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Abstract
In this paper, we propose a multi-modal voice activity detection
system (VAD) that uses audio and visual information. Audio-
only VAD systems typically are not robust to (acoustic) noise. In-
corporating visual information, for example information extracted
from mouth images, can improve the robustness since the visual
information is not affected by the acoustic noise. In multi-modal
(speech) signal processing, there are two methods for fusing the
audio and the visual information: concatenating the audio and
visual features, and employing audio-only and visual-only classi-
fiers, then fusing the unimodal decisions. We investigate the ef-
fectiveness of these methods and also compare model-based and
model-free methods for VAD. Experimental results show feature
fusion methods to generally be more effective, and decision fu-
sion methods generally perform better using model-free methods.
Index Terms: voice activity detection, multi-modal, AVVAD

1 Introduction
Automatic speech recognition (ASR) has received increasing in-
terest in recent years, and can now be found in several real-world
applications. However in a real environment, ASR performance
can significantly be degraded by environmental noise. Therefore,
to compensate for the noise, techniques which support ASR are
needed as a front-end of recognition.

Voice Activity Detection (VAD) is one such front-end tech-
nique. The goal of VAD is to distinguish sections of a signal that
contain speech from those that do not. Thus a speech recogniser
can then focus effort only on segments of the signal that contain
speech. One approach to VAD is to use power of input signal
to classify a segment of signal as speech/non-speech. However,
a limitation is consonants often contain low power, so words be-
ginning with a consonant might be mis-recognised as the VAD
system mis-identifies the onset of the work in the signal. Alterna-
tively, noise reduction methods can be used in combination with
VAD as an ASR front-end [1]. Generally the noise compensa-
tion are carried out as separate tasks, but often the result from one
component is fed back to the other to improve the effectiveness.

Small cameras are becoming ubiquitous on laptop computers,
cellular phones, and Personal Digital Assistants (PDAs), which.
This makes it easier to capture video and brings forward the
possibility of more widespread audio-visual speech recognition
(AVASR) and audio-visual voice activity detection (AVVAD).
There have been some recent research into AVVAD [2, 3, 4]. For
instance, Yamamoto et al. [2] proposed an AVVAD method using
a microphone array and a camera for hands-free speech recogni-
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Figure 1: Comparison of fusion methods.

tion in noisy conditions. In their method, the location of a sub-
ject is determined from captured pictures, before acoustic and vi-
sual information are integrated using Bayesian networks. Butko
[3] combines SVM-based and HMM-based methods for audio
information and they are integrated with a video-based system.
Almajai[4] fuse 2-D discrete cosine transform (DCT) visual fea-
tures with acoustic features for AVVAD.

In this paper, we propose a multi-modal voice activity detection
that uses optical flow computed from lip images as visual features.

This paper is organised as follows: Section 2 describes two fu-
sion methods for multi-modal VAD and the difference between a
HMM model-based and a model-free system. Section 3 describes
experiments for VAD and discusses the results. Finally, Section 4
provides the conclusions and describes future work.

2 Proposed Method
How to combine the information from different modalities is one
of the main problem for audio-visual speech recognition. One
(low-level) method is to combine the audio and the visual features
— known as feature fusion. An alternative (high-level) method is
to perform uni-modal recognition then fuse the decision, known
as decision fusion. Figure 1 contrasts these approaches.

VAD methods can be divided into two categories: model-based
methods and model-free methods. Model-based methods use
training data to create models, which are used to recognise a spe-
cific class. Conversely, model-free method does not utilise class-
specific training data directly. The advantage of model-based
methods is that they have information about target they must later
recognise. It is therefore natural that model-based methods per-
form better result than model-free methods if training is done cor-
rectly. The advantage of model-free methods is there is no need
to provide prior class labels to perform training.

This paper compares 4 approaches for AVVAD: a model-based



and a model-free approach that each utilise both feature and
decision-level fusion. These are outlined in Table 1.

Table 1: Combination of fusion and model.
Model training
with without

feature fusion 2.1 2.2
decision fusion 2.3 2.4

2.1 Feature Fusion with Model Training

VAD can be considered a special case of ASR. However, rather
than classifying phonemes or words, the task is to distinguish seg-
ments of a signal that contain speech from those that do not.

In this work a multi-stream HMM, often used in AVASR, is
used as the model-based feature fusion method. Voice and non-
voice models are created using clean (i.e. noise-free) data. 3 state
left-to-right HMMs with GMMs employing diagonal covariance
are used. The number of mixtures is 8 for the audio modality and
4 for visual modality. The acoustic features are either the first 12
Mel-Frequency Cepstral Coefficients (MFCCs), with the ∆ and
∆ ∆ coefficients, or the short term power and its ∆ and ∆ ∆
terms. Optical flow computed from images containing the speak-
ers mouth is used as visual features. The horizontal and vertical
mean vector (2D) and their variance vector (2D) are calculated
in each frame. In this paper, this method is called F-w (Feature
fusion with model training).

2.2 Feature Fusion without Model Training

This is a simplistic approach that classifies speech from non-
speech segments by combining audio and visual features, then
performing a simple thresholding. As acoustic features, the power
of the input signal is computed using:

featA(i) = 10 · log10

(
1
N

N−1∑

n=0

s2
i (n)

)
, i = 0, 1, ..., M − 1

(1)
where si(n) is the signal and featA(i) is the average power of
the signal in the i-th frame, and N means frame length. The vi-
sual features are the variance of the optical flow vectors computed
from of lip images. The particular algorithm used in the Horn-
Schuck algorithm [5]. The advantage of using optical flow is the
features are dynamic, describing the movement of the visible ar-
ticulators from one frame to the next. In the context of VAD, this
allows the system to distinguish between a stationary open mouth
(likely not speaking) from a moving open mouth (maybe speak-
ing).

Optical flow vectors computed from images in non-speech seg-
ments generally equate to small values — there is some small
mouth movements, but little to no movement in the cheeks. Con-
versely, during speech regions there is generally a lot of facial
movement and the difference in the variance of the optical flow
vectors is significantly greater than non-speech segments.

2.2.1 Feature fusion

Feature fusion involves computing the acoustic and the visual pa-
rameters from the audio and video signals respectively, the com-

bining the feature vectors before applying as input to a (single)
classifier. In i-th frame, the audio features, featA(i), and visual
features, featV (i), are united using Eq. (2) because they are used
to decided voice/non-voice by a threshold, as shown in Eq. (3).

featAV (i) = β · featA(i) + (1− β) · featV (i) (2)

where β is a parameter weight applied to the audio feature. For
β = 1, featAV (i) is purely audio features. To classify speech
and non-speech segments in the i-th of the signal, Equation (3) is
applied.

result(i) =

{
voice (feat(i) ≥ T )
non-voice (feat(i) < T )

(3)

where T is the decision threshold. If feat(i) is equal to or greater
than the threshold, i-th frame is decided as voice. In this paper,this
method is called F-w/o (Feature fusion without model training).

2.3 Decision Fusion with Model Training

Model-based decision fusion is a HMM-based VAD, similar to
that described in Section 2.1. However, separate model models
are trained to classify using acoustic and visual parameters indi-
vidually. The individual decisions are then combined using log-
ical conjunction, as in Equation (4, or logical disjunction, as in
Equation (5.

resultAV (i) = resultA(i) ∩ resultV (i) (4)

resultAV (i) = resultA(i) ∪ resultV (i) (5)

The result of Equation (4) is the segment contains speech only
if both modalities indicate the presence of speech. Equation (5)
results in a segment being classified as speech if either modality
indicates the presence of speech. In this paper, this method is
called D-w (Decision fusion with model training). D-w(AND)
signifies Equation (4), and D-w(OR) signifies Equation (5).

2.4 Decision Fusion without Model Training

In the case of decision fusion without model training, audio fea-
ture and visual features are classified as speech/non-speech seg-
ments using Equation (3) for each individual modality. These re-
sults are then combined using Equation (4) or Eq. (5) as described
in Section 2.3. This method is referred to as D-w/o (Decision fu-
sion without model training). D-w/o(AND) uses Equation (4),
and D-w/o(OR) uses Equation (5).

3 Experiments
In this section the effectiveness of each of the methods previously
described are compared. Speech sequences that are contaminated
with various several noise sources are used. To evaluate the per-
formance, the False Acceptance Rate (FAR), False Rejection Rate
(FRR), and their average are used.

3.1 Experimental conditions

An existing speech corpus [6] is used in this work. The corpus is
formed of 2, 750 utterances spoken by 11 male speakers, each
speaking 250 continuous digits. The utterances are formed of
both regions of speech (≈ 40% of the corpus) and silence (the
remaining ≈ 60% of the corpus). The sequence were recorded
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Figure 2: A sample image in the audio-visual speech database.

in a soundproof recording room using a lapel microphone. The
video was captured using a DV camera located roughly 1m away
from the speaker(s). Recording and capture conditions are de-
tailed in Table 2 and a sample image from the cirpus is shown in
Figure 2.

Table 2: Recording and capture conditions.
Audio sampling rate 16kHz

(Downsampled from 48kHz)
Audio quantization bit 16bit
Video size 180x120

(Downsampled from 720x480)
Video frame rate 15fps (Progressive video)
Video color depth 24bit (Truecolor)
Video format DV

To evaluate noise robustness of proposed methods, two forms
of noise were adopted: white additive noise and classical (instru-
mental) music. Specifically the RWC music database[7] is used.
Noise is added to the signals to generate signals with Sound to
Noise Ratio (SNR) of 10dB and 0dB respectively. The SNR is is
calculated over the entire signal, including the silence regions.

3.2 Results

3.2.1 Feature Fusion with Model Training (F-w)

Table 3 shows the result using F-w: “clean” signifies the noise-
free condition, “white 10dB” and “white 0dB” signify white addi-
tive noise at 10 and 0dB respectively, and “music 10dB” and “mu-
sic 0dB” signify speech degraded using music. For the model-
based approaches, the mixing weight is added to the mixing
weight the GMMs in speech/non-speech model. The error rate is
low for hight SNR (i.e. clean, white 10dB, and music 10dB), but
FAR increases as the noise increases. Note that in these exper-
iments, a speaker independent approach is adopted. HMMs are
trained from 10 of the 11 speakers, and the system is tested on the
held out speaker. The process is repeated for each speaker in turn
and the mean results, averaged over all speakers, are presented.

3.2.2 Feature Fusion without Model Training (F-w/o)

Table 4 shows result of F-w/o. The audio weights are set exper-
imentally using the best result from previous experiments. The

Table 3: Error rate by Fusion-model-based method.
(%)

FAR FRR Average audio weight
clean 2.6 6.6 4.7 0.9

white 10dB 7.7 5.3 6.4 0.4
music 10dB 11.8 5.0 8.4 0.2
white 0dB 30.3 8.6 19.4 0.1
music 0dB 18.5 22.4 20.5 0.0

thresholds, T , from Equation (3), is dynamic and is the average
of the feature parameters from frame 1 to the current frame. This
method shows small FAR except for the condition of music 0dB.

Table 4: Error rate by Fusion-model-free method.
(%)

FAR FRR Average audio weight
clean 2.7 10.7 6.7 0.9

white 10dB 2.9 10.7 6.8 0.9
music 10dB 3.2 12.7 8.0 0.9
white 0dB 6.6 11.8 9.2 0.9
music 0dB 18.1 21.3 19.7 0.5

3.2.3 Decision Fusion with Model Training (D-w)

Table 5 to table 7 shows the result of D-w(AND) and D-w(OR)
for audio/visual only models respectively. The results of D-
w show the error rate increases with increasing noise (specifi-
cally white 0dB and music 0dB). In table 5, FAR decreases by
combining results. Audio-only classification often mis-classifies
“speech”, so the FAR is relatively high, yet FRR keeps is rela-
tively low rate.

Table 5: Error rate by Decision(AND)-model-based method.
(%)

FAR FRR Average
clean 0.94 24.2 12.5

white 10dB 3.5 23.7 13.6
music 10dB 3.5 23.6 13.5
white 0dB 21.5 23.8 22.6
music 0dB 20.6 22.3 21.4

3.2.4 Decision Fusion without Model Training (D-w/o)

Table 8 shows the result of D-w/o(AND) and Table 9 shows the re-
sult of D-w/o(OR). Again the threshold T (Equation (3)) is deter-
mined empirically given the best value of previous experiments.

The performance of D-w/o(AND) is relatively poor. Generally,
the logical disjunction (OR) without prior training over classifies
segments as speech, whereas logical conjunction (AND) tends to
perform better (see Table 9).

3.3 Discussions

The worst performing systems evaluated here are:
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Table 6: Error rate by Decision(OR)-model-based method.
(%)

FAR FRR Average
clean 24.7 3.2 14

white 10dB 40.4 2.6 21.5
music 10dB 30.9 2.6 16.7
white 0dB 91.7 0.8 46.2
music 0dB 86.7 1.5 44.1

Table 7: Error rate by individual model-based method.
(%)

FAR FRR Average
clean 1.9 8.7 5.3

white 10dB 20.1 7.5 13.8
music 10dB 10.6 7.4 9.0
white 0dB 89.4 5.8 47.6
music 0dB 83.5 5.1 44.3

visual 23.7 18.7 21.2

• F-w in low noise condition (shown in Table 3)

• F-w/o in high noise condition (shown in Table 4).

Figure 3 shows the result of F-w and F-w/o. Feature fusion
performs better than decision fusion and the experimental results
presented here demonstrate the same tendency. The model-based
method (F-w) performs best when the test data are similar to
the training data. For differing training and test conditions, the
model-free method (F-w/o) performs better. The best result in
terms of FAR is D-w(OR) (shown in Table 6), and best result in
terms of FRR is D-w/o(OR) (shown in table 9).

4 Conclusions
In this paper we have investigated AVVAD methods. For the ap-
proaches tested here, feature fusion is most effective, as is typical
in AVASR. Combining the speech detection of D-w(OR) and the
non-speech detection of D-w/o(OR) will produce, on average, the
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Figure 3: Comparison between model-based and model-free
method.

Table 8: Error rate by Decision(AND)-model-free method.
(%)

FAR FRR Average
clean 19.5 32.7 26.1

white 10dB 19.4 32.9 26.2
music 10dB 19.3 33.2 26.2
white 0dB 17.4 36.6 27.0
music 0dB 17.0 37.4 27.1

Table 9: Error rate by Decision(OR)-model-free method.
(%)

FAR FRR Average
clean 2.6 11.1 6.9

white 10dB 2.5 11.2 6.9
music 10dB 3.6 13.5 8.5
white 0dB 2.2 13.8 8.0
music 0dB 28.5 28.5 28.2

most accurate system. For future work, we will investigate degra-
dation of the visual modality as well as the acoustic modality.
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