threshold is fixed before 
finding the performance, the threshold is known as the apriori 
threshold. The apriori threshold can be found via experimental 
means using training/enrolment or evaluation data, data which 
has also been unseen by the system up to this point, but is 
separate from test data.  
 
Practically, the a priori threshold is more realistic. However, it 
is often difficult to find a reliable apriori threshold. The test 
section of a database is often divided into two sets: evaluation 
data and test data. If the evaluation data is not representative 
of the test data, then the apriori threshold will achieve 
significantly different results on evaluation and test data. 
Moreover, such a database division reduces the number of 
verification tests, thus decreasing the statistical significance of 
the results. For these reasons, many researchers prefer to use 
the aposteriori and interpret the performance obtained as the 
expected performance.  
 
Different sets of experiments were conducted to evaluate the 
performance of the audio-visual correlation features based on 
proposed mutual dependency models (kCCA, PCA and ICA), 
and their  fusion, The performance evaluation in terms of DET 
curves and equal error rates (EER)  for different features based 
on mutual dependency models in terms of DET curves and 
EERs is shown n Table 1 and Figure 2. 
 
As can be seen from Table 1 and Figure 2 the results are quite 
promising for correlation features in kCCA space and their 
fusion with features in ICA and PCA space.  The single mode 
MFCC features and PCA or Eigen lip features results in worse 
EERS. Further, the MGCM features on their own do not result 
in a good EER performance. However, when they are fused 
with the kCCA projected features, they result in improved 
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performance. Further, use of correlation features in different 
subspaces, PCA, ICA and kCCA result in best EERs as 
complete mutual dependency components (closely coupled, 

loosely coupled and uncoupled components are included in the 
modelling). Further work involves, developing an automatic 
fusion computation technique based on reliability scores. 

Table 1: EERs for audio visual features based on mutual dependency models 

 
 

 

 
Figure 2: DET curves for audio visual features based on mutual dependency models for (a): VidTIMIT data set, (b): DaFeX dataset 

 

6. Conclusions  
In this paper we proposed a novel method of extracting audio 
visual features based on mutual dependency models for 
liveness checking in biometric identity authentication systems.  
 
Performance evaluation in terms of DET curves and EERs on 
VidTIMIT and DaFeX corpora, showed a significant 
improvement in performance of proposed features as 
compared to traditional single mode face or voice features. 
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