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Abstract. We extend earlier work on detecting pornographic images.
Our focus is on the classification stage and we give new results for a
variety of classical and modern classifiers. We find the artificial neural
network offers a statistically significant improvement. In all cases the
error rate is too high unless deployed sensitively so we show how such a
system may be built into a commercial environment.

1 Introduction

Dealing with pornography in the workplace is a serious challenge for many large
organisations but employing a block-all-images email policy no longer provides a
viable solution. Email is more media-based than ever before, and it is common for
business mail to contain images such as logos, publicity shots etc. In a commercial
environment, an image analysis is required to automatically classify embedded
or attached images as acceptable or inappropriate. The problem therefore is the
non-retrieval of certain types of image.

Although the identification of human skin is commonplace in vision systems,
the detection of pictures containing nudity and pornography is a fairly specialised
area (some relevant systems include [1-3] and [4,5]). These systems contain a
skin filter which is usually based on colour sometimes with texture as a secondary
feature. Skin filters are now fairly standard so we give only a brief explanation
Section 2. Here we wish to focus on the classification and deployment of such
systems which we describe in Section 3 and subsequent sections.

2 Image Processing

For skin filters based on colour we note that the choice of colour feature usually
leads to some discussion of the correct colour space (see [4] for discussions of
alternative colour spaces). In practice we [4,5], and others [2], find that pro-
vided there is enough training data and a histogram-based representation of the
colour distribution is used then the choice of colour space is not critical. We com-
pute the likelihood ratio L(c|skin) = Pr{c¢|skin}/Pr{c|not skin} for a quantized
colour space. Figure 1 (second from left) shows the likelihood of pixel colours
for an example image using a likelihood histogram with 253 bins in RGB space.



Fig. 1. Original image (left) and associated log-likelihood image (second from left)
displayed so that the lowest non-zero likelihood (logL = —7.84) is black and the
maximum likelihood, (log L = 4.99) is white; seed points for region growing algorithm
(third from left) and final mask (right).

Likelihood images such as the one shown on the right of Figure 1 may be used to
produce segments that represent regions of skin by thresholding the likelihood
image at the odds set by the ratio of the priors. Care is needed to avoid two
common problems: firstly that an image may contain isolated pixels that have
the same colour as skin but are associated with the background (examples of
such pixels can be seen on the bottom right of the second image in Figure 1)
and secondly the likelihood distribution for a particular image is not guaranteed
to contain the mode of the training set likelihood distribution which can cause
low likelihood values. In the image in Figure 1 for example, part of the skin
segment associated with the woman’s face appears to have a lower likelihood
that those of the bus in the background. However a legitimate assumption is
that skin regions are of reasonable area compared to the total image area and
contain a locally maximum likelihood value. We therefore use a region-growing
algorithm that uses as its seed points likelihood local maxima above a certain
threshold. The regions are then grown out to a lower likelihood threshold. A
typical sequence of operations is shown in Figure 1.

This likelihood segmentation approach has been tested using a database con-
sisting of 1000 training images and 1000 test images manually segmented to
provide the ground truth. The manually generated skin segments are polygonal
and include interior regions such as eyes, mouths, hair and shadows that may
not be skin coloured. For each putative colour space we compute ROC curves
for varying upper and lower thresholds [5]. Along the curves thresholds vary in
the interval (0.1,0.9) of the peak likelihood for that image. Doing this confirms
the conclusions in [4] that the HSV colour space gives the best performance. A
typical operating point for the HSV system is:
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Fig. 2. Example segmentation from [4] and [5]

where, for example, p(5|s) denotes the probability that a pixel from a skin region
is classified as one from a non-skin region. It is useful to compare these results
with [2] in which the authors also conclude that a histogram-based approach is
superior to parametric representations of colour distributions. The ROC curves
and operating point in [2] are similar to the ones reported here but the defini-
tion of skin in [2] is narrower because here shadows, mouths and some hair are
contained in the skin masks. The labelled skin set in this paper also includes
pornography unlike the public database in [2].

Figure 2 shows an example segmentation for an image drawn from the test
set. High resolution images such as this one usually give qualitatively better
results than the low resolution images but, provided the test images contain
skin colours found in the training set the automatic segmentations are close to
those obtained manually. Having identified areas of skin it is necessary to extract
higher level features on which to distinguish the classes of image. For this task
a larger data set is needed.

These data consist of 11,005 images collected from email and web traffic in
a commercial environment. The manually segmented images are a subset of the
this set. The data are hand-classified into five categories: 1994 pornographic im-
ages (nude pictures that show genitalia or sexual acts); 1973 images of nudity;
1626 images of people (showing people in all poses not covered in other cate-
gories showing people); 1803 images of portraiture (which is restricted to head
and shoulders portraits of a type prevalent on the web); 1767 graphics images
(containing computer generated web graphics, buttons and so on) and 1842 mis-
cellaneous images that could not be classified into one of the previous classes.
There is considerable overlap between classes which are subjective. Addition-
ally we define two meta-classes consisting of the unacceptable images (nude plus
pornography) and the acceptable (all other images). The proportions of images
were chosen to be broadly representative of a range of commercial environments
but we know there is considerable variation in these priors between sites. This
issue in discussed further later.

There are suggestions for high-level features based on grouping of skin seg-
ments [1] that might distinguish these classes but here we have a requirement



to process the images speedily so, along with [2] and [3], are interested to try
simpler features. For each blob in the image we have computed: area; centroid;
the length of the major axis of an ellipse with the same second-order moments as
the blob; the minor axis length; eccentricity and orientation of the same ellipse;
the area of a convex hull fitted to the blob; the diameter of a circle with the same
area as the blob; the solidity (the proportion of the convex hull area accounted
for by the blob); the extent (the proportion of the area of a rectangular bounding
box accounted for by the blob); the number of colours in the image (graphics are
often associated with few colours) and the area of any faces located in the image
(we use a commercial face finder to detect and localise faces). These features are
ranked using the mutual information of the class given the single feature. Doing
this gives the subset of five features that we use: the fractional area of the largest
skin blob; the number of skin segments; the fractional area of the largest skin
segment; the number of colours in the image and the fractional area of skin that
is accounted for by a face.

3 Pattern Recognition

The image processing and feature extraction steps, described in the previous
section, produce a vector of features for each image, that we hope will serve to
distinguish pornographic from non-pornographic images. The task is then to find
the decision rule that optimally separates acceptable from unacceptable images,
given a set of labelled examples, D = {(z;,t;)}i—,, ®; € X CRY, ¢; € {0,+1},
where x; represents the feature vector for pattern i, and t; indicates whether
pattern ¢ is considered dubious (t; = 1) or acceptable (¢; = 0). In the remainder of
this section, we briefly describe the four statistical pattern recognition methods
compared in this paper.

The output of a generalised linear model [6] is given by y = g (w - x + b),
where, in this case, the link function, g(a), is the logistic function, g(a) =
1/(1 4 e~®). The link function constrains the output of the linear model to lie
within the range [0, 1], such that it can be regarded as an estimate of conditional
probability, y; &~ P(t; | ;). Assuming the target patterns, ¢;, are an indepen-
dent identically distributed (i.i.d) sample drawn from a Bernoulli distribution
conditioned on the corresponding input vectors, x;, the negative log-likelihood
of the data, known as the cross-entropy, is given by

Ep = —Z{fi logy; + (1 — ;) log(1 —y;)} - (2)

The vector of optimal model parameters (w,b) is given by the minimum of (2),
which may be found via the iterative reweighted least squares algorithm. For
multi-class problems, a 1-of-c coding scheme is normally adopted in which the
model has ¢ output units, one for each class, and the target for the k" output
unit, for a pattern belonging to class C;, is tx = dx;, where Jy; is the Kronecker
delta function. The cross-entropy then becomes Ep = —Y 0 >0 | tFlogyF.



The softmaxz link function, y, = exp(ax)/ >, exp(ar)), is then used to con-
strain the outputs of the model to lie within the range [0, 1] and to sum to
one.

The k-nearest neighbour classifier [7] assigns a test pattern x to the class
most strongly represented by the k& most similar patterns contained in the train-
ing set, according to some distance metric, D, in this case the Euclidean dis-
tance, Dgyelid(, ') = ||[(x — @’)||]2. The fraction of nearest neighbours be-
longing to class C,, provides a simple estimate of a-posteriori probability, i.e.
P(C, | ) = ko/k. As k tends to infinity this estimate is equal to the true a-
posteriori probability. The distance metric and k£ can be chosen so as to minimise
the leave-one-out error rate (for two-class problems, k is normally odd in order
to prevent ties).

A multi-layer perceptron classifier (see e.g. Bishop [8]), consists of a network
of simple neurons (each having a structure similar to a generalised linear model)
arranged in layers with strictly feed-forward connections. The parameters of
this model, w, are determined by minimising a functional, M = Ep + aFy,
consisting of a data misfit term, Ep, in this case the cross-entropy (2), and a
regularisation term, Fyy, penalising overly complex models. In this study we
adopt the regularisation term FEyy = ZZl |w;| (which corresponds to a Lapla-
cian prior over model parameters), where W is the number of parameters. This
regularisation term provides both formal regularisation and structural stabilisa-
tion as redundant weights are set exactly to zero and can be pruned from the
network [9]. The regularisation parameter «, which controls the bias-variance
trade-off (e.g. [8]), is integrated out analytically as described by Williams [9].

The support vector machine (e.g. [10]) constructs a maximal margin linear
classifier in a high dimensional feature space, F(® : X — F), defined by a
positive definite kernel function, K(z, '), giving the inner product K(z,z’) =
®(x) - D(x'). For this study, we use the anisotropic Gaussian radial basis func-
tion (RBF) kernel K(z,x') = exp {—(x — ') diag(y)(z — ') }, where v is a
vector of scaling factors for each attribute. The output of a support vector
machine is given by the expansion f(z) = Y ., a;t;K(z;,z) — b. The opti-
mal coefficients, a, of this expansion are given by the maximiser of W(a) =
Yo — %szzl titjaak(x;, ), subject to 0 < o; < C, i =1,...,n, and
E?:l a;t; = 0. C is a regularisation parameter controlling a compromise be-
tween maximising the margin and minimising the number of training set errors.
The bias parameter, b, is chosen in order to satisfy the second Karush-Kuhn-
Tucker (KKT) condition, 0 < o; < C = t;f(x;) = 1. Fortunately many of the
coefficients will assume non-zero values, so the kernel expansion will generally
be sparse. Estimates of a-posteriori probabilities can be obtained via logistic re-
gression on f(x) [11]. The regularisation parameter, C, and kernel parameters,
such as v, are selected so as to minimise an upper-bound on the leave-one-out
error [12].

We adopt a 10-fold cross-validation strategy to obtain an almost unbiased

estimate of generalisation performance [13]. Table 1 shows the composite confu-
sion matrices for the four classifiers compared, compiled over the test partitions



Table 1. Confusion matrices for generalised linear model (a), k-nearest neighbour (b),
multilayer perceptron (c) and support vector machine (d) classification of acceptable
and unacceptable images.

Observed Observed
T F T F

(a) g (b T
£ T 2787 880 £ T 3355 814

S| S
£ F 1180 6158 £ F 612 6224

& X
Observed Observed
T F T F

() d I
£ T 3327 764 £ T 3219 705

S| S|
£ F 640 6274 & F 748 6333

X X

resulting from 10-fold cross-validation. The optimal value of k, for the k-nearest
neighbour classifier, was selected in each cross-validation trial to minimise the
leave-one-out cross-validation error over the training partition. The mean value
of k was 47.8 (std. error 3.71). For the MLP classifier, a single layer of hidden
units was used, initially consisting of 32 neurons, giving 225 free parameters.
The Bayesian regularisation and pruning algorithm reduced this to a mean of
9.4 units (std. error 0.476) and 43.7 parameters (std. error 1.57) over 10 cross-
validation trials. The mean number of support vectors used in the SVM classifier
is 4555.2 (std. error of 8.38).

Table 2 summarises the mean classification accuracy of each classifier over the
test partitions resulting from 10-fold cross-validation. The k-NN, MLP and SVM
classifiers are all superior to the GLM approach, justifying the use of non-linear
methods. The relative performance of classifiers systems can be assessed via tests
of statistical significance. McNemar’s test [14] is used to determine whether the
difference in the accuracies of a pair of classifiers is statistically significant. In
conducting the necessary set of 6 tests the probability of falsely rejecting the null
hypothesis (that there is no significant difference) in at least one test at the 0.05

Table 2. Mean test-partition accuracy by classification method and also area under
ROC curves by classification method.

’Method‘Mean accuracy‘Std. err.‘Mean area‘Std. err.‘

GLM 0.813 0.004 0.889 0.004
k-NN 0.870 0.004 0.931 0.003
MLP 0.872 0.004 0.937 0.002
SVM 0.868 0.005 0.915 0.004




level of statistical significance is 1—(1—0.05)% ~ 0.265 (assuming that the results
of the tests are independent). As we are more concerned in this study with type
I error than type II error (accepting a null hypothesis that is false), we should
use the Bonferroni adjustment [15]; to obtain a statistical significance at the
0.05 level across all 6 tests, o =1 — WI —0.05) ~ 0.0085. Table 3 summarises
the results of McNemar’s test of statistical significance. The non-linear methods
(k-NN, MLP and SVM) are found to be significantly better than linear methods
and the MLP and k-NN significantly superior to the SVM, but the difference in
performance between the k-NN and MLP is not statistically significant.

Table 3. Statistical significance of classifier system performance. The upper triangle
gives the superior classifier in a pair-wise comparison, statistically superior victors
are shown underlined, the lower triangle gives the corresponding level of statistical
significance. For example, the entry in the fourth column of the third row indicates
that the MLP is superior to the SVM, the third column of the fourth row indicates
that the difference in performance is statistically significant according to McNemar’s
test.

’Classiﬁer‘ GLM ‘k-NN‘ MLP ‘SVM‘

GLM - k-NN | MLP |SVM
k-NN |<0.001] - MLP |E-NN
MLP |< 0.001] 0.252 - MLP

SVM |<0.001|< 0.01{< 0.01] -

Plotting the true-positive rate of a classifier, which is defined as the propor-
tion of positive patterns correctly classified as positive, versus the false-positive
rate, which the proportion of negative patterns incorrectly classified as positive,
gives the receiver operating characteristic (ROC). The ROC curve then provides
a graphical assessment of the performance of a classifier under different mis-
classification costs, by showing the increasing rate of false-positive errors that
must be tolerated in order to improve the true-positive rate. The best classifica-
tion rules appear toward the upper-left hand corner of the ROC plot. Figure 3
shows the receiver operating characteristic for the four classifiers evaluated in
this study. If nothing is known about the true operational a-priori probabilities
or equivalently misclassification costs, the area under the ROC curve provides
a reasonable performance statistic for comparing classifier systems [16]. Table 2
gives the mean area under the ROC curve of each classifier over the test parti-
tions resulting from 10-fold cross-validation. Fitting a convex hull to individual
ROC curves gives an area of 0.943, indicating that a combination of classifiers
is preferred in uncertain environments.

Multi-layer perceptron networks were also used to solve the six-class pattern
recognition task. A further classification stage into the meta-classes gives sim-
ilar results to those reported with the two-class classifier with that advantage
of being able to more sensitively adjust for new class priors. Table 4 shows a
composite confusion matrix compiled over the test partitions resulting from 10-
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Fig. 3. ROC curves for GLM, k-NN, MLP and SVM classifiers.

fold cross-validation. The MLP classifier achieves a mean test-partition accuracy
of 0.520940 with a standard error of 0.005724. The six-class multi-layer percep-

Table 4. Confusion matrix for multi-layer perceptron classification of images into six
categories, under 10-fold cross-validation. The true class runs horizontally and pre-
dicted class runs vertically.

b= 8

L @ =)

e 285 £ 3%

Q s 0 Q = &~

& & a a &8 &
porn 1357 765 50 112124 14
nude 457809 64 251175 28
people 5 23487 62248 398
portrait 65 190 194 1126 230 116
misc 101 162 332 187920 177
graphics 9 24499 65 145 1034

tron network can also be used to implement the 2-class detector, designating
an image as unacceptable if the sum of the a-posteriori probabilities for classes
“pornography” and “nude” exceeds 0.5. Table 5 shows a composite confusion
matrix compiled over the test partitions resulting from 10-fold cross-validation.
The MLP classifier achieves a mean test-partition accuracy of 0.872331 with a
standard error of 0.003481. As expected, this is almost identical to the accuracy
achieved by the two-class multi-layer perceptron classifier.



Table 5. Confusion matrix for multi-layer perceptron classification of pornographic
images, under 10-fold cross-validation

Observed

T F

T 3327 765

F 640 6273

Predicted

4 Discussion

The image classifier described in this paper is integrated into a mail-based secu-
rity product MAILsweeper ™3 which is a content security solution that sits at
an SMTP gateway, assessing email traffic entering and leaving a company and
protecting the organisation from mail-borne threats such as viruses, breaches
of confidentiality, offensive email content, legal liability and copyright infringe-
ment etc. MAILsweeper disassembles emails into their components, for example,
zipped email attachments will be unzipped. These are then analysed according
to user-defined policies which may be company-wide, department-wide or unique
to an individual employee.

The outcome for a particular mail message is determined by its classification.
Mails that are clean are allowed to pass to the intended recipient but for mails
that, for example, contain large attachments, unknown file-types, offensive or
confidential material, delivery may be delayed until a user-defined time; the item
may be copied; returned to the sender; quarantined or deleted. Notifications and
alerts to administrators/senders/recipients may accompany these final message
classifications.

The image analyser add-on for MAILsweeper is called PORNsweeper™.
As emails are disassembled into their components, any images are passed to
PORNsweeper for classification. It first tries to match the incoming image to
any of the images in its exception list. These are common images, stored as an
MD5 hash, that may be pre-classified by an administrator as pornographic or
safe. Any incoming image not in the exceptions list is passed to the analyser.
If an image is classified as safe the email will be delivered as usual. If, however
it is found to be unacceptable, the MAILsweeper system will quarantine the
image for the administrators inspection. Any false positives that are blocked
may be released from quarantine and may be added to the clean exceptions list
to prevent future incorrect classifications. From an administrative perspective,
PORNSsweeper may be used to constantly monitor all images in emails entering
and/or leaving an organisation or it may be used in short bursts, providing a
snapshot of email activity.

This paper has provided evidence of a successful skin segmentation algorithm
and suggested how this might form part of an automated pornography detector.

3 All trademarks are the property of their respective owners



The results of the classification experiments show that a non-linear classifier is
essential. The choice of classifier depends on implementation issues such as speed
and memory usage. The MLP performs well on both these counts and also has the
best classification performance. The performance of the SVM is disappointing
given the strong theoretical justification of this approach. A possible explanation
might be that the model selection criterion unduly favours hyperparameters
specifying highly regularised classifiers.
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