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Abstract

In this paper we propose liveness checking technique for
multimodal biometric authentication systems based on audio-
visual mutual dependency models. Liveness checking ensures
that biometric cues are acquired from a live person who is
actually present at the time of capture for authenticating the
identity. The liveness check based on mutual dependency
models is performed by fusion of acoustic and visual speech
features which measure the degree of synchrony between the
lips and the voice extracted from speaking face video
sequences. Performance evaluation in terms of DET (Detector
Error Tradeoff) curves and EERs(Equal Error Rates) on
publicly available audiovisual speech databases show a
significant improvement in performance of proposed fusion of
face-voice features based on mutual dependency models.

Index Terms: multimodal, face-voice, speaker verification,
ancillary speaker characteristics,

1. Introduction

Most of the commercial biometric identity authentication
systems currently deployed are based on modeling the identity
of a person based on unimodal information, i.e. face, voice, or
fingerprint features. Also, many current interactive civilian
human computer interaction applications are based on speech
based voice features, which achieve significantly lower
performance for operating environments with low signal-to-
noise ratios (SNR). For a long time, use of acoustic
information alone has been a great success for several
automatic speech processing applications such as automatic
speech transcription or speaker authentication, while face
identification systems based visual information alone from
faces also proved to be of equally successful. However, in
adverse operating environments, performance of either of
these systems could be suboptimal. Use of both visual and
audio information can lead to better robustness, as they can
provide complementary secondary clues that can help in the
analysis of the primary biometric signals [1]. In extreme cases,
primary biometric (visual or acoustic) information can even be
used on its own. For instance, it is well known that deaf
people can learn how to lip read. The joint analysis of acoustic
and visual speech improves the robustness of automatic
speech recognition systems [2, 3].

There have been several systems proposed on use of joint
face-voice information for improving the performance of
identity authentication systems. However, most of these state-
of-the-art approaches are based on independently processing
the voice and face information and then fusing the scores —
score fusion [4,5,6]. A major weakness of these systems is

that they do not take into account fraudulent replay attack
scenarios into consideration, leaving them vulnerable to
spoofing by recording the voice of the target in advance and
replaying it in front of the microphone, or simply placing a
still picture of the target’s face in front of the camera. This
problem can be addressed with liveness checking, which
ensures that biometric cues are acquired from a live person
who is actually present at the time of capture for
authenticating the identity. With the diffusion of Intenet based
authentication systems for day-to-day civilian scenarios at a
astronomical pace [7], it is high time to think about the
vulnerability  of traditional biometric  authentication
approaches and consider inclusion of liveness checks. Though
there is some work in finger print based liveness detection
techniques [8,9], there is hardly any work in liveness checks
based on user-friendly biometric identifiers (face and voice),
which enjoy more acceptability for civilian access control
scenarios.

A significant progress however, has been made in independent
processing of face only or voice only based authentication
approaches [1,2,3,4,5,6], without taking into consideration an
inherent coupling that exists between jointly occurring some
primary biometric identifiers. Some preliminary approaches
(such as the one described in [7, 8] address liveness checking
problem by jointly modeling the acoustic and visual speech
features for testing liveness. They involve the fusion of
acoustic, appearance and shape based lip features for jointly
modeling the co-occurring face-voice dynamics in speaking
face video sequences. The method introduced in [7] fuses the
speech and lip parameters in a single audiovisual feature
vector stream, and then used to model each client within a
Gaussian mixture model (GMM). The results obtained with
this method were impressive (1% equal error rate). However,
easy replay attacks were considered - a voice recording and a
still photograph, and no tests for more complex replay attacks
were shown. Another method described in [8] uses co-inertia
analysis (ColA) based on correlation evolution to extract the
statistical relationship between audio and visual speech.

In this paper we propose mutual dependency models for joint
analysis of acoustic and visual speech features for
incorporating liveness information in the authentication
approach. The rest of the paper is organized as follows.
Section 2 describes the motivation for using mutual
dependency models, and the proposed liveness check
approach is described in Section 3. Section 4 details the data
corpora used and the experimental evaluation of the proposed
mutual dependency models and subsequent fusion approach,
with Section 5 summarizing the conclusions drawn from this
work and plans for further research.
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2. Motivation for mutual dependency
modeling

The motivation to use mutual dependency models is based on
the following two observations: The first observation is in
relation to any video event, for example a speaking face video,
where the content usually consists of the co-occurring audio
and the visual elements. Both the elements carry their
contribution to the highest level semantics, and the presence of
one has usually a “priming” effect on the other: when hearing
a dog barking we expect the image of a dog, seeing a talking
face we expect the presence of her voice, images of a waterfall
usually bring the sound of running water etc. A series of
psychological experiments on the mutually dependent cross-
modal influences [9, 10] have proved the importance of
synergistic fusion of the multiple modalities in the human
perception system. A typical example of this kind is the well-
known McGurk effect [9]. Several independent studies by
cognitive psychologists suggest that the type of multi-sensory
interaction between acoustic and orafacial articulators
occurring in the McGurk effect involves both the early and
late stages of integration processing [9,10]. It is likely that a
human brain uses a hybrid form of fusion that depends on the
availability and quality of different sensory cues.

Yet, in audiovisual speech and speaker verification systems,
the analysis is usually performed separately on different
modalities, and the results are brought together using different
fusion methods. However, in this process of separation of
modalities, we lose valuable cross-modal information about
the whole event or the object we are trying to analyze and
detect. There is an inherent association between the two
modalities and the analysis should take advantage of the
synchronised appearance of the relationship between the audio
and the visual signal. The second observation relates to
different types of fusion techniques used for joint processing
of audiovisual speech signals. The late-fusion strategy, which
comprises decision or the score fusion, is effective especially
in case the contributing modalities are uncorrelated and thus
the resulting partial decisions are statistically independent.
Feature level fusion techniques, on the other hand, can be
favoured (only) if a couple of modalities are highly correlated.

However, jointly occurring face and voice dynamics in
speaking face video sequences, is neither highly correlated
(mutually dependent) nor loosely correlated nor totally
independent (mutually independent). A complex and nonlinear
spatiotemporal coupling consisting of highly coupled, loosely
coupled and mutually independent components may exist
between co-occurring acoustic and visual speech signals in
speaking face video sequences [11, 12]. The compelling and
extensive findings by authors in [11] validate such complex
relationship between external face movements, tongue
movements, and speech acoustics when tested for consonant
vowel (CV) syllables and sentences spoken by male and
female talkers with different visual intelligibility ratings. They
proved that the there is a higher correlation between speech
and lip motion for C/a/ syllables than for C/i/ and C/u/
syllables. Further, the degree of correlation differs across
different places of articulation, where lingual places have
higher correlation than bilabial and glottal places. Also,
mutual coupling can vary from talker to talker; depending on
the gender of the talker, vowel context, place of articulation,
voicing, and manner of articulation and the size of the face.
Their findings also suggest that male speakers show higher

correlations than female speakers. Further, the authors in [12]
also validate the complex, spatiotemporal and non-linear
nature of the coupling between the vocal-tract and the facial
articulators during speech production, governed by human
physiology and language-specific phonetics. They also state
that most likely connection between the tongue and the face is
indirectly by way of the jaw. Other than the biomechanical
coupling, another source of coupling is the control strategy
between the tongue and cheeks. For example, when the vocal
tract is shortened the tongue does not get retracted.

Due to such a complex nonlinear spatiotemporal coupling
between speech and lip motion, this could form a good
candidate for detecting liveness, and modelling the speaking
faces by capturing this information can make the biometric
authentication systems less vulnerable to spoof and fraudulent
replay attacks, as it would be almost impossible to spoof a
system which can accurately distinguish the artificially
manufactured or synthesized speaking face video sequences
from the live video sequences. We propose an approach based
on mutual dependency models and subsequent Bayesian
fusion to address this problem. Next section briefly describes
the proposed approach.

3. Mutual dependency models

Mutual Dependency modelling based on Canonical
Correlation Analysis (CCA), as first proposed by Hotelling
[13], is a method of determining a linear space where the
correlations between two sets of variables are maximized. This
approach has been successfully applied to sets of variables
that are manifestations of a set of hidden variables, examples
of this are fMRI and image retrieval[14]. There is an
obviously similarity with audio-visual speaking face
modelling since the motions of articulators and the speech
produced are fundamentally linked. However, CCA is derived
as a linear process and this limitation becomes apparent in the
cases where the underlying relationship is non-linear [15],
such as the complex nonlinear spatiotemporal correlations
between the speech and lip-motion in speaking face video
sequences. To circumvent this linearity constriction, we have
used a “kernel trick”, which allows replacing an inner product
by a projection of the data into a higher dimensional space,
and performing CCA in this realized dual representation [15].

We perform a kernel Canonical Correlation Analysis (kCCA)
on Mel Frequency Cepstral Coefficients (MFCC) voice
features and the lip motion features extracted from a
biological inspired optical flow algorithm called Multi
Channel Gradient Model (MCGM).

The MCGM is a neurophysiological and psychophysical
inspired unified motion algorithm [15]. In MGCM approach,
the behaviour of V1/V2 cells is modelled by MGCM functions
and the ratio of temporal and spatial gradients is computed to
establish local velocity estimates. From one sequence of lip
region images it is possible to derive two sets of visual
information from MCGM, initially a sequential series of
frames are anlaysed by MCGM algorithm, calculating the
relative motions between successive frames. Additionally, a
current frame of data is processed against a fixed open mouth
frame, calculating the absolute motions of the mouth. MCGM
processing results in a matrices of equal size to the input
frames, each containing speed and angular information for a
given pixel. Applying (linear) Principal Component Analysis
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(PCA) produces a linear space onto which the motions can be
mapped, reducing the dimensionality of the visual features.

Mel-Frequency Cepstral Coefficients (MFCC) are classical
acoustic speech features used in automatic speech processing
[16]. They are state-of-the-art features in many applications,
including automatic speech recognition and speaker
verification systems. For obtaining a MFFC feature vector, the
voice signal is transformed into the frequency domain via
windowed Fast Fourier Transform and then mapped on to the
Mel scale, a human perceptual scale of frequency [16]. A
(logarithmically spaced) filter bank is constructed over this
Mel frequency spectrum, and from this the logarithm of the
power spectrum is determined. A discrete time cosine
transform is performed over the power spectrum and the
MFCCs are calculated. Most of the information about human
voice from speech can be captured by retaining 10-12 most
significant MFCC features, the first-order  time-
derivatives(delta features), the pitch and the signal energy.

To account for the lack of synchronization between speech
features and lip motion features, rate interpolation can be done
by up sampling the MCGM features to obtain the
synchronized MCGM-MFCC features. Once the acoustic
MFCC features and MCGM lip motion features are obtained,
kCCA is implemented by first mapping them onto the kernel
space using polynomial kernels and then performing CCA.
Since, the kCCA involves, implementing CCA in a higher
dimensional nonlinear space, it has the capability to capture
and track the nonlinear correlations between different features.
Parameter tuning for kCCA can be performed offline on an
independent data set.

For extracting the mutually independent components of the
audio and visual signals, another powerful statistical technique
called independent component analysis (ICA) is performed,
which treats the observed variables as a mixture of
independent sources. Two different approaches can be used
for Independent Component Analysis, ICA1 and ICA2 [17,
18]. In ICAI, the basis images are independent, whereas in
ICA2 the mixing coefficients are independent. We utilize the
ICA2 approach, where each pixel for lip images are
considered as a mixture of independent coefficients. If X is a
data matrix incorporating the measured variables, then it can
be split as: X = AS where A is the mixing matrix and S
contains the independent coefficients. The columns of A form
a basis for the database and the columns of S provide ICA-
features for the corresponding lip images residing in the
columns of the data matrix X.

For each pixel, all x and y coordinates of a lip image are
concatenated to a single vector. Its dimensionality is then
reduced by applying PCA to the training set of x-y co-ordinate
vectors. Each face is then represented by the first K PCA
coefficients. The columns of the data matrix X for the ICA
analysis are constituted of PCA coefficient vectors. Then, the
Fast ICA algorithm described by [17, 18] is applied to obtain
the basis A and the independent coefficients S.

Next section describes the subsequent fusion technique used to
combine various features.

4. Bayesian Audio-visual Fusion

First, we derive the algorithm for performing the Bayesian
fusion for liveness checks using multiple features described in
the previous Section. Let us denoted the projection of audio

and lip features in each of the closely coupled (kCCA), and
mutually independent (ICA) subspaces as f wccy and f,CA.
We also include the projection of visual information in the
PCA subspace as Eigenlip features f pcy as the static spatial

information in face images contains identity specific
information. In Bayesian framework, the most generic way of
performing the fusion is to compute the joint scores expressed
as a weighted summation [19, 20]:

p(A) =2 w,logP(f, | 2)
forr=12,....,R (1)

where O, (/L) is the logarithm of the class-conditional

probability, P(f,

h . .
ﬂ,,) , for the n" modality f, given class

ﬂr ,and W, denotes the weighting coefficient for modality »,
such that Zn w, = 1. Here fn could be kaCA s fICA or

f pcy Tfeatures. Then the fusion problem reduces to a

problem of finding the optimal weight coefficients for the
nonlinear highly correlated components, loosely coupled

ﬂ C4

components. Though an adaptive fusion weight calculation
would be ideally required, we selected the weights empirically
and fused them using RWS (Reliability Weighted Summation)
rule [19]. Since the statistical and the numerical range of these
likelihood scores can vary from one modality to another, the
likelihood scores were normalised within the (0, 1) interval
before the RWS fusion process using a sigmoid and variance
normalization as described in [20].

f pcy components and mutually independent

5. Experimental Results

Preliminary experimental results with an audio-visual
speaking face video corpora VidTIMIT [21] and DaFEx
[22,23] showed a significant improvement in  liveness
checking performance due to the detailed modelling of
speaker liveness based on multiple correlation features. Figure
1 shows some images from the two corpora. The details of the
two corpora are given in [21], [22] and [23].

In this section, different experiments conducted to evaluate the
performance of the proposed correlation features, and the
Bayesian fusion of the MFCC, lip features in different
subspaces PCA, kCCA and ICA for liveness checking are
described. The testing stage for the liveness checking scenario
is different from the tradition biometric identity verification
scenarios, where the replay attack test data emulating
fraudulent attacks needs to be artificially synthesised. Two
different types of replay attacks were tested, one static replay
attacks used in and other dynamic replay attacks, where
artificial speaking face sequences are synthesised from still
photo, few key frames from the video sequences, lip-synched
with pre-recorded speech signals.

Liveness checking experiments involved two phases, the
training phase and testing phase. In the training phase a 10-
mixture Gaussian mixture model A of a client’s audiovisual
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feature vectors was built, reflecting the probability densities
for the combined phonemes and visemes (lip shapes) in the
audiovisual feature space. In the testing phase, the clients’ live
test recordings were first evaluated against the client’s model
A by determining the log likelihoods log p(X[A) of the time
sequences X of audiovisual feature vectors under the usual
assumption of statistical independence of successive feature

vectors.
H m
gl |
n n
2w = |
- LA ]
FY R K1

(a) VIdTIMIT corpus images

(b) DaFeX corpus images

Figure 1: Face Images from VidTIMIT and DaFex Corpus

For testing static replay attacks, a number of “fake” or
synthetic recordings were constructed by combining the
sequence of audio feature vectors from each test utterance
with ONE visual feature vector chosen from the sequence of
visual feature vectors and keeping that visual feature vector
constant throughout the utterance. Such a synthetic sequence
represents an attack on the authentication system, carried out
by replaying an audio recording of a client’s utterance while
presenting a still photograph to the camera. Four such fake
audiovisual sequences were constructed from different still
frames of each client test recording. Log-likelihoods log
p(X’|]A) were computed for the fake sequences X’ of
audiovisual feature vectors against the client model A. In order
to obtain suitable thresholds to distinguish live recordings
from fake recordings, detection error trade-off (DET) curves
and equal error rates (EER) were determined. For testing
dynamic replay attacks artificially synthesized speaking face
video sequences were used instead of actually recorded video
sequences in the data corpora.

Since the liveness checking is a two-class decision task, the
system can make two types of errors. The first type of error is
a False Acceptance Error (FA), where an impostor (fraudulent
replay attacker) is accepted. The second error is a False
Rejection (FR), where a true claimant (genuine client) is
rejected. Thus, the performance is measured in terms of False

Acceptance Rate (FAR ) and False Reject Rate (FRR ), as
defined as (Eqn. 2) :

FAR%:%XIOO%

T

FRR%:%XIOO% )

T

where I, is the number of impostors classified as true
claimants, It is the total number of impostor classification
tests, Cr is the number of true claimants classified as
impostors, and Cr is the total number of true claimant
classification tests. The implications of this is minimizing the
FAR increases the FRR and vice versa, since the errors are
related. The trade-off between FAR and FRR is adjusted using
the threshold 0, an experimentally determined speaker-
independent global threshold from the training/enrolment data.
The trade-off between FAR and FRR can be graphically
represented by a Receiver Operating Characteristics (ROC)
plot or a Detection Error Trade-off (DET) plot. The ROC plot
is on a linear scale, while the DET plot is on a normal-deviate
logarithmic scale. For DET plot, the FRR is plotted as a
function of FAR. To quantify the performance into a single
number, the Equal Error Rate (EER) is often used. Here the
system is configured with a threshold, set to an operating point
when FAR % = FRR %.

It must be noted that the threshold 0 can also be adjusted to
obtain a desired performance on test data (data unseen by the
system up to this point). Such a threshold is known as the
aposteriori threshold. However, if the threshold is fixed before
finding the performance, the threshold is known as the apriori
threshold. The apriori threshold can be found via experimental
means using training/enrolment or evaluation data, data which
has also been unseen by the system up to this point, but is
separate from test data.

Practically, the a priori threshold is more realistic. However, it
is often difficult to find a reliable apriori threshold. The test
section of a database is often divided into two sets: evaluation
data and test data. If the evaluation data is not representative
of the test data, then the apriori threshold will achieve
significantly different results on evaluation and test data.
Moreover, such a database division reduces the number of
verification tests, thus decreasing the statistical significance of
the results. For these reasons, many researchers prefer to use
the aposteriori and interpret the performance obtained as the
expected performance.

Different sets of experiments were conducted to evaluate the
performance of the audio-visual correlation features based on
proposed mutual dependency models (kCCA, PCA and ICA),
and their fusion, The performance evaluation in terms of DET
curves and equal error rates (EER) for different features based
on mutual dependency models in terms of DET curves and
EERs is shown n Table 1 and Figure 2.

As can be seen from Table 1 and Figure 2 the results are quite
promising for correlation features in kCCA space and their
fusion with features in ICA and PCA space. The single mode
MFCC features and PCA or Eigen lip features results in worse
EERS. Further, the MGCM features on their own do not result
in a good EER performance. However, when they are fused
with the kCCA projected features, they result in improved
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performance. Further, use of correlation features in different loosely coupled and uncoupled components are included in the
subspaces, PCA, ICA and kCCA result in best EERs as modelling). Further work involves, developing an automatic
complete mutual dependency components (closely coupled, fusion computation technique based on reliability scores.

Table 1: EERs for audio visual features based on mutual dependency models

VidTIDMIT DaFeX
Audio/Visual Features MALE FEMALE MALE FEMALE
EER (249 EER (249 EER (%q) EER (%9
Sooe 16.8 16.88 15.7 15.7
Facin 16.2 16.2 16.64 16.64
Fuscen 17.2 17.87 15.9 15.54
S 14.7 15.18 14.81 15.28
Frca 13.03 14.12 13.12 14.4
Foioe™ Fotir 11.68 11.86 11.79 11.17
Fogoe= Fazip= Freea 10.26 10.26 10.46 10.46
j:'vj-'-:_’ - j;_i-—_r:-p_ j"::l:‘l:‘_:“ _ffl:'_-_' 8'06 8'85 9'23 9'31
EER Performance for YidTIMIT Male subset EER performance for DaFeX male subset
T T T T 1 T T T T - 1
MFCC : ; : MFCC
40 MFCC+PCA A0 O b b MFCC +PCA
MFCC+PCA+kCCA : : : MFCC+PCA+kCCA
MFGC+PCA+kCCA+ICA MFGC+PCA+kCCA+ICA

20 20

Wiss probability (in %)
=

iss probability {in %)
=]

051 2 5 10 20 40 0s A 2 5 10 20 A0
False Alarm probability {in %) False Alarm probability (in %)
(a) (b)

Figure 2: DET curves for audio visual features based on mutual dependency models for (a): VidTIMIT data set, (b): DaFeX dataset
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