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This work is concerned with the evaluation of the relative performance of colour
constancy algorithms. We highlight some problems with previous algorithm
evaluation and define more appropriate testing procedures. We discuss how best
to measure algorithm accuracy on a single image as well as suitable methods
for summarising errors over a set of images. We also discuss how the relative
performance of two or more algorithms should best be compared and we define an
experimental framework for testing algorithms. We re-evaluate the performance of
six colour constancy algorithms using the procedures we set out and show that this
leads to a significant change in the conclusions we draw about relative algorithm
performance as compared to previous work. (©) 2006 Optical Society of America
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1. Introduction

An imaging system’s response to light from an imaged scene depends on three factors: the
underlying physical properties of the imaged surfaces, the nature of the light incident upon
those surfaces and the characteristics of the imaging system itself. A fundamental problem
in vision is that of disambiguating the effect of the scene illuminant on the recorded image
from effects which are due to the underlying imaged surfaces. A successful solution to this
problem is potentially useful for many visual tasks such as object recognition and tracking
as well as for the more general problem of scene understanding. In addition, because our
own visual system accounts (at least partially) for the colour of the light in a scene as part of
its visual processing,’ * a solution to the problem is also important for image reproduction
and digital photography where it is desirable for the colours in an image to be a good match
to the scene as it was originally perceived by an observer.

Solutions to the colour constancy problem (as it is commonly called) usually proceed
in two stages. First, an estimate of the colour of the scene illuminant is obtained from a
recorded image and subsequently this estimate is used as the basis for a correction of the
captured image to account for the effect of the prevailing scene illuminant. Usually this cor-
rection results in a re-rendering of the scene such that the newly rendered image corresponds
to the scene as it would appear under some standard illumination. A great many colour
constancy algorithms have been proposed (see for example® '3 and!* for a comprehensive
review) in the literature with most attention being directed towards the first stage of colour
constancy processing — estimating the scene illuminant from the recorded image data — since
it is this stage which is most difficult to perform accurately. The theory of colour constancy
processing is now quite well understood and there exist a number of sophisticated solutions
to the problem. Nevertheless none of these solutions can be considered to be completely
accurate and thus the colour constancy problem is still an active area of research.

In this paper we are concerned not with further advancing colour constancy theory but
rather with an investigation into the performance of existing algorithms. The contributions
of this work are threefold. First, we identify the weaknesses of previous evaluations of colour



constancy algorithms. Second, we propose error metrics, statistical tests and an evaluation
framework which we believe (for reasons justified in the paper) will enable an accurate
assessment of existing and future algorithms. Finally, we re-evaluate a number of existing
algorithms in the context of the framework proposed in this paper and show that this new
evaluation leads to conclusions about the relative performance of the algorithms that are
significantly different to the findings of previous studies.

It is usual in the literature, that when a new algorithm is proposed some kind of
empirical evaluation of that solution is conducted. The extent of the evaluation however,
varies from an informal demonstration of the algorithm’s performance on a few images to
a fuller evaluation on synthetic and/or real images. Even when evaluation is reasonably
comprehensive however, the empirical framework usually differs from one work to another
making a direct comparison of algorithm performance quite difficult. The work of Funt et
al' addressed this shortcoming to some extent by investigating the performance of a num-
ber of colour constancy algorithms in a common experimental framework. Moreover, that
work directly addressed the question as to whether or not the tested algorithms were good
enough to allow a subsequent visual task to be successfully performed. Specifically, they
investigated whether the performance of algorithms was sufficiently good to enable colour-
content based object recognition in the context of a changing illumination. The authors
concluded that the answer to this question was no, suggesting that further advancements
in algorithm development are necessary before colour constancy algorithms are of practical
use. Later work,'® suggests that the probabilistic algorithm proposed in'® does give good
enough illuminant estimation accuracy to allow this task to be performed. However, the
experiment was based on only a small number of images and it is therefore difficult to draw
any definitive conclusions from it. In more recent work Barnard et al'”1® investigated the
performance of many colour constancy algorithms independently of any particular visual
task concentrating instead on simply measuring the accuracy of the estimates of the scene
illuminant provided by the algorithms in a set of experiments on both synthetic and real
images.

The work of Barnard et al is the most comprehensive evaluation of colour constancy
algorithms conducted to date and goes some way to achieving the goals of this paper. How-
ever, Barnard et al’s work (along with many other previous algorithm evaluations) is limited
by the choice of error metric used to compare algorithms. It is common when comparing
algorithm performance to look at the “average” performance of the tested methods over a
set of images. Usually this “average” performance is reported in terms of a single summary
statistic: for example the mean, or root mean square (RMS) error over the set. The fact
that the chosen summary statistic is lower say, for algorithm A than for algorithm B, is
used as a basis to conclude that algorithm A is “better” than algorithm B. Whether it is
valid to draw such a conclusion depends in part on the underlying error distributions from
which the summary statistics are calculated and also on the particular choice of summary
statistic. We show in this paper that for the particular error distributions being studied the
most commonly used statistics (mean or RMS error) do not give an accurate summary of
the underlying distribution and thus any conclusions made on the basis of these statistics
are suspect. We address this shortcoming by proposing a number of statistical measures of
relative algorithm performance which are more appropriate to the data under investigation.
We also discuss some additional measures of algorithm performance which provide more
information than just a single summary statistic. Specifically, we discuss how to calculate
confidence intervals for the summary statistics and how to assess the relative performance
of algorithms in the context of these intervals. Further, we describe a number of appropriate



hypothesis tests which can be used to determine the statistical significance of the differences
between algorithms.

Having established the appropriate error measures by which to assess algorithm per-
formance we turn our attention to the empirical framework in which algorithms are tested.
Barnard et al’'s evaluation framework is a good starting point. In particular, the fact that
both the real and synthetic test data they used is publicly available'® means that it is
sensible to follow the experimental framework they proposed. To this end we repeat the
experiments of Barnard et al on a subset of the algorithms they originally tested in the
light of our investigation into how best to judge algorithm performance. We also suggest an
alternative empirical framework for assessing algorithm performance on synthetic images
which we believe addresses an important weakness of the original synthetic image exper-
iment of Barnard et al. Our evaluation of six colour constancy algorithms on the three
different experiments shows that the empirical framework and choice of error metric has
a significant effect on the judgement of the relative performance of the algorithms. In the
light of this re-evaluation we propose a set of guidelines for future algorithm evaluation.

The rest of the paper is organised as follows. In the next section we give a brief,
formal introduction to the colour constancy problem which enables us to formulate some
appropriate error measures for determining the accuracy of a given algorithm’s estimate of
the scene illuminant on a given image (Section 3). In Section 4 we look carefully at the
most appropriate way to use these error metrics to evaluate the overall performance of an
algorithm and to compare the relative performance of two or more different algorithms.
Then, in Section 5 we describe the experiments we conducted to evaluate the performance
of a number of different colour constancy algorithms. We give a brief overview of the tested
algorithms, and evaluate their performance in Section 6. Finally, in Section 7 we conclude
the paper by summarising a set of guidelines for evaluating colour constancy algorithms.

2. The Colour Constancy Problem

The colour constancy problem can be simply stated as the problem of how, given an image
of a scene captured under an unknown illuminant, can we recover an estimate of that light?
Solving the problem turns out to be difficult in practice and progress towards a solution
cannot be made without more clearly defining the concept of what an image is and what we
mean by an “estimate of the scene illuminant”. An image usually consists of a 2-d array of
sensor responses such that each element of the array represents an imaging device’s response
to light from a particular point in an imaged scene. To complete the definition of an image
we must define the relationship between the light incident upon the imaging device and the
device’s response to that light. To this end it is common to adopt a simplified model of
image formation in which the device’s response to light from a point in the scene is given
by:

pr = / SOVE(\)Qi(A)dA (1)

where S(\) defines the surface characteristics at particular spatial location: it defines the
proportion of light incident at that position which is reflected on a per-wavelength (\) basis.
E°()) is the spectral power distribution (SPD) of the scene illuminant; it characterises how
much energy the source emits as a function of wavelength. Qg (\) is the spectral sensitivity
function of the imaging device sensor which determines what proportion of light energy
incident upon it is absorbed at each wavelength. Thus, the sensor response p; is a measure
of the total energy absorbed by the sensor over the range of wavelengths w to which the



sensor is sensitive. The subscript k distinguishes a particular class of imaging sensor. In
this paper we will concern ourselves with imaging devices which have (as is commonly the
case) three different classes of sensor each with a different sensitivity profile. This implies
that the response of an imaging device at a given point x is a triplet of sensor responses:
p=I[p1 p2 p3]t. An image is then a collection such triplets which we can represent by
the columns of a 3 x N matrix P° where the superscript o denotes the fact the image is
captured under an unknown illuminant o.

Given this definition of an image formation we can define a general colour constancy
algorithm as a function, denoted C(-) which takes as its argument an image P° and returns
an estimate of the scene illuminant in P°:

E°(N) = C(P°) (2)

This definition implies that C(-) recovers an estimate of the scene illuminant, however in
practice most algorithms recover only an estimate of the scene illuminant white-point: that
is, the imaging device’s response to a uniformly reflecting surface viewed under the scene
illuminant:

t
B0 = [Pon Pz Pos] = Cul(P) (3)
Other algorithms recover not a direct estimate of QZ) but rather return an estimate of a

3 x 3 diagonal matrix D%° which maps sensor responses under the scene light to their
corresponding responses under a known, canonical or reference illuminant:

BC ~ bc,ogo (4)

D% =Cp (P°, E°()\) (5)
In this case it is easy to derive an estimate of the scene illuminant by re-arranging Equa-
tions (4) and (5):
Lo\ —1 _
p°= (D) pf=[Co(P% ES(V)] ' p* (6)

Finally, other algorithms recover only an estimate of the scene illuminant’s chromaticity: a
2-d intensity independent representation of the white-point:

&, = (e, @, =cr) (7)

There are a number of ways of defining an intensity independent representation of an ar-
bitrary sensor response p. Throughout this paper we adopt the following:

pP1 P2 p3

=—, 6g=—"—— 3= ——— (8)
P1+p2+p3 P1+p2+p2 p1+p2+ps3

Note that since ¢; + ¢2 + ¢3 = 1 a chromaticity vector can be represented by any two of its

elements e.g. ¢ = {c1 CQ}t. However, sometimes it is useful to represent this 2-d information
in a 3-d form in which case we write:

g=lc1 o 1—c1— ) 9)



3. Measuring Algorithm Accuracy

Because different algorithms differ in their definition of “scene illuminant estimate” we
must consider an appropriate way to compare different algorithms. In this paper we assess
algorithms in terms of the accuracy of their estimate of the scene illuminant chromaticity
since all algorithms either explicitly estimate this quantity or if not, such an estimate can
easily be recovered from the quantity which is explicitly estimated. It might be argued that
by restricting attention to the estimation of scene illuminant chromaticity we are ignoring an
important aspect of algorithm performance since, for example, an algorithm which recovers
an estimate of the intensity of the scene illuminant as well as its chromaticity provides a
richer description of the scene illuminant. Similarly, if an algorithm estimates the SPD of
the scene illuminant it seems in some sense unreasonable to ignore this fact in algorithm
evaluation. However, in most situations accurate estimation of illuminant chromaticity is
much more important than accurate estimation of its intensity. For example, to correct an
image taken under an arbitrary scene illuminant to reference illumination conditions, it is
sufficient to know the the chromaticities of the two illuminants since the overall intensity of
the illumination is ambiguous. For this reason, and the fact that a chromaticity estimate is
the only measure of algorithm performance common to all algorithms, we restrict ourselves
to chromaticity error measures in this paper.

Two metrics are commonly used to quantify chromaticity error: the Euclidean distance
between the 2-d chromaticity vectors and the angular distance between the 3-d representa-
tion (Equation (9)) of the two vectors. Euclidean distance is calculated:

€Buc = \/(éfu,l =0 1)+ (600 — 0 0)? (10)

and angular error is calculated:

qo tqo
€Ang = acos <“’Z"O> (11)
1, 111127,

Typically, there is a high degree of correlation between these two error measures and so it is
sufficient to evaluate performance using just one of them: we use angular error throughout
this paper since it is perhaps more widely used in the literature.

Another factor to consider in algorithm evaluation is the colour space in which the error
measures are calculated. Implicitly we have defined algorithm error in the space defined by
the spectral sensitivity functions of the capture device. However, it might be considered that
some other space would be more appropriate. For example, a number of (approximately)
perceptually uniform spaces have been proposed?’ and measuring algorithm performance
in such a space can in theory provide useful information. Whether this is in fact the case
depends to a degree on the application for which the algorithm is being used. In computer
vision applications for example, perceptual accuracy is not always relevant, whereas in
digital photography a perceptual measure of accuracy is often important. However, to obtain
a meaningful measure of perceptual accuracy we would have to take into account many more
factors than simply the accuracy of the scene illuminant white-point. For example, factors
such as the scene content and the conditions under which the image is viewed are very
important. In addition, it is not clear that the aim in digital photography is to produce a
rendering of the scene which is colorimetrically accurate since such a reproduction is not
necessarily that which is preferred. Since addressing these issues is non-trivial (and indeed,
an active area of research in itself) we believe that it is better not to confuse the issue by
introducing measures of “perceptual accuracy” which may or may not be important.



Having said this, there are still advantages to be gained by looking at error in a space
other than the sensor space of the imaging device. First, working in device space means that
it is not possible to compare algorithm performance across different devices, a shortcoming
that can be addressed by mapping sensor responses from an arbitrary imaging device into
some standard colour space. Working in such a space also addresses the fact that the space
defined by a device’s sensor sensitivity curves can sometimes have quite unusual geometric
properties with the implication that measuring error in the space is inappropriate. The
disadvantage of mapping to a standard colour space is that it will not always be possible to
map sensor responses to the standard colour space without error and so, we risk confounding
the errors in an algorithm’s illuminant estimate with the errors introduced by the colour
space transformation. However, in most cases such transformations will map the illuminant
white-point (and responses close to it) with good accuracy so that little error is introduced
by the transformation. Moreover, what error is introduced, is introduced to all algorithms.

In the experiments reported in this paper we measure algorithm performance both in
the colour space defined by the spectral sensitivities of the device under investigation, as well
as in a more standard colour space: that defined by the XYZ colour matching functions.?’
We transform a response triplet p in device space to its corresponding triplet z in XYZ
space by applying a 3 x 3 transform M:

x = Mp (12)
To obtain M we first calculate the sensor responses and their corresponding XYZ values for
a representative set of surface reflectance functions (under a standard illuminant) according
to Equation (1). We then determine the M which best transforms the XYZ values to their
corresponding sensor responses using a standard least-squares approach.?!

4. Evaluating and Comparing Algorithm Performance

The error measures we have introduced tell us the accuracy of a particular algorithm and
allow us to easily compare the relative performance of two or more algorithms on a single
image. Of course, algorithm performance will vary from image to image and so to obtain
an accurate assessment of algorithm performance we must consider its performance over a
large and diverse set of images.

When assessing algorithms it is common!3 %17 for authors to summarise their perform-
ance in terms of their average performance over a large set of images using one (or a few)
summary statistics. For example, the mean angular error or the Root Mean Square (RMS)
chromaticity error over a set of images is quoted along with other summary statistics such
as the maximum error. If the quoted statistic for algorithm A is found to be lower than that
for algorithm B then the conclusion is drawn that algorithm A is better than algorithm B.
There are two problems with this assessment. First, a single summary statistic such as the
mean does not necessarily adequately summarise the underlying distribution. Second, the
fact that one algorithm has a lower mean value than another is not sufficient information
for drawing the conclusion that one algorithm is better than the other. More properly we
can formulate a hypothesis that one algorithm is better than another and then test this
hypothesis using appropriate statistical tools and the error distributions of each algorithm
over a large set of sample images.

First, we consider the most appropriate summary statistic by which to compare al-
gorithm performance. The most thorough evaluation of colour constancy algorithms to-
date has been given by Barnard et al.'™'® As part of their evaluation they looked at the



distribution of chromaticity errors. That is, for a given algorithm they calculated:

(] ~0
€l = Cpyp — €

w1y €2 = 01011,2 — o (13)

w,2

for each image. They found the distribution of these errors to be approximately normally
distributed with a mean of zero (the top left plot of Figure (1) illustrates that this is indeed
the case). On this evidence they concluded that an appropriate error measure for assessing
algorithm performance was the root mean square (RMS) error of a given error measure:

N 261’2 (14)

where IV is the number of images over which the error is computed and e; is the value of
the particular error statistic being studied (e.g. angular error) for the i** image. In the case
that the chosen error measure is normally distributed with a mean of zero then RMSE gives
an estimate of the standard deviation of the error statistic. However, the fact that rJ, — 79,
normally distributed does not imply that other error measures are also normally distributed
and in the event that they are not, RMS error is not necessarily an appropriate measure.

The top right plot of Figure 1 shows the distribution of chromaticity errors (calcu-
lated according to Equation (11) for a typical colour constancy algorithm (the Maz-RGB
algorithm) for 1000 images (generated using a procedure described in Section 5) each con-
taining 8 surfaces. It is clear from this histogram plot that this error measure is not normally
distributed. The bottom left plot in Figure 1 shows the distribution of angular errors for
the same image set and once again, it is clear that the error measure does not follow a
Normal distribution. This fact is emphasised by the bottom right plot which plots quantiles
of a standard normal distribution against the quantiles of the angular error distribution
for the 1000 images. If the errors were normally distributed the points on this plot would
fall along a straight line. This example illustrates the typical case for the algorithms we
have tested on both real and synthetic images. On this evidence we should conclude that
angular error is not normally distributed so that RMS error does not give an estimate of the
standard deviation of the error measure. So, if we want to look at a single summary statistic
for this error distribution which should we choose?” The mean error is often reported as a
summary statistic however, it is well known?? that the mean is a poor summary statistic
for non-symmetric distributions: the distributions we are investigating are skewed as the
example in Figure 1 illustrates. In these situations the median is a more reliable estimate
of central tendency?? thus we propose that if a single summary statistic is to be used to
compare algorithms the median is the most appropriate measure.

A more informative summary of performance than a single summary statistic is to sup-
plement it with a confidence interval for the statistic since this provides information about
the likely variation in the statistic. In the case that the underlying error distributions are not
well modelled by standard statistical distributions (as is the case here) care must be taken
when calculating a confidence interval. To obtain confidence intervals for a given statistic
in such a situation it is appropriate to use the method of re-sampling.?? To understand this
method let £ represent the set of n error measurements for a particular algorithm obtained
from a set of test images. Now, suppose we draw (with replacement) n samples from £ to
give us a new set of observations £ . We can calculate and record our chosen statistic, 61
for this new set of observations. We repeat this procedure a number (m) times where m is
a large number. Each time we re-sample we obtain a new sample distribution (&;) whose
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statistic #; we can calculate. This provides us with a set of estimates of the chosen statistic
(i.e. a distribution for #). A p% confidence interval for the statistic can be obtained from
the p/2 and (1 — p/2) quantiles of this distribution.

For example, using this re-sampling approach we can obtain confidence intervals for the
median performance of two or more colour constancy algorithms which we can use to help us
assess their relative performance. In the case that the two confidence intervals do not overlap
at all we can draw the conclusion that there is a significant difference (at the p% significance
level) between the two algorithms when judged according to the median statistic. If two
confidence intervals overlap such that the mean (central point) of one or other interval falls
within the second interval then we can conclude that there is no significant difference (again
at the p% level) between the two algorithms. In the third case that the intervals overlap but
the mean of neither interval lies within the second interval, we cannot draw a conclusion
about the significance of the relative algorithm performance and we must resort to different
methods.

To more formally determine the statistical significance of the differences between al-
gorithm performance we should use hypothesis testing. When choosing an appropriate hy-
pothesis test we must once again consider the underlying nature of the error distributions
under study. In our case the error distributions are not well described by standard statist-
ical distributions (e.g. a normal distribution) so commonly used statistical tests such as the
Student’s t-test are inappropriate. Instead, we should employ non-parametric tests which
are independent of the underlying distribution. We consider two such tests here: the Sign
Test?? and the Kolmogorov-Smirnov (K-S) Test.?? The Sign Test allows us to determine
the significance of the difference between the median of two different distributions while the
the K-S test is used to investigate the statistical significance of the differences between the
distributions themselves.

Suppose that we wish to compare the relative performance of two algorithms in terms
of their median angular error. We begin by using each algorithm to estimate the scene
illuminant for a set of N images. Let A and B be random variables representing the error
in algorithm A and B’s estimate of the scene illuminant. The Sign Test can be used to test
the hypothesis that the random variables A and B are such that p = P(A > B) = 0.5. That
is we hypothesise that algorithm A and B have the same median:

Hy:p=0.5, the medians of the two distributions are the same (15)
We also define an alternative hypothesis:
H, :p < 0.5, algorithm A has a lower median than algorithm B. (16)

To test which of these hypotheses is true we consider independent pairs (A1, B1) ... (An, Bn)
of errors for N different images. We denote by W the number of images for which A; > B;.
When Hy is true W is binomially distributed (b(N,0.5)) and the Sign Test is based on
this statistic. Applying the Sign Test to our error data amounts to first determining W
for a set of test images. Supposing that W = w for a given set of test images, we next
calculate P(W < w), assuming that the null hypothesis is true. That is, assuming that
W ~ b(N,0.5). Then, if P(W < w) < a we reject the null hypothesis Hy and accept the
alternative hypothesis H; at the significance level «.. The value of a we choose determines
the probability that we reject the null hypothesis when it is in fact true. So, for example if
a = 0.05 and the probability we calculate is 0.04 then we would reject the null hypothesis
at the 0.05 significance level. In this case we will be correct in rejecting the null hypothesis



95% of the time. If we want to be more sure that we are correct we decrease the significance
level.

While the Sign Test makes no assumption about the underlying distribution of the
errors for each algorithm, in using this test we are making the implicit assumption that the
median is a good summary statistic for the distributions. An alternative to single summary
statistic comparisons of algorithms is to test whether or not the two error distributions
themselves are significantly different. The K-S Test is applicable in this case. Like the
Sign Test, the K-S Test makes no assumption about the underlying shape of the error
distributions. The test statistic in this case is the maximum absolute difference between the
two cumulative distributions:

D= max |Cy(z)—Cg(x) (17)

—oo<r<oo

where C4(z) and Cp(zx) are the cumulative distributions corresponding to the two error
distributions under investigation. To apply this test we define the null hypothesis

Hy: Ca(z) = Cp(z), the two distributions are the same (18)
We also define an alternative hypothesis:
Hy :Ca(z) < Cp(z), Errors for algorithm A are lower than those for algorithm B (19)

which if true implies that algorithm A performs better than algorithm B. For a given pair
of cumulative distribution functions C4(z) and Cp(x) and under the assumption of Hp, we
can calculate?® the probability that D has a probability greater than that observed using:

P(D > observed) = Qs ([VNe +0.12+0.11/y/ N ) (20)

where -
Qrs(y) =23 (~1) e ¥V (21)

j=1

and N, = N?/(2N). If the probability we calculate is less than the chosen significance
level «, we reject the null hypothesis that the distributions are the same. As in the case of
the Sign Test the significance level o determines the probability that we are wrong in this
rejection.

5. An Experimental Framework for Algorithm Evaluation

Having established appropriate methods for determining the relative performance of two or
more colour constancy algorithms we turn our attention to defining an appropriate experi-
mental framework in which to evaluate algorithms. Ideally all algorithm performance would
be conducted using images captured with real imaging devices since this provides a true test
of how algorithms perform. However, many algorithms work under the assumption that they
have some prior knowledge about the characteristics of the imaging device (e.g. its spectral
sensitivity functions) so that compiling a useful test set of real images is a non-trivial exer-
cise. This task is made more difficult due to the fact that for an image to be useful in testing
algorithms, we must have accurate knowledge of the scene illuminant. A simpler approach
is to test algorithms on images synthesised for a hypothetical imaging device. This makes
it easy to assess algorithms using many different images containing a wide range of surfaces



and captured under many different lights. The disadvantage of synthetic image tests is the
fact that artefacts of the imaging process (e.g. image noise) are excluded so that we get a
best-case assessment of algorithm performance. Here we test algorithms both on synthetic
images and on a set of well calibrated real test images'® captured explicitly for the purpose
of evaluating colour constancy algorithms.

A.  Synthetic Image Experiments

For our synthetic image experiments we generate sensor responses according to a simple

Lambertian model of image formation:*

pf =00 e (Ag)s(A)a(A))
s = 3701 2 (A\)s(A)ga(As) (22)
pg = X701 e?(Ag)s(A)gz(A))

where €°();), s()\;) and ¢2();) represent M sample, discrete representations of an illuminant
SPD, surface reflectance and sensor sensitivity functions respectively. An image is then just
a collection of n such sensor response triplets and by varying n we can investigate algorithm
performance as a function of the number of distinct surfaces in an image.

Barnard et al'” conducted a synthetic image experiment in which images were created
using reflectances randomly selected from a set of 1995 measured reflectances. For each im-
age a single scene illuminant was randomly selected from a set of 287 measured illuminants
and sensor responses were created according to Equation (22) using a set of spectral sensit-
ivity functions from a Sony DXC-900 video camera. Algorithm performance was evaluated
for images with number of surfaces n = 2, 4, 8, 16, 32, or 64 and for each value of n 1000
images were generated. A number of algorithms tested in that experiment require what
amounts to a training phase in which they make use of information about which surface
reflectance functions and/or illuminants occur in the world. Where an algorithm requires
information about surface reflectance functions Barnard et al used the set of 1995 surface
reflectances from which the synthetic images were constructed. In the case that an algorithm
required information about possible scene illuminants a subset of 87 of the 287 scene lights
were selected as possible scene illuminants. These 87 illuminants were chosen such that their
chromaticities represented an approximate uniform sampling of the region of chromaticity
space represented by the larger set of lights.

Providing an algorithm with completely accurate information about the lights and
surfaces it will encounter ensures that we will obtain the best possible performance from
any given algorithm. However, in practice it is difficult to ensure that, for example, the
surfaces on which an algorithm is trained exactly match those in the images on which it
is tested. For this reason we also carried out a modified form of Barnard et al’s synthetic
image experiment in which we trained algorithms on a different set of surfaces to those
in the images on which the algorithms were tested. Specifically we divided the set of 1995
reflectances into 5 equal sized random subsets. We then trained each algorithm on surfaces
from 4 of the 5 subsets before testing them on images synthesised from the fifth surface
set. We repeated this procedure 5 times: each time withholding a different subset from
the training set. In this way we are able to investigate the robustness of algorithms to
a mismatch between their training and testing conditions. In this second experiment we
selected training illuminants exactly as described for the first experiment. When selecting
training illuminants we could have adopted a procedure similar to our method of selecting
training surfaces. However, we argue that it is easier to ensure that we select an appropriate
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gamut of possible scene illuminants than it is to ensure that we train on a set of surfaces
which reflects the gamut and relative frequency of occurrence of surfaces in the world. Thus
an analysis of the effects of a mismatch between training and testing illuminants is not
so interesting. Of course, how finely we sample the gamut of illuminants when training
an algorithm will affect the accuracy of any given algorithm’s performance. However, in
practice we can choose sufficient illuminants to give us any level of accuracy we choose
so provided we select the same set of possible illuminants for all algorithms, the relative
performance of algorithms is likely to be unaffected by our choice.

B.  Real Image Experiments

For our experiments with real images we again followed the paradigm of Barnard et al.'®
We used images of 32 different scenes captured under up to 11 different lights (most scenes
were captured under all 11 lights and a total of 321 images were used in this experiment). A
measurement of the actual white point of the scene illuminant was obtained for each image
by placing a white tile centrally in a scene and imaging it a second time. The camera’s
RGB response to this white tile is used as the actual white point for a given scene. Each
algorithm returns an estimate of the scene illuminant whose accuracy we assess as described
above. Where an algorithm requires a training phase we used training parameters exactly
as described for the first synthetic image experiment.

6. Empirical Evaluation

In this section we evaluate the performance of six different colour constancy algorithms. We
begin with a brief description of each algorithm and then we present the results of their
performance in the experiments on synthetic and real images.

A.  Algorithms Tested

The six algorithms tested are Maz-RGB,> Grey world (denoted GW),%20 Database Grey-
world” (denoted DB GW), a version of the Gamut Mapping!'?® 1425 algorithm (denoted
LP GM), a version of Colour by Correlation'® (denoted CbyC) and a Neural Network al-
gorithm?® (denoted NN). These six algorithms are representative of the state-of-the-art in
colour constancy algorithms and include the best performing algorithms according to the
evaluation reported by Barnard et al.'”18

The Max-RGB algorithm returns an estimate of p? : the scene illuminant white point.
This estimate is found simply by calculating the maximum sensor response in each channel
of an image. We can expect this algorithm to work well when an image contains a white
surface or surfaces which are maximally reflective in the red, green and blue regions of the
spectrum.

The Grey world algorithm also returns an estimate of p? . This algorithm is founded
on the assumption that the average of all surface reflectances in an image is neutral (grey)
which implies that an estimate of the scene illuminant can be found by calculating the mean
sensor response for each channel of an image. The Database Grey world algorithm is similar
except that the average of all surfaces in the the image is assumed to correspond to the
average of a pre-compiled set of reflectances rather than a neutral reflectance. In this case
the estimate of the scene illuminant white point is given by:

(0]
Bk = P k=123 (23)

m,k
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where an is the mean image response and an is the mean response to all possible surface
reflectances when viewed under a known reference light c.

Gamut mapping algorithms were first introduced by Forsyth.!? In this algorithm a ca-
nonical gamut is first defined: it is the set of all sensor responses observable under a (known)
reference light. Similarly, an image whose illuminant is to be estimated is represented by the
gamut of its sensor responses. In gamut mapping the aim is to find the diagonal mapping
which takes the image gamut into the canonical gamut. In practice, for a given image, there
will exist many different diagonal mappings which map the image gamut to the canonical
gamut. Gamut mapping solutions first determine (implicitly or explicitly) the set of all con-
sistent mappings and then apply an appropriate selection criterion to determine a single
mapping as the scene illuminant estimate. Given this estimate we can obtain an estimate of
the scene illuminant white point using Equation (6). There are different ways to implement
the gamut mapping algorithm: here we use a linear programming implementation in which
we find the diagonal mapping (di, ds,ds) with maximum sum subject to a set of linear
constraints which are derived from the canonical gamut and the image RGBs and which
ensure that the recovered mapping takes the image gamut into the reference gamut. This
implementation has the advantage of being simple to implement and its performance has
been shown?® to be very similar to that tested by Barnard et al.l”

The Color by Correlation algorithm was introduced by Finlayson et al.'? In this al-
gorithm the set of plausible scene illuminants is defined a priori. Each plausible light is
characterised by a 2-d chromaticity distribution which gives a measure of the likelihood of
observing any given chromaticity value under the light in question. An estimate of the scene
illuminant white point in a particular image is found by first determining which chromati-
cities are present in the image. Each image chromaticity has a certain likelihood (recorded
in the chromaticity distributions) of being observed under each of the plausible lights and
the sum of the likelihood values for all image chromaticities defines the likelihood that a
given plausible light is the scene light. The plausible light whose likelihood value (summed
over all image chromaticities) is highest is chosen as the scene illuminant. Because plaus-
ible lights are represented by 2-d chromaticity distributions CbyC' can only recover a 2-d
estimate of the scene illuminant (Note: an implementation of the Color by Correlation idea
in a 3-d colour space has been proposed?” but is not tested in this work). This estimate
takes the form of the chromaticity of the scene illuminant white point. Performance of the
algorithm depends strongly on how the chromaticity distributions for each plausible light
are determined. In this work we followed the method reported in'” as closely as possible.
Distributions are defined in the chromaticity space defined by Equation (8) which is uni-
formly partitioned into 50 x 50 bins. A histogram of the chromaticities of a reference set of
surface reflectances is obtained and this histogram is then smoothed using convolution with
a Gaussian kernel to obtain the final chromaticity distribution.

The final algorithm tested uses a neural network to estimate the scene illuminant.
Input to the network takes the form of a binary chromaticity histogram: a vector of ones
and zeros such that each element of the vector corresponds to a small sub-region of a 2-
d chromaticity space. A value of one in a particular element of the vector implies that a
chromaticity value falling in the corresponding sub-region of chromaticity space was found
in the image, otherwise the vector element is zero. The output of the neural network is a
2-d chromaticity value: an estimate of the chromaticity of the scene illuminant white point.
The particular neural network used in these experiments is as close as possible to the best
performing networks reported in.?6 The chromaticity space used to define the input layer
(the binary histogram) is that defined in Equation (8) and it is uniformly partitioned into
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50 x 50 bins. The network has two hidden layers (with 400 and 30 neurons respectively)
and is trained using back-propagation. Training was performed using synthetic images and
following (as far as possible) the scheme suggested in.2® We note however, that the training
data we used in this paper is quite different to that used in.?6 This is deliberate since we
wanted to train all algorithms on the same data. This difference in training data probably
explains, in large part, the difference in the results we obtain for this algorithm compared
to those reported in%® and.!”

B. Experiment 1 Results

In their original experiment Barnard et al summarised algorithm performance using the
RMS error measure (Equation (14)) calculated over all images with a given number of
surfaces. Figure 2 summarises the performance of the six algorithms tested in this work
using the RMS measure. As we would expect algorithm performance is dependent on the
number of surfaces in an image and the performance of all algorithms improves as the
number of surfaces is increased. In addition, the relative performance of different algorithms
changes as the number of surfaces in an image changes. However, RMS angular error gives
only one view of algorithm performance and, for the reasons we discussed in Section 4, it is
not the most appropriate statistic by which to judge the algorithms. Figure 3 summarises
algorithm performance (as a function of number of surfaces per image) in terms of the
median angular error statistic. Importantly Figure 2 gives quite a different view of relative
algorithm performance compared to Figure 1: the relative rank ordering of algorithms is
quite different in the two figures. This fact is better illustrated by Table 1 which shows the
rankings of the different algorithms (as a function of the number of surfaces in an image)
both in terms of RMS and median angular error. Comparing columns 1-6 of this table with
columns 7-12 we see that the rankings of the six algorithms varies considerably depending on
whether we use RMS or median error. While the rank of most algorithms changes by only one
or two positions this observation is nevertheless significant and highlights the importance
of the choice of error measure by which to compare algorithms. Columns 1-2 of Table 2
summarise the overall rankings of the six algorithms judged according to RMS and median
angular error. In this case the statistics and subsequent rankings are calculated over all 6000
test images. The position of only one algorithm (CbyC) is unchanged depending on whether
we use RMS or median error while all other algorithms change their position by at least one
place. Column 3 of this table ranks algorithms according to their mean angular error and
once again a different ordering results. Note that, like RMS, mean error is inappropriate in
this case since it is a poor measure of central tendency for skewed distributions.

Having established that the choice of summary statistic has a significant effect on our
judgement of relative algorithm performance we next consider the statistical significance
of the results. Figure 4 goes some way to establishing this: here we have plotted median
angular error for the best three performing algorithms (judged according to the overall
median error) as a function of number of surfaces per image but in addition we have plotted
95% confidence intervals for each point. It is clear from this figure that for some cases there
is a significant difference between algorithms. For example, for images containing up to 8
surfaces the difference between CbyC and both DB GW and LP GM is significant (at the
95% significance level) while for images with more than this number of surfaces there is no
significant difference until we reach 64 surfaces where DB GW and LP GM are significantly
better than CbyC.

To properly assess the significance of the differences in performance we resort to hypo-
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thesis testing. Columns 5 and 6 of Table 2 rank the six algorithms according to the Sign Test
and the Kolmogorov-Smirnov Test (at a significance level of 0.01) over all 6000 test images.
The Sign Test is used to determine whether or not the difference between the median result
for each algorithm is different: the results show that the differences are significant except
between algorithm DB GW and LP GM which have a tied rank. The Kolmogorov-Smirnov
test judges algorithms according to the differences between their error distributions rather
than based on a single summary statistic. In this case the ranking of algorithms according
to this test is identical to that obtained with the Sign Test (which in turn is very similar
to that obtained based on just the median statistic). This result suggests that if algorithms
are to be judged on just a single summary statistic then the median is the appropriate one
to use.

Next, we turn our attention to the space in which algorithm error is measured. In
Section 4 we proposed that for a number of reasons it is a good idea to measure algorithm
error in a standard colour space rather than the space defined by the device being studied. To
this end, Table 3 summarises the relative overall performance of the six algorithms in terms
of angular error measured in the space defined by the CIE 1931 Colour Matching Functions?®
(CMF). To map illuminant estimates to the CMF space we followed the procedure outlined
in Section 3 above deriving a least-squares transform based on the 1995 surfaces used to
create the synthetic images. In this experiment the choice of colour space makes little
difference: the overall rankings of the algorithms judged according to four out of the five
methods is unchanged by a change of colour space. Interestingly, the only change in rank
ordering occurs when we judge algorithms in terms of RMS error.

Finally we look at algorithm performance in terms of chromaticity error rather than
angular error. Again we measure chromaticity error in the space defined by the Colour
Matching Functions and Table 4 summarises the relative performance of the six algorithms
according to the different summary statistics and statistical tests. Since the two error meas-
ures are in some sense measuring the same thing we would expect that differences between
the two measures would be minor. Table 4 suggests that this is indeed the case: some small
differences are introduced by the change of error measure but on the whole the changes are
minor.

C. Experiment 2 Results

In the second synthetic image experiment we evaluated algorithm performance when the
training data with which algorithms were provided differed from the data used to create the
synthetic images. If the algorithms are robust to differences between training and testing
data we would expect to see similar performance in this experiment as we saw in the first
experiment. Figure 5 plots the median angular error for the six algorithms as a function
of the number of surfaces per image. In this experiment algorithms were trained on five
different data sets and five sets of results are thus obtained. Figure 5 shows the median
error calculated over all five trials. Algorithm performance follows the same trends as the
first experiment with the performance of all algorithms (save Grey World) converging as the
number of surfaces increases. The errors for all algorithms are increased, a fact borne out by
Table 6 which shows the overall median errors for the six algorithms in the first and second
experiment. Hypothesis testing (the KS Test at a significance level of 0.01) reveals that in all
cases the difference in algorithm performance is significant. That is, the performance of all
algorithms is worse in this experiment. We might expect this for four of the six algorithms
since the performance is tied to some extent to the quality of the training data. However, the
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remaining two algorithms (Max-RGB and Grey World) also perform worse despite the fact
that they do not require training. Their worsening performance can therefore only be caused
by the fact that the reflectances used to synthesis images are changed. This highlights the
fact that algorithm performance can be affected by the choice of test data and confirms the
need for a careful testing procedure. In this case, the test data used in the first experiment
produces an optimistic view of the performance of these two algorithms.

Table 7 summarises algorithm rankings in this second experiment. Once again we note
that algorithm ranking depends on the choice of error metric. Overall rankings for the
six algorithms are largely unchanged in the two experiments from which we conclude that
while the performance of all algorithms is worse, no one algorithm is more significantly
affected than another. The exception to this being Grey World which was anyway the worst
performing algorithm. Those algorithms which include a training step appear to be equally
robust to differences between the training and testing data. The experiments on real image
data will provide further information as to the extent to which this statement is true.

D. Ezperiment 3 (Real Image) Results

In a final experiment we evaluated algorithm performance on real images. As noted by Barn-
ard et al we found that algorithm performance on real images varies considerably depending
on the pre-processing we apply to an image prior to estimating the illuminant. In general
algorithm performance is improved either by segmenting or down-sampling images prior
to the estimation step. Here, for four of the six algorithms (Max-RGB, GW, DBGW and
NN) we used the segmentation procedure suggested by Barnard et al.'” For CbyC we used
this same segmentation procedure but in addition we used only bright pixels (pixels with
a brightness greater than the 70th quantile) as input to the algorithm. Finally for LPGM
we found that simply down-sampling images gave better performance than a segmentation
approach.

Table 8 summarises the results of the real image experiments using RMS, mean and
median error calculated over the 321 real images. It is clear from this table that results
are again highly dependent on the choice of error metric used to evaluate algorithms. For
example CbyC' is only the third best algorithm if judged according to RMS error but is
ranked first according to median error. Most algorithms have a level of performance similar
to that obtained for synthetic images with between 8 and 16 surfaces. Table 10 summarises
the rankings of the algorithms using the three error measures as well as the Sign Test and
KS Test. The overall trends are similar to those obtained for the synthetic images except
for two main differences. First, Max — RGB performs better on the real images than it
does in the synthetic experiments and second, the difference between CbyC and LPGM
appears to be less significant than in the synthetic image experiments: the algorithms are
statistically equivalent according to the hypothesis tests on the real image results. Note also
that while the median error for C'byC' is the lowest its RMS error is quite high. This suggests
that for this algorithm there are some outliers: i.e. images for which the algorithm performs
very poorly (the RMS error measure is more sensitive to outliers than the median). This
highlights the fact that while the median is generally a more appropriate single summary
statistic than RMS error, it does not imply that RMS error has no value. For example, in
some applications it may be that an algorithm which works quite well for all images and
which has no (or very few) extreme failure cases, is more useful than one that has a very
low average error but which gives big errors on a few images. RMS error helps to identify
these classes of algorithm.
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Tables 9 and 11 summarise performance in XYZ space rather than device RGB space.
Again, the overall trends in performance are similar but in this case the rankings based on
the hypothesis tests show that the difference between algorithms is not always significant.
For example, according to the KS Test algorithms can be grouped into three subsets: CbyC
and LPGM perform similarly followed by Max — RGB which performs better than three
remaining algorithms whose performance is again similar. The difference between the results
when error is judged in XYZ rather than sensor space again highlights the importance of
choosing an appropriate space in which to assess performance. In this case results are
similar so we might conclude that either space is appropriate, however, working in XYZ
space leads to more conservative conclusions about the relative difference in performance
between algorithms.

7. Conclusions

It is clear from the results of the experiments presented above that the relative performance
of colour constancy algorithms is strongly affected by the choice of error metrics used to
compare them. We conclude this paper by summarising the important issues that need to
be considered in any future assessment of algorithm performance.

(1) The choice of error metric should be governed in part by the actual quantity es-
timated by the tested algorithms. In general however, error measures such as the angular
error between estimated and actual white point are preferable to “perceptual errors” (e.g.
CIELab error) because there are more factors than just the white point which affect the
perception of an image.

(2) Thought should be given to the choice of colour space in which errors are measured.
In particular, measuring error in XYZ space rather than device space should be considered
since this makes it easier to judge the relative performance of different algorithms when they
are tested on different devices and also means that errors are unbiased by the peculiarities
of a particular imaging device.

(3) When summarising algorithm performance over a set of images thought should
be given as to the most appropriate choice of summary statistic. The experiments in this
paper suggest that the median statistic is more appropriate than the commonly used RMS
or mean error. However, in general a suitable summary statistic should be chosen on the
basis of the underlying error distributions being studied.

(4) Any single summary statistic can be made more informative by supplementing it
with a confidence interval. A confidence interval for any statistic can be calculated using
the re-sampling approach described above which is independent of the underlying error
distribution.

(5) Appropriate hypothesis tests should be conducted to evaluate the statistical sig-
nificance of differences in algorithm performance. The most appropriate hypothesis test
depends in part on the choice of summary statistic. For example the Sign Test can be used
to determine the significance of differences in the median of two distributions. The use of
hypothesis tests such as the KS Test which investigate the significance of the difference
between the two distributions themselves should also be considered, particularly when the
underlying distributions cannot be well approximated by standard distributions.

(6) Evaluation of algorithm performance should, as far as possible, follow a well estab-
lished experimental paradigm so as to make it easy to compare studies in different works.
The synthetic and real image experiments reported by Barnard et al'™'® together with the
additional experiments reported in this work are an appropriate starting point.
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We can also make some concluding remarks regarding the current state-of-the-art in
algorithm performance based on the work presented in this paper.

(1) Two algorithms: CbyC and LPGM give significantly better performance than all
other algorithms tested in both synthetic and real image experiments. The synthetic image
experiments suggest that CbyC' is capable of a higher level of performance than LPGM but
real image tests suggest that their performance is very similar. The Grey World algorithms
are the least successful algorithms and on real images give a very poor level of performance.
Max-RGB performs well in the real image experiments: better than might be expected
from the synthetic image results and given the simplicity of the method. Further testing on
real images is required to ascertain whether the level of performance of Max-RGB in these
experiments represents its true level.

(2) Many algorithms require a training phase prior to the estimation of the scene
illuminant and it is likely that changes in this training procedure will have a significant
effect on real image performance. In particular algorithms such as the neural network, CbyC
and LPGM are sensitive to the training procedure and the performance of algorithms can
likely be improved by choosing training data which better reflects the data encountered in
real images.

(3) The synthetic and real image results follow similar trends implying that a good idea
of algorithm performance can be obtained using synthetic images. However larger databases
of real images are required to obtain a truer assessment of current algorithm performance
on real images.

(4) Algorithm performance on real images is significantly affected by data pre-processing.
Further research is required to determine the most appropriate pre-processing for each al-
gorithm.
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Table 1. Experiment 1. Rankings by number of surfaces per image using RMS and
Median Angular Error in Sensor Space.

RMSE Median
Num. Surf | 2|4 |8 163264 | 2|4|8|16| 32| 64
Mx-RGB [6 (6|6 5 |5 | 4|6|6|6|5 |5 |4
GW 5|55 6|6 |6 (3|5|5]61|]6]|6
DB GW 3121221114233 ]2]|1
NN 213|444 |5 ||2(4(4| 4] 41|65
LP GM 414131 3122|5321 ]1]2
CbyC 1|11 1|33 {|1|1]1|2] 3] 3

Table 2. Experiment 1. Rankings over all 6000 images based on Angular Error in
Sensor Space.

Algorithm | RMS | Median | Mean | Sign Test | KS Test
MxRGB 6 5 5 5 5
GW 5 6 6 6 6
DB GW 2 3 2 2 2
LP GM 4 2 3 2 2
ChyC 1 1 1 1 1
NN 3 4 4 4 4

Table 3. Experiment 1. Rankings over all 6000 images based on Angular Error in
XYZ Space.

Algorithm | RMS | Median | Mean | Sign Test | KS Test
MxRGB 6 5 5 5 4
GW 4 6 6 6 6
DB GW 2 3 2 2 3
LP GM 3 2 3 2 2
ChyC 1 1 1 1 1
NN 5) 4 4 4 4
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Table 4. Experiment 1. Rankings over all 6000 images based on Chromaticity Error
in XYZ Space.

Algorithm | RMS | Median | Mean | Sign Test | KS Test
MxRGB 6 4 5 5 5
GW 5 6 6 6 6
DB GW 2 3 2 2 2
LP GM 3 2 3 2 3
ChyC 1 1 1 1 1
NN 4 5) 4 4 4

Table 5. RMS, median, and mean angular error computed in XYZ Space over the
321 real images.

Algorithm | RMS Error | Median Error | Mean Error
MxRGB 5.95 3.03 4.33
GW 9.07 5.90 7.21
DB GW 8.44 4.87 6.48
NN 7.96 5.14 6.34
LP GM 5.07 2.30 3.54
CbyC 7.72 2.16 4.76

Table 6. Overall Median angular error for the six algorithms in the two synthetic
image experiments

Algorithm | Experiment 1 | Experiment 2
MxRGB 4.47 5.23
GW 5.63 7.65
DB GW 3.85 4.42
NN 4.45 5.02
LP GM 3.78 4.37
ChyC 3.55 4.00

List of Figure Captions

Fig. 1. Top left: histogram of r-chromaticity errors for the Max-RGB algorithm (1000 im-
ages, each with 8 surfaces). Top right: histogram of Euclidean distance in chromaticity space
for the same algorithm and images. Bottom left: histogram of angular errors for the same
algorithm and images. Bottom right: Normal-Quantile Plot for the angular errors from the
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Table 7. Experiment 2. Rankings over all 6000 images based on Angular Error in
Sensor Space.

Algorithm | RMS | Median | Mean | Sign Test | KS Test
MxRGB 6 5 5 5 5
GW 5 6 6 6 6
DB GW 2 3 2 2 2
LP GM 4 2 3 2 3
ChyC 1 1 1 1 1
NN 3 4 4 4 4

Table 8. RMS, median, and mean angular error computed in Sensor Space over the
321 real images.

Algorithm | RMS Error | Median Error | Mean Error
MxRGB 8.88 4.05 6.38
GW 14.52 8.94 11.48
DB GW 12.44 6.85 9.44
NN 11.04 7.78 9.18
LP GM 6.85 3.71 5.00
CbyC 10.09 3.19 6.56

Table 9. RMS, median, and mean angular error computed in XYZ Space over the
321 real images.

Algorithm | RMS Error | Median Error | Mean Error
MxRGB 5.95 3.03 4.33
GW 9.07 5.90 7.21
DB GW 8.44 4.87 6.48
NN 7.96 5.14 6.34
LP GM 5.07 2.30 3.54
CbyC 7.72 2.16 4.76

previous plot.

Fig. 2. RMS angular error for each of the six algorithms tested in Experiment 1 as a function
of (logy) number of surfaces in an image.
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Table 10. Experiment 1. Rankings over all 321 real images based on Angular Error
in Sensor Space.

Algorithm | RMS | Median | Mean | Sign Test | KS Test
MxRGB 2 3 2 3 3
GW 6 6 6 6 6
DB GW 5 4 5 4 4
LP GM 1 2 1 1 1
ChyC 3 1 3 1 1
NN 4 5 4 4 5

Table 11. Experiment 1. Rankings over all 321 real images based on Angular Error
in XYZ Space.

Algorithm | RMS | Median | Mean | Sign Test | KS Test
MxRGB 2 3 2 3 3
GW 6 6 6 6 4
DB GW ) 4 9 4 4
LP GM 1 2 1 1 1
ChyC 3 1 3 1 1
NN 4 5 4 4 4

Fig. 3. Median angular error for each of the six algorithms tested in Experiment 1 as a
function of (log,) number of surfaces in an image.

Fig. 4. Median angular error together with 95% Confidence Intervals for three best al-
gorithms tested in Experiment 1 as a function of (logy) number of surfaces in an image.

Fig. 5. Median angular error for each of the six algorithms tested in Experiment 2 as a
function of (log,) number of surfaces in an image.
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