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Abstract

In order to robustly recognize distorted speech, use of visual in-
formation has been proven valuable in many recent investigations.
However, visual features may not always be available, and they
can be unreliable in unfavorable recording conditions. The same
is true for distorted audio information, where noise and interfer-
ence can corrupt some of the acoustic speech features used for
recognition. In this paper, missing feature techniques for coupled
HMMs are shown to be successful in coping with both uncertain
audio and video information. Since binary uncertainty informa-
tion may be easily obtained at little computational effort, this re-
sults in an effective approach that can be implemented to obtain
significant performance improvements for a wide range of statis-
tical model based audiovisual recognition systems.

Index Terms: missing data techniques, audiovisual speech recog-
nition, coupled HMM

1 Introduction

Robustness of speech recognition can be significantly improved
by multi-modal and notably audio-visual speech recognition. For
this purpose, both HMMs and graphical models have been suc-
cessfully utilized [1, 2, 3, 4]. In order to further improve robust-
ness, missing feature recognition offers additional performance
gains.

Uncertainty compensation has already been employed for this
purpose in [5], using uncertainty decoding to deal with unreliable
features. However, the presented method is shown to work well
in the mel-spectrum domain, whereas here, a simple and compu-
tationally efficient approach for RASTA-PLP-cepstra is shown.
These features have been shown to be more robust both with re-
spect to noisy and reverberant conditions [6].

This paper is organized as follows. At first, Section 2 will in-
troduce the audiovisual speech recognizer JASPER, which will
be used for all subsequent experiments. This system is based on
coupled HMMs and allows for asynchronous streams as long as
synchrony is again achieved at word boundaries. Next, in Sec-
tion 3, the feature extraction and uncertainty estimation are pre-
sented. In Section 4, the utitlized strategy for multi-stream miss-
ing feature recognition is described. Results for this system on
the GRID database, a connected word small-vocabulary audiovi-
sual database, are given in Section 5. These results and further
implications are discussed in Section 6.

2 Audiovisual Recognition System

Audiovisual speech recognition and lipreading can both be car-
ried out using the Java Audiovisual SPEech Recognizer JASPER,

developed for the purpose of robust single- or multistream speech
recognition. The system allows for a tight integration of the MAT-
LAB and JAVA environments and capabilities, with an interface
that lets preprocessing and feature extraction be carried out in
MATLAB, whereas model training and recognition take place in
JAVA. 1t is based on a flexible token passing architecture appli-
cable for a wide range of statistical speech models, which is de-
scribed in more detail below.

2.1 System Architecture

JASPER is based on an abstract model in which connected word
recognition is viewed as a process of passing tokens around a tran-
sition network [7]. Within this network, each vocabulary element
is represented by a word model. These word models are statistical
descriptions of the evolution of the feature stream within the asso-
ciated words. Since the token passing architecture only requires
a narrow interface of the word models, these may be realized e.g.
as conventional HMMs, coupled or product HMMs or even tem-
plates or a range of graphical models.
Fig. 1 shows an example of a possible word net structure.

top level syntax

command

adverb

Figure 1: An example of a word network for recognition of the
GRID grammar described in Section 5.1. Link nodes are depicted
by circles, non-terminal nodes by bold black rectangles and word
models are shown as yellow rounded rectangles.

In addition to the word models, further network elements are
link nodes and non-terminal nodes. Link nodes serve as connec-
tions between non-terminal nodes and word models and associate
a linked list of possible word alternatives to all tokens passing
through them. Non-terminal nodes allow grouping of nodes into
different hierachical levels. The highest level in the network is the
non-terminal node that represents the entire language model. The
elements on the lowest level are the word models.

The recognition process starts with a single token entering the
top level syntax. Every timestep is split into two half steps. At
first, all link nodes propagate their tokens down the hierarchy, un-
til the lowest level, the word models, are reached. The actual cal-
culations of word model log-likelihoods given the observed fea-
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tures happen in the second phase. At the end of the second phase
all link nodes collect tokens from their incoming connections and
build a connected list of the n-best tokens. Tokens are ranked by
a score, corresponding to their accumulated log-likelihood, and a
global, adaptive threshold is used for efficient pruning. This pro-
cess is iterated until a complete observation sequence has been
processed and the outgoing link node of the top level syntax con-
tains the token with the highest score given the model and the
observed data.

2.2 Audiovisual Recognition using Coupled HMMs

For audiovisual speech recognition, two streams of feature vec-
tors are available. o, (t) denotes the acoustical and o, (t) the vi-
sual feature vector at time ¢. These are not necessarily synchro-
nized. The cause of asynchronicities lies in part in recording con-
ditions, since sampling rates may differ. Such technical influences
may be compensated by synchronous sampling and interpolation.
However, other causes of asynchronicities are rooted in the speech
production process itself, in which variable delays between artic-
ulator movements and voice production lead to time-varying lags
between video and audio. Such lags may have a duration of up
to 120ms, which corresponds to the duration of up to an entire
phoneme [8]. Therefore, it is of great importance to account for
variable delays between modalities, when recognition is to per-
form optimally.

In order to allow for such variable delays, a number of alterna-
tives exist [2], like multi-stream HMMs, coupled HMMs, prod-
uct HMMs or independent HMMs. These differ especially in the
degree of required synchrony between modalities, from the one
extreme of independent HMMs, where both feature streams can
evolve with no coupling whatsoever, to the other extreme of multi-
stream HMMs, in which a state-wise alignment is necessary or at
least implicitly assumed.

As a reasonable compromise, coupled HMMs allow for both
streams to have lags or evolve at different speeds, as long as they
are again synchroneous at all word boundaries. Since this intro-
duces some contraints but does not force unachievable frame-by-
frame alignment, the following work is based on a realization of
coupled HMMs in the above token passing framework.

2.3 Two-Stream Realization of Word Models

In coupled hidden markov models (CHMM:s), both feature vector
sequences are retained as separate streams. As generative models,
the CHMM can describe the probability of both feature streams
jointly as a function of a set of two discrete, hidden state vari-
ables, which evolve analogously to the single state variable of a
conventional HMM.

Thus, the CHMMSs have a two-dimensional state q which is
composed of an audio and a video state, g, and g, respectively,
which can be seen in Fig. 2.

Each possible sequence of states through the model represents
one possible alignment with the sequence of observation vectors.
To evaluate the likelihood of such an alignment, each state pairing
is connected by a transition probability, and each state is associ-
ated with an observation probability distribution.

The transition probability and the observation probability can
both be composed from the two marginal HMMs. Then, the cou-
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Figure 2: A coupled HMM consists of a matrix of interconnected
states, which each correspond to the pairing of one audio- and one
video-HMM -state, g, and g,, respectively.

pled transition probability becomes

p(Qa(t +1) = Ja, qo(t + 1) = jolqa(t) = ta, qu(t) = iv)
= aa(izuja) : av(iv’jv)

where a4 (iq,jq) and ay(iv, j») correspond to the transition
probabilities of the two marginal HMMs, the audio-only and the
video-only single-stream HMMs, respectively.

For the observation probability, both marginal HMMs could
equally be composed to form a joint output probability by

p(o]i) = ba(0alia) - by (0|iv)- (1)

Here b, (04|ia) and by (0y|i,) denote the output probability dis-
tributions for both single streams.

However, such a formulation does not allow to take into ac-
count the different reliabilities of audio and video stream. There-
fore, Eq. (1) is commonly modified by an additional stream
weight -y as follows

p(0li) = ba(0alia)” - bu(ou]iv) . 2)

This approach, described in more detail e.g. in [1], is also
adopted in JASPER and forms the basis of all presented exper-
iments.

3 Feature Extration
3.1 Audio Feature Extraction

RASTA-PLP-coefficients are designed to concentrate on features
with a certain rate of change, namely that rate of change which
is typical of speech. For that purpose, features are band-pass fil-
tered. This makes them more robust to variations in room transfer
function and in speakers, and to changes caused by background
noise varying more quickly or slowly than speech signals [6].

In the presented experiments, 12 RASTA-PLP cepstrum coef-
ficients and their first and second derivatives were used, which
were obtained from a power spectrum of the speech signal using
a window size of 25ms with 15ms overlap. RASTA-filtering takes
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place in the log-bark-spectrum, using the transfer function

0.22* +0.12° — 0.127% — 0.2z7*
23(z —0.94)

H(z) = 3)

given in [6]. Subsequently, the LPC-cepstrum is ob-
tained from the RASTA-filtered log spectrum, using
an LPC model order of 12. For these computations,
the rastamat toolbox was used, which is available from
http://labrosa.ee.columbia.edu/matlab/rastamat/.
Finally, first and second order time derivatives were appended to
the 12 RASTA-PLP-cepstral coefficients, which further improved
robustness.

3.2 Visual Feature Extraction
3.2.1 Face Detection

The visual feature extraction consists of two main steps, first find-
ing the face and mouth region and subsequently extracting the
relevant visual features from those regions. For the very first
frame of every video sequence, a detailed search for the face and
mouth regions is conducted. Following frames use the coherence
of image content between frames to find the mouth region with a
less complex search strategy. If an uncertainty-threshold for the
mouth-ROI position is reached, a full search is required. This
happens on average only once every second.

For the face segmentation, the YCbCr colorspace is used.
Based on probability density functions (pdfs) learned from 187
example images, image pixels are classified as skin and non-skin
pixels. For a potential face candidate, two constraints must be
met. A predefined number of pixels inside a connected region is
required, i.e. the face region needs a sufficient size, and topo-
logically, the region should have at least one hole. Holes in the
homogeneous skin colored region are usually caused by the eyes
or the mouth, especially in an opened position.

After a suitable image region has been found for which all plau-
sibility tests are positive, an ellipse with the same center of gravity
is fitted to that region. The height to width ratio is adjusted to a
typical value of % to give ample space for all facial features.

The orientation of the fitted ellipse is used to compensate for a
possible lateral head inclination.

The rotation angle is obtained from the main axis of the el-
lipse, and an alternative method to estimate the rotation is used
for verification. This second estimate of the rotation angle is cal-
culated from the center-positions of the three largest holes in the
face region. If the difference between both angles is smaller than
a predefined value, the rotation angle is accepted. With a reliable
estimate of the angle, the image is rotated around the center of
gravity of the ellipse so that the face is vertically oriented in an
upright position, otherwise no rotation takes place. An example
for an extracted face region can be seen in Fig. 3.

3.2.2  Mouth Detection

Typically, a face has a number of prominent features in the hor-
izontal direction (eyelids, eyebrows, nostrils, lips). These prop-
erties of human faces are used to guide the search into image re-
gions with a high probability for the desired facial features. A
Sobel edge filter is used to extract horizontal edges. Rows in this
edge image are summed and the resulting column vector is low-
pass filtered to give a smooth approximation of the vertical image

Figure 3: An example of an extracted face region. The green el-
lipse represents the accepted face hypothesis. The yellow square
is the selected face region. The green lines correspond to the im-
age rows with the highest probability for horizontally oriented fa-
cial features.

profile. Local maxima are recorded in a list sorted by the strength
of the maximum.

The list is used to find the most probable positions of 6 different
facial features (hair, hairline, eyebrows, eyes, nose and mouth). A
training set of 80 handlabeled images was used to calculate the op-
timal parameters for Gaussian approximations of the probability
density functions for these facial features from line profiles. An
image region with a suitable size around the most probable posi-
tions for eyes and mouth is used for block matching. Templates
for eyes and mouth in opened as well as closed configuration are
used for a normalized cross correlation with the image regions. If
the resulting maxima in the correlation image reach a predefined
threshold, the center positions for eyes and mouth are accepted.

It is asumed that the distance between the centers of the eyes
is almost the same as the width of the mouth. With a ratio of %
between width and height of the mouth, an approximate region of
interest (ROI) for the mouth is found.

Inside this region both corners of the mouth are detected. For
this purpose, the green channel is thresholded to produce an ap-
proximation of the lip region. Starting from the left- and right-
most columns of the mouth-ROI going towards the middle, the
first pixel exeeding the threshold is searched for. These pixels are
very close to the true corners of the mouth. Both corner points are
used to calculate a normalised mouth region, depicted in Fig. 4.

Figure 4: Example for a sequence of extracted mouth regions.
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3.2.3  Feature Extraction

The properly selected and normalized mouth region is DCT trans-
formed. At the moment, the first 64 coefficients of the two dimen-
sional DCT-II are used as observations for the video model of the
coupled HMM speech recognizer. Future versions will use para-
metric features such as snakes and optical flow based features in
combination with linear discriminant analysis for dimension re-
duction.

4 Robust Recognition of Uncertain Features

Recognition of speech in noisy or otherwise difficult conditions
can greatly profit from so-called missing feature approaches. In
these methods, those features within a signal, which are dom-
inated by noise or distorted by other detrimental effects, are
considered ”‘missing”’, and subsequently disregarded in speech
recognition. [9]. This paradigm is also implemented in JASPER,
which carries out missing feature recognition on both audio- and
video features. In the following section, a short overview of miss-
ing feature recognition is given, followed by an explanation of
how uncertainties are derived for both the audio and the video
stream. Finally, the integration of both uncertain feature streams
in a missing-feature coupled HMM is described.

4.1 Missing Feature Theory

When some parts of a speech signal are occluded by noise or in-
terference, missing feature theory allows the recognizer to con-
centrate only on the reliable features. Both continuous-valued and
binary methods exist to consider such uncertainties in the recogni-
tion process. In the current application, binary uncertainties have
been considered, due to their advantages regarding computational
complexity.

Where binary uncertainties are concerned, two main ap-
proaches can be distinguished, marginalization and imputation
[10]. In both cases, a binary mask is necessary, which labels the
unreliable regions in the feature domain. These uncertainty values
are given in the following by wu,(k, t), which denotes a feature-
wise and frame-wise uncertainty for the audio feature stream, and
by u, (t), to denote a frame-wise uncertainty for the video stream.

In order to recognize these uncertain features, the approach of
marginalization has been employed. In that case, the output prob-
ability of an HMM with M Gaussian mixtures, which is usually
computed for a given state g by

b(o(t)) = Z Wi ~N(o(t),,uq,m, Eq,m) 4

with ptq,m and X4 ., as mean and covariance matrix of mixture m
and wy, as the mixture weight, is modified as follows

b(o(t) = Y win - N (o (1), gms Zim)- (9

m=1

Here, 0" (t) stands for a reduced feature vector, which only con-
tains those components & that are reliable at the given time, i.e. for
which u, (k, t) = 0. Similarly, jg ,, is a reduced mean vector and
X4,m is the reduced covariance matrix, from which all rows and
columns k with uq (k, t) = 1 have been removed.

4.2 Video Feature Uncertainties

To compute the uncertainties of video features, a simple, frame-
wise method is used. For this purpose, a speaker-dependent
mouth-model is trained on 20 hand labelled sequences, which
were selected to contain at least 30 wrongly estimated mouthre-
gions in total. From these sequences, intact mouth regions are
learned separately from a model combining both non-mouth and
cropped-mouth regions. The model consists of a single Gaussian
pdf of the same first 64 DCT coefficients, which are also used for
HMM training. Therefore, no additional feature extraction needs
to take place.

Subsequently, a frame will be counted as reliable, if the log-
likelihood p,,, of the trained mouth model,

P = e—%(Ov(t)—um)’Z;l(Ou(t)—um)

1
log ———
& IS

with mean i,,, and covariance matrix X,, exceeds that of a non-
mouth model

1 —1 (00 (W =pin) =5 (00 () —pin)
p =1lo e 20w n n v n
EERRV/CHT N

with parameters y,, and X,. Thus, the uncertainty u. (t) of all
video features in frame ¢ is given by

_J 0 forpm > pn,
un(t) _{ 1 otherwise. ©)

A typical example of the resultant labelling of video frames
can be seen in Fig. 5.

@
@

Figure 5: Mouth regions and their associated labels. A green

square means that the frame has been counted as reliable, oth-
erwise, a red square is shown.
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4.3 Audio Feature Uncertainties

For audio feature uncertainties, numerous approaches exist to es-
timate either binary or continuous-valued uncertainties. However,
most binary uncertainty values are used for spectra and log-mel-
spectra, which are not very robust to variations in the speaker,
the environment or the background noise. In contrast, a number
of more elaborate mechanisms for estimating continuous uncer-
tainty values in the feature domain have been developed over the
past years, see e.g. [11, 12].

Here, in contrast to the above approaches, only binary un-
certainties are considered, since audiovisual recognition poses
even more requirements for restricting the computational burden
of HMM output density evaluations. In contrast to continuous-
valued uncertainties, binary missing feature approaches are more
efficient to evaluate, and will therefore be used in the following.

Eds: B-J.Theobald & R.W.Harvey

AVSP 2009, Norwich, Sept 10th-13th, 2009



AVSP 2009, Norwich, Sept 10th-13th, 2009

121

To estimate the reliability of the audio feature vector o, (t) at
time ¢, its value is compared to that of a background noise esti-
mate n,, which is obtained in the time domain during the first
250ms. Since the audio feature vector is given in the RASTA-
PLP-cepstrum domain, the background noise estimate n, is also
transformed to the same domain and extended to the length of the
audio feature vector. These two vectors are then compared, and
a reliability decision for each of the £ = 1... 36 feature compo-
nents is made by

| 0 forng(k,t) <0.9-0a4(k,t),
uo (K, 1) 7{ 1 otherwise )

i.e. a feature is deemed unreliable if the value of the background
noise feature exceeds 90% of the observed signal feature.

This is a fairly simple approach which is only suitable for sta-
tionary background noise. Further work will concentrate on in-
tegrating adaptive background noise estimates such as those ob-
tainable from IMCRA (improved minima controlled recursive av-
eraging) and related techniques.

4.4 The missing feature coupled HMM

The probability evaluation is carried out by means of marginal-
ization, as described above in Section 4.1. In the case of coupled
HMMs, the output probability computation is factorized into two
streams, as given by Eq. (2). This means that marginalization can
also be carried out independently for each stream. As a final op-
timization, since the video feature uncertainty is only computed
once for each frame and extends to the entire video feature vector
at that time, only the following expression needs to be evaluated
at each frame and for each HMM state i = (iqiy).

0 (0alia)” - by(0u|in)' ™7 for u,(t) z? ®)

NN
ploli) = { ba (00]in)” for wy ()

This simplified version is due to that fact, that p(o,|q») = 1,
when the entire feature vector is unreliable.

5 Experiments and Results
5.1 Database

The GRID database is a corpus of high-quality audio and video
recordings of 1000 sentences spoken by each of 34 talkers
[13]. Sentences are simple, syntactically identical phrases of
the form <command:4><color:4><preposition:4>
<letter:25><digit:10><adverb:4>, where the
number of choices for each component is indicated.
The corpus is available on the web for scientific use at
http://www.dcs.shef.ac.uk/spandh/gridcorpus/.

5.2 Experimental Setup

To evaluate the missing feature concepts for audiovisual speech
recognition, corrupted video sequences are required. However,
the mouth region is almost always clearly visible and it is found
with a large accuracy, normally well above 99%. In order to test
the algorithm under difficult conditions, two especially problem-
atic speakers, which caused failures in the ROI selection at least
occasionally, were selected for testing. For these two speakers,
numbers 16 and 34, a mouth region is still correctly extracted in
99.1% of the cases. Therefore the tests were limited to only that

subset for which at least one mouth region is either invisible or
wrongly selected. The resulting test set consists of 318 sentences,
in which an accurate mouth region is available in 94.6% of the
frames. On this test set, the audio information is additionally
distorted by adding white noise at signal to noise ratios (SNRs)
ranging from 0dB to 30dB.

5.3 Audiovisual Recognition Results

Fig. 6 shows the overall recognition results for those two speak-
ers of the GRID database, for whom accurate mouth detection
was most problematic with the chosen approach. The recogni-
tion result is given as the accuracy in percent, PA, defined by
PA = w, with NV as the number of reference labels, D
the deletions, S the substitutions and I the insertions.

As can be seen, both video-only and audio-only recogni-
tion profit notably from the use of missing feature techniques.
Additionally, the performance improvement from audiovisual

100 —
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- L -O-AVSR
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& o —Video+Conf.
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Figure 6: Recognition results for audio-only, video-only and au-
diovisual recognition. Dash-dotted lines correspond to conven-
tional recognition, whereas bold lines indicate results using es-
timated audio and video confidences, i.e. using missing feature
techniques.

CHMM recognition is significant, especially in the low-SNR
range. Here, the joint recognition always improves the accuracy
when compared to the better of the two single-stream recognizers,
and often comes close to halving the error rate. This is also shown
in Fig. 7 which displays the relative error rate reductions achieved
by audiovisual missing feature recognition, when compared to the
better one of the two single-stream recognizers.

In all experiments, the stream weight -y for the audiovisual rec-
ognizer and that for the audiovisual recognizer with confidences,
7e, were separately adjusted to their optimal values shown in Ta-
ble 1. This adjustment could be carried out automatically based
on an SNR estimate. Ideally, however, no adjustment should be
necessary at all. As Table 2 indicates, the use of confidences ap-
pears to be a step in the right direction. Here, the influence of
the stream weight on the accuracy PA is shown. It is given in
terms of the mean absolute variation of the accuracy relative to
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Figure 7: Relative error rate reductions achieved by audiovisual
recognition, with and without the use of binary confidences.

Table 1: Optimal Settings of Stream Weights.

SNR | O 10 20 30
v 0.5 | 089 | 095 | 0.98
Ye 0.7 | 0.89 | 093 | 0.97

the stream weight, i.e. the average value o . The num-

f APA
Ay

bers were obtained by averaging over all results from the parame-

ter tuning phase, during which 5 different stream weight settings

were tested per SNR.

APA
Ay

Table 2: Mean variability of accuracy ) ‘ relative to changes

in stream weight .
SNR 0dB | 10dB | 20dB | 30dB
Conventional AVSR | 37.6 | 88.8 17.5 0
Missing features 18.6 | 48.8 5.0 0

6 Conclusions

As shown in previous publications, audiovisual integration gives
significant error rate reductions when compared to the best of two
single-stream recognizers. In the presented method, where cou-
pled HMMs allow for loosely coupled streams with variable lags,
these improvements can halve the error rate compared to the bet-
ter single stream recognizer, especially at low SNRs.

For additional gains in performance, missing feature recogni-
tion has been applied successfully. This approach is combined
with a fairly simple and easily computed binary uncertainty esti-
mate, which results in a system significantly less computationally
demanding than e.g. uncertainty decoding.

Already for the considered binary uncertainties, both audio-
only and video-only recognition gain in performance, and audio-
visual recognition is also notably improved by this approach.

As an additional advantage, the performance becomes less de-
pendent on stream weighting, much reducing the need for robust
SNR estimation and stream weight adaptation, since the system
automatically focuses on the most reliable of both feature streams.
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