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Abstract
We propose a new method for estimation of area of mouth open-
ing from a video sequence of the speaking person. In a paper pub-
lished in 2000, Grant and Seitz have reported the different degrees
of correlation between acoustic envelopes and visible movements.
In our method, we exploit these correlations to establish a mathe-
matical model of a Single-Input Multiple-Output (SIMO) system
in which the area of mouth opening is the unknown Single Input
that we need to estimate. The subband Root Mean Squared (RMS)
energies of the speech signal are the observable Multiple Outputs
of the model. The unknown input signal can be directly estimated
by using the existing blind deconvolution techniques. Our method
necessitates only an audio sequence to estimate directly the area
of mouth opening in the corresponding video sequence. Con-
sequently, using this method permits us to avoid using complex
images processing techniques of the conventional visual features
extraction methods, or the training of the estimators in the audio-
to-visual mapping methods. The audio-visual sequences used for
the estimation tests have been recorded by an ordinary webcam.
Estimation result is promising; the estimated area of mouth open-
ing is sufficiently correlated with the manually measured one; the
average of correlation coefficients obtained by the most effective
configuration of the proposed method, on a set of 16 French sen-
tences, is 0.73.
Index Terms: Lip geometric feature, area of mouth opening,
speech temporal envelope processing, SIMO, blind deconvolution

1 Introduction
Amongst the visual features of the audio-visual speech, lip geo-
metric features are assumed to contain most of useful information
for speechreading by human and machine. However, their ex-
traction requires robust algorithms which are often difficult and
computationally intensive in realistic scenarios. Given an audio-
visual sequence of speech, lip geometric features can generally
be estimated by using image-based [1] or audio-to-visual map-
ping methods. In the image-based methods for lip visual features
extraction, a region-of-interest (ROI) is needed to be determined
for the visual feature extraction algorithm to proceed. Alterna-
tively, specific image processing algorithms such as snakes [2],
active shape and appearance models [3, 4] can be used to obtain
lip contour estimates. The area of mouth opening is the area con-
tained within the interior lip contour (see Fig. 1), and it is one of
the most useful information for lipreading. To obtain the area of

mouth opening, the interior lip contour must be firstly extracted
and then, the area of mouth opening is calculated. Therefore,
image-based area of mouth opening extraction is rather costly.

Figure 1: Area of mouth opening is defined as the area contained
within the interior lip contour.

The area of mouth opening and other lip geometric features in
the video sequence can also be estimated from speech acoustics
of the corresponding audio sequence using audio-to-visual map-
ping methods. In the audio-to-visual mapping approach, we must
have sufficiently audio-visual data to train the estimators. These
estimators may be linear [5] or non-linear such as those based on
hidden Markov models [6, 7] or on time delay neural networks
[8]. The interrelation between visual speech features and acoustic
ones can be generally approximated by linear models. However,
the use of non-linear models is necessary to take into account the
dynamics in the audio-visual speech [9]. The main inconvenience
of the audio-to-visual mapping methods is the complexity of the
realization, especially when we want to use the non-linear estima-
tors. A short review about the audio-to-visual mapping methods
for speech visual features estimation can be found in [5], in which
facial motion is linearly predicted with a correlation average of
0.7 to the recorded motion.

In this paper, we propose a new method for the estimation of
area of mouth opening from speech acoustics using blind decon-
volution technique. The main originality of this method lies on its
simplicity and its low cost of realization compared to other meth-
ods mentioned previously. Further, the method needs only an au-
dio sequence to directly estimate the area of mouth opening in the
corresponding video sequence. Consequently, images processing
techniques and training are unnecessary. In [10], Grant and Seitz
have found that the improvement of detectability of visible speech
cues related to the degree of correlation between acoustic en-
velopes and visible movements. In our approach, we exploit these
correlations to establish a mathematical model of a Single-Input
Multiple-Output (SIMO) system in which the area of mouth open-
ing is the unknown Single Input that we want to estimate. The



subband Root Mean Squared (RMS) energies of the speech signal
are the observable Multiple Outputs of the model. The unknown
input signal can be directly estimated by using blind deconvolu-
tion techniques in the literature [11]. Area of mouth opening esti-
mation was performed on short audio-visual sequences recorded
by an ordinary webcam.

2 Problem Formulation and Solution
2.1 Mathematical Modeling of Problem

A speech signal, y(t), is decomposed into N subband signals,
yi(t), i = 1 . . . N , by using a N -channel filterbank:

y(t) ≈
N∑

i=1

yi(t) (1)

The inherent correlation between the RMS energy, xi(t), of
the i-th decomposed subband signal, yi(t), and the area of mouth
opening, s(t), can be modeled by a convolution ∗ between s(t)
and the finite impulse response (FIR) hi(t) of the i-th system
channel. Below, the system channels are supposed to have finite
impulse responses. We have

xi(t) = hi(t) ∗ s(t) + ei(t) (2)

where ei(t) is the estimation error corresponding to the i-th sys-
tem channel. This error represents the components of xi(t) that
are uncorrelated with (or orthogonal to) s(t). Hence, with N sub-
bands, we have N equations:






x1(t) = h1(t) ∗ s(t) + e1(t)
x2(t) = h2(t) ∗ s(t) + e2(t)

...
xN (t) = hN (t) ∗ s(t) + eN (t)

(3)

The system (3) of equations represents the model of a Single-
Input Multiple-Output (SIMO) system. In this model, the area of
mouth opening, s(t), is the unknown Single-Input and the sub-
band RMS energies, xi(t), i = 1, . . . , N , are the observable
Multiple-Output.

2.2 Solution Using Blind Deconvolution Technique

Blind system identification is a fundamental signal processing
technique aimed at retrieving a system unknown information from
its outputs only [11]. In this case, the word “blind” means that
we have neither information about the signal to estimate, s(t),
nor about the channel impulse responses, hi(t), i = 1, . . . , N,
of the system which is assumed to be linear and shift invari-
ant. Our objective is to estimate the area of mouth opening
s(t) as the unknown input signal knowing the output signals
xi(t), i = 1, . . . , N . In the domain of blind system identifica-
tion, the direct estimation of the SIMO system unknown input
signal is an existent problem which has a number of solutions.
The typical solutions such as input subspace (IS) method, mutu-
ally referenced equalizers (MRE) method, and linear prediction
(LP) method can be found in [11].

The input subspace (IS) method, proposed in [12], is for identi-
fying a Single-Input Multiple-Output finite impulse response sys-
tem (SIMO-FIR), when only the outputs of the system are pre-
sented. Comparing to other methods, this method is computation-
ally more efficient and it does not require any a priori knowledge

of the input signal correlation. Further, this method gives good
estimation results even for short signal frame [12]. Hence, these
strengths suggest that input subspace method would be a good
candidate for solving our estimation problem. In this paper, we
introduce the results of the area of mouth opening estimation from
speech acoustic using the input subspace method. In section 2.3,
we will present briefly the mathematical solution of the problem
using this method.

2.3 Input Subspace Method

It is more convenient to analyze (3) in its matrix form and to as-
sume that the input and output are discrete signals having length
M . Therefore, we write

x = HN s + e (4)

where
x =

[
xT
1 xT

2 · · · xT
N

]T

e =
[
eT
1 eT

2 · · · eT
N

]T

and
xi = [xi(0), · · · , xi(M − 1)]T

ei = [ei(0), · · · , ei(M − 1)]T

The superscript T denotes the transpose and s is the input vector
(area of mouth opening)

s = [s(−L), s(−L + 1), · · · , s(M − 1)]T (5)

where L is the model order or the length of the FIRs of the system
channels. In (4), HN is a generalized Sylvester matrix [12] of
dimensions NM × (M + L)

HN =





H(1)

H(2)

...
H(N)




(6)

where H(i) is the M×(M+L) Sylvester matrix of the i-th system
channel response

H(i) =





hi(L) · · · hi(0) · · · 0
...

. . .
. . .

...
0 · · · hi(L) · · · hi(0)



 (7)

The previous formulation treats the system outputs as a large
single vector whereas the input subspace method treats the system
outputs as a sequence of small vectors by introducing a window
parameter, W , to determine the length of each output vector. We
rewrite (4) in the absence of noise, e, as follows

[x(0), · · · , x(k), · · · , x(M −W )] = HN SW+L (8)

where k = 0, 1, . . . , M −W and

x(k) =
[
xT
1 (k), · · · , xT

N (k)
]T

xi(k) = [xi(k), · · · , xi(k + W − 1)]T

In (8), HN is the generalized Sylvester matrix, as in (6), but
with dimensions NW × (W +L) because the Sylvester matrices
H(i), i = 1, . . . , N are now having dimensions W × (W + L).

AVSP 2009, Norwich, Sept 10th-13th, 2009 81

AVSP 2009, Norwich, Sept 10th-13th, 2009 Eds: B-J.Theobald & R.W.Harvey



Further, SW+L (8) is a Hankel matrix with dimensions (W +L)×
(M −W + 1) and the subspace defined by the rows of SW+L is
called the input subspace

SW+L =





s(−L) s(−L + 1) · · · s(M −W − L)
s(−L + 1) s(−L + 2) · · · s(M −W − L + 1)

...
...

...
s(W − 1) s(W ) · · · s(M − 1)





Let V0 be the null space of SW+L, i.e., SW+LV0 = 0. If
HN has full column rank, the data matrix, x, has the same row
span as SW+L [11]. Therefore, the null space V0 of SW+L can
be calculated from the observable data matrix x. Using the null
space V0 of SW+L and based on the property of Hankel matrices,
we can repeatedly calculate the null space, Vr , of Sr, r = W +
L− k + 1, k = 1, . . . , W + L by the following formula [11]

Vr =





V0 · · · 0
...

. . .
...

0 · · · V0





︸ ︷︷ ︸
k blocks

(9)

where 0 is a 1 × (M − 2W − L + 1) vector of zeros. The null
space V1 of S1 = [s(−L), · · · , s(M − 1)] is obtained when
k = W + L. Having the null space V1, we can calculated the
unknown input signal S1 by solving the following equation

S1V1 = 0 (10)

In the presence of additive noise, the input signal S1 is the one
that minimizes ‖S1V1‖2, where ‖.‖ is the Euclidean norm. The
IS method can be summarized as follows

• Calculate the null space V0 of SW+L from the observable
data matrix.

• Calculate V1 following (9).

• S1 = arg min
s1

‖S1V1‖2.

3 Speech Material and Filterbank Structure
3.1 Audio-Visual Data

We evaluate our estimation method on the audio-visual sequences
recorded by an ordinary webcam. The purpose is to assess
our method with non-high-quality audio-visual data. The 16
recorded sentences are in French and are selected from the French
sentences of the Laval43 sequence of the ATR database [13].
These sentences were read consecutively by a male native French
speaker (F. Berthommier at Gipsa-Lab, Grenoble), and were
recorded into a long audio-visual sequence (about more than 2
minutes), by using a webcam. This long audio-visual sequence
was then manually segmented into short sequences (from 3 to 5
seconds), each one corresponding to a single sentence. The video
sampling frequency was 25 images/second whereas the audio se-
quence was sampled at 11025 Hz. The webcam was centered on
the mouth region of the speaker to capture directly the ROI. The
captured images are in BITMAP format and are with dimensions
204× 148 pixels. Fig. 2 shows examples of such images.

Our method is based on only the speech acoustics informa-
tion to perform the area of mouth opening estimation. Hence, the

video images are not used in the estimation stage. They will be
used for the evaluation of the estimation results only.

Figure 2: The images captured by the webcam are centered on
the speaker’s mouth region. They are of dimensions 204 × 148
pixels.

3.2 Filterbank for RMS Energy Extraction

For the extraction of the speech subband RMS energies,
xi(t), i = 1, . . . , N , we use two types of filterbank. The first
one consists of Bark-scaled quasi-rectangular filters and the sec-
ond one consists of Mel-scaled triangular filters. Following [10]
and [14], the 4-subband envelope energy features are found to
be optimal for encoding the audio-visual redundancy. We expect
that the residual speech cues, encoded in the 4-subband tempo-
ral envelopes, contain useful information to estimate the area of
mouth opening. Fig. 3 shows the four Bark-scaled and quasi-
rectangular filters that we use for subband RMS energies extrac-
tion from speech signal, the same as in [14].

Figure 3: Bark-scaled filterbank for subband RMS energy extrac-
tion, the same as in [14]. Four quasi-rectangular filters having
high frequency cutoff frequencies at: (1) 515 Hz, (2) 1175 Hz, (3)
2440 Hz, (4) 5250 Hz, respectively. The speech signal sampling
frequency is 11025 Hz.

As mentioned above, we use also the Mel-scaled triangular fil-
ters, which are used in the calculation of the Mel frequency cep-
stral coefficient (MFCC) [15], to extract the subband RMS en-
ergies. The filterbank consists of 20 Mel-scaled triangular filters
(N ) as in the original version [15]. The Mel-scaled warping of the
frequency axis creates a scaling that is linear below 1 kHz and log-
arithmic above this limit. The first 10 triangular filters have their
central frequencies linearly distributed from 0 to 1 kHz whereas
the last 10 filters have their central frequencies equally distributed
on a logarithmic scale from 1 kHz to a half of the speech signal
sampling frequency (11025 Hz). Our motivation for using Mel-
scaled triangular filters beside the Bark-scaled quasi-rectangular
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filters is: (1) to compare between the two filter configurations,
Bark-scaled quasi-rectangular and Mel-scaled triangular, which
one gives better useful information for the area of mouth opening
estimation, (2) to investigate the possibility of recovering visual
information (area of mouth opening) from the conventional au-
tomatic speech recognition acoustic feature (MFCC) by a novel
manner. The filterbank consisting of 20 Mel-scaled triangular fil-
ters, used in this study, is shown in Fig. 4.

Figure 4: Filterbank consisting of 20 Mel-scaled triangular filters
for subband RMS energies extraction, in accordance with the fil-
ters used for the MFCC calculation [15]. The first 10 triangular
filters have their central frequencies linearly distributed from 0 to
1 kHz whereas the last 10 filters have their central frequencies
equally distributed on a logarithmic scale from 1 kHz to a half of
the speech signal sampling frequency (11025 Hz).

4 Area of Mouth Opening Estimation
4.1 RMS Energy Extraction

The subband RMS energies are extracted from every 40 ms
Hanning windowed subband speech signal with 50% overlap
between two adjacent windows. The frame rate of the sub-
band RMS energies is thus 50 Hz. This frame rate guaran-
tees a subband RMS energies bandwidth equals 50/2 = 25 Hz,
which is greater than the upper bound of the vocal tract mo-
tion (6.25 Hz) [14]. The trade-off between the signal band-
width and the blind deconvolution time is also satisfied at
this frame rate since the longer the signals are, the slower
the blind deconvolution is. Let xB =

[
xT

B1 xT
B2 xT

B3 xT
B4

]T

and xM =
[
xT

M1 xT
M2 . . . xT

M20

]T are the subband RMS en-
ergies vectors extracted by the Bark-scaled quasi-rectangular
and the Mel-scaled triangular filters, respectively. The sub-
vectors of xB are xBi = [xBi(0), . . . , xBi(M − 1)]T , i =
1, . . . , 4 where M is the signal length. Similarly, xMj =
[xMj(0), . . . , xMj(M − 1)]T , j = 1, . . . , 20 are the subvectors
of xM .

Before performing the blind deconvolution, we apply two ma-
nipulations to the subband RMS energies vector, xM , extracted
by using the Mel-scaled triangular filters. First, motivated by the
stronger correlation between the area of mouth opening and the
acoustic energy modulations in the F2 (800–2200 Hz) and F3
(2200–6500 Hz) regions [10], we use only a subvector, x̃M =[
xT

M12 xT
M13 . . . xT

M20

]T , of nine subband RMS energies from the
original vector, xM , for blind deconvolution. This subvector, x̃M ,
contains the subband RMS energies extracted from the high fre-
quency region of the speech signal, is expected to carry the most

appropriate information regarding the area of mouth opening. The
subband RMS energies contained in x̃M , are extracted by nine
Mel-scaled triangular filters, which cover the speech frequency
region above 1.1 kHz, and have the central frequencies equally
distributed on a logarithmic scale. The second manipulation is
to extract the principal components of the subband RMS ener-
gies, xM , by performing a principal component analysis (PCA).

These first C principal components, x̂P =
[
x̂T

P1 x̂T
P2 . . . x̂T

PC

]T
,

are then used in the blind deconvolution algorithm. The principal
components x̂Pi = [x̂Pi(0), . . . , x̂Pi(M − 1)]T , i = 1, . . . , C,
have the same length, M , as of the subvectors of xM . The ap-
proach of using the principal components of a dataset instead of
using the original dataset was first introduced by Turk and Pent-
land in face recognition [16], and then by Bregler and Konig in
automatic audio-visual speech recognition [17]. The principal
components, that is the eigenvectors of the covariance matrix of
the subband RMS energies vector, xM , can be thought of as a
set of features that together characterize the variation between the
subband RMS energies, xT

M1, xT
M2, . . . , xT

M20. We expected that
the detrimental effect of the subband RMS energies redundancy
on the blind deconvolution process, will be eliminated by using
the subband RMS energies principal components, x̂P , instead of
using the subband RMS energies, xM , itself.

4.2 Evaluation Method

Assuming that ŝ = [ŝ(0), ŝ(1), . . . , ŝ(M − 1)]T , and s =
[s(0), s(1), . . . , s(K − 1)]T , are the estimated and true areas
of mouth opening, respectively. The true area of mouth open-
ing, s, is extracted from the images of the video sequence,
which is synchronous with the audio signal. On the i-th im-
age, i = 1, . . . , K of the video sequence, the lip width, Ai, and
the lip height, Bi, are calculated based on the manually marked
points from 1 to 4 as in Fig. 5. The areas of mouth opening,
s(i), i = 1, . . . , K, are approximately calculated by using the
formula s(i) = 0.75AiBi, i = 1, . . . , K [18].

Figure 5: The area of mouth opening, S, in an image is approx-
imately calculated by using the formula S = 0.75AB [18]. The
lip width, A, and the lip height, B, are calculated based on the
manually marked points from 1 to 4.

We use the Pearson product-moment correlation coefficient be-
tween the estimated area of mouth opening, ŝ, and the true area
of mouth opening, s, to evaluate the correctness of the estima-
tion results. In general, the length, M , of ŝ is greater than the
length, K, of s, because the frame rate of the subband RMS
energies is greater than that of the video sequence. The true
area of mouth opening is therefore linearly interpolated to have
the same length, M , as the estimated area of mouth opening.
The Pearson product-moment correlation coefficient, R (̂s, s̃), is
then calculated between the estimated area of mouth opening,
ŝ, and the true area of mouth opening after linear interpolation,
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s̃ = [s̃(0), . . . , s̃(M − 1)]T , by the formula

R (̂s, s̃) =
1
M

M−1∑

i=0

(
ŝ(i)− µŝ

σŝ

) (
s̃(i)− µs̃

σs̃

)
(11)

where µŝ and µs̃ are the sample means, whereas σŝ and σs̃ are the
standard deviations of ŝ and s̃, respectively.

4.3 Area of Mouth Opening Estimation Algorithm

The complete algorithm for the area of mouth opening estima-
tion is shown in Fig. 6. As mentioned previously, the extracted
subband RMS energies, xB , x̃M , and x̂P , are used as the inputs
of the blind deconvolution algorithm. After performing the blind
deconvolution on the subband RMS energies, a temporal filtering
is applied to smooth the blind deconvolved signals, s̃P , s̃M , and
s̃B . This filtering eliminates also the frequencies existing in the
subband RMS energies but these frequencies are the undesired
components in the signals, s̃P , s̃M , and s̃B , after deconvolution.
The filter used for the temporal smoothing is a fourth-order But-
terworth lowpass filter, which has a very low cutoff frequency of
3.5 Hz, in the upper bound of the orofacial motion range [14]. The
signals after temporal filtering, ŝP , ŝM , and ŝB , are the estimated
areas of mouth opening.

Figure 6: Algorithm for the estimation of the area of mouth open-
ing from speech acoutics using blind deconvolution techniques.
The subband RMS energies, x̂P , x̃M , and xB , are extracted from
the speech signal by using different types of filterbanks. The esti-
mated areas of mouth opening, ŝP , ŝM , and ŝB , are obtained after
a temporal filtering of the blind deconvolved signals, s̃P , s̃M , and
s̃B , respectively.

The algorithm used for the blind deconvolution is the input sub-
space method as mentioned previously. This method needs two a
priori parameters, the model order, L, and the window parameter,
W (see section 2.3). In this current work, we vary systematically
the values of L and W and choose the values of L and W which
maximize the correlations between the estimated signals, ŝP , ŝM ,
and ŝB and the true area of mouth opening, s̃. The automatic cal-
culation of the parameters L and W is beyond the scope of this
paper. In addition, the number of principal components, C , for
x̂P calculation is also manually adjusted to attain the maximum
correlation between the estimated, ŝP , and the true, s̃, areas of
mouth opening.

4.4 Estimation Results

The area of mouth opening estimation are performed on 16 short
audio sequences of length ranging from 3 to 5 seconds, each one
corresponding to a single sentence (see section 3.1). The corre-
lation coefficients, R (̂sP , s̃), R (̂sM , s̃), and R (̂sB , s̃), between

the estimated areas of mouth opening, ŝP , ŝM and ŝB , respec-
tively, and the true area of mouth opening after linear interpola-
tion, s̃, are shown in Fig. 7. In addition, the correlation coef-
ficients maximum values, max(R (̂sP , s̃) , R (̂sM , s̃) , R (̂sB , s̃)),
attained from one of three correlation coefficients for each sen-
tence are also represented in Fig. 7. The variation of the cor-
relation coefficients in Fig. 7 shows that, the goodness of the
estimation results depends not only on the type of subband RMS
energies that have been used, but also on each particular sentence.
This dependence is comprehensible since the method is based on
the inherent correlation between the acoustic envelopes and the
lip visible movements. Meanwhile, this inherent correlation is
sentence-dependent as reported by Grant and Seitz [10].

Figure 7: Pearson product-moment correlation coefficients,
R (̂sP , s̃), R (̂sM , s̃), and R (̂sB , s̃), between the estimated ar-
eas of mouth opening, ŝP , ŝM and ŝB , respectively, and
the true area of mouth opening after linear interpolation, s̃.
max(R (̂sP , s̃) , R (̂sM , s̃) , R (̂sB , s̃)) is the maximum correlation
coefficient attained for each sentence.

Table 1: Means (µ) and standard deviations (σ) of the
correlation coefficients, R (̂sP , s̃), R (̂sM , s̃), R (̂sB , s̃), and
max(R (̂sP , s̃) , R (̂sM , s̃) , R (̂sB , s̃)).

R (̂sP , s̃) R (̂sM , s̃) R (̂sB , s̃) Max
µ 0.73 0.68 0.61 0.76
σ 0.06 0.08 0.13 0.04

Table 1 shows the empirical means and the standard devia-
tions of the correlation coefficients. A one-way ANOVA reveals
that R (̂sP , s̃) is significantly greater than R (̂sM , s̃) [F (1, 30) =
4.30, p < 0.05], and R (̂sB , s̃) [F (1, 30) = 10.19, p <
0.005]. However, the difference between R (̂sM , s̃) and R (̂sB , s̃)
is not significant [F (1, 30) = 2.72, p > 0.1]. In addition,
no significant difference is revealed between R (̂sP , s̃) and the
max(R (̂sP , s̃) , R (̂sM , s̃) , R (̂sB , s̃)) [F (1, 30) = 2.45, p >
0.1]. Therefore, the estimation results obtained with x̂P is the
highest (µR(̂sP ,̃s) = 0.73) and the most stable (σR(̂sP ,̃s) = 0.06).

Fig. 8 shows an example of the estimated areas of mouth
opening for the French sentence “J’aimais obéir à mes parents.”,
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Figure 8: Estimated areas of mouth opening for the French sen-
tence “J’aimais obéir à mes parents.”. The true area of mouth
opening, s̃, is represented by solid line whereas the estimated ar-
eas of mouth opening, ŝP , ŝM , and ŝB are represented by dashed
lines in the panel (a), (b), and (c), respectively. The correlation
coefficient in each case is figured in each panel.

which is the 15th sentence in the 16-sentence set for estimation
(see Fig. 7). In each subfigure, the true area of mouth open-
ing is represented by a solid line whereas the estimated area of
mouth opening is represented by a dashed line. The correla-
tion coefficients obtained for this sentence, R (̂sP , s̃) = 0.82,
R (̂sM , s̃) = 0.74, and R (̂sB , s̃) = 0.74 are sufficiently good.
In this example, x̂P consists of the first ten principal components.

5 Conclusion
This paper proposes a new method for the estimation of the area
of mouth opening from only speech acoustics using blind decon-
volution technique. The main advantage of this method lies on its
simplicity and the low cost of realization. On the basis of a given
audio sequence only, we can estimate directly the area of mouth
opening in the corresponding video sequence, without manipulat-
ing the images of the video sequence or training audio-to-visual
mapping estimators. Estimation result performed on webcam-
recorded audio-visual sequences is promising; the estimated area
of mouth opening is sufficiently correlated with manually mea-
sured one. This method suggests that the area of mouth opening
estimation from speech acoustics might be analytically done. Ac-
tually, automatic calculation of the a priori parameters of the in-
put subspace method, such as the model order L and the window

length W , is still an open issue. Further study is needed to be
carried out to make the method completely automatic.
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